1
|
Wei W, Sun Z, He S, Zhang W, Chen S, Cao YN, Wang N. Mechanical ventilation induces lung and brain injury through ATP production, P2Y1 receptor activation and dopamine release. Bioengineered 2022; 13:2346-2359. [PMID: 35034579 PMCID: PMC8974168 DOI: 10.1080/21655979.2021.2022269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mechanical ventilation can induce lung injury and exacerbate brain injury due to lung-brain interaction. The current study sought to investigate the mechanism of lung-brain interaction induced by mechanical ventilation and offer theoretical insight into the management of ventilator-induced brain injury. The experimental mice were assigned into the spontaneously breathing group and the mechanical ventilation group and injected with dopamine (DA) receptor antagonist haloperidol or P2Y1 receptor antagonist MRS2279 before ventilation. In vitro assay was conducted using lung epithelial cells MLE-12 hippocampal neuron cells and HT-22. Mouse recognition function and lung injury were examined. The condition and concentration of neurons in the hippocampus were observed. The levels of several inflammatory factors, DA, adenosine triphosphate (ATP), P2Y1R, and dysbindin-1 were detected. Mechanical ventilation induced lung and brain injury in mice, manifested in increased inflammatory factors in the bronchoalveolar lavage fluid and hippocampus, prolonged escape latency, and swimming distance and time in the target quadrant with a weakened concentration of neurons in the hippocampus. Our results presented elevated ATP and P2Y1R expressions in the mechanically ventilated mice and stretched MLE-12 cells. The mechanically ventilated mice and P2Y1 receptor activator MRS2365-treated HT-22 cells presented with elevated levels of DA and dysbindin-1. Inactivation of P2Y1 receptor in the hippocampus or blockage of DA receptor alleviated brain injury induced by mechanical ventilation in mice. To conclude, the current study elicited that lung injury induced by mechanical ventilation exacerbated brain injury in mice by increasing ATP production, activating the P2Y1 receptor, and thus promoting DA release.
Collapse
Affiliation(s)
- Wei Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhentao Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shifeng He
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wanyue Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sai Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ya-Nan Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ning Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Guo Z, Li S, Wu J, Zhu X, Zhang Y. Maternal Deprivation Increased Vulnerability to Depression in Adult Rats Through DRD2 Promoter Methylation in the Ventral Tegmental Area. Front Psychiatry 2022; 13:827667. [PMID: 35308874 PMCID: PMC8924051 DOI: 10.3389/fpsyt.2022.827667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Early life adversity is a risk factor for depression in adulthood; however, the underlying mechanisms are not well understood. This study aims to investigate the effect of DNA methylation of DRD2 gene on early life stress-induced depression in adult rats. METHODS Newborn Sprague-Dawley rats were randomly assigned to four groups: maternal deprivation group (MD), chronic unpredictable stress (CUS) group, maternal deprivation plus chronic unpredictable stress (MD/CUS) group, and normal control group (NOR). Behaviors were measured by open field test (OFT), sucrose preference test (SPT), and Original Research Article forced swimming test (FST). Fecal CORT level was detected by ELISA. Bisulfite amplicon sequencing PCR was used to assess methylation levels of DRD2 promoter. RESULTS CUS and MD/CUS rats had a significantly shorter total distance, longer immobility time, and higher CORT level, while MD and MD/CUS rats had a significantly lower percentage of central distance, more feces, lower rate of sucrose preference, and lower levels of DRD2 protein and mRNA in the VTA than NOR rats. CUS rats showed a significantly higher DRD2 mRNA and protein levels in the VTA than NOR rats. CUS, MD, and MD/CUS rats showed a significantly higher level of DRD2 promoter methylation than NOR rats. CORT level was significantly correlated with the sucrose preference rate in SPT, the immobility time in FST, the total distance, and the number of fecal pellets in OFT. DRD2 protein level was significantly correlated with the sucrose preference rate and the number of fecal pellets. DRD2 mRNA level was significantly correlated with the percentage of central distance and the number of fecal pellets in OFT. The level of DRD2 promoter methylation was significantly correlated with the sucrose preference rate, immobility time, total distance, the percentage of central distance, and the number of fecal pellets. CONCLUSIONS Early life MD increased vulnerability to stress-induced depressive-like behavior in adult rats. Enhanced DRD2 promoter methylation in the VTA may increase the susceptibility to depression.
Collapse
Affiliation(s)
- Zhenli Guo
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shansi Li
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialing Wu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiongzhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Differential Impact of Inhibitory G-Protein Signaling Pathways in Ventral Tegmental Area Dopamine Neurons on Behavioral Sensitivity to Cocaine and Morphine. eNeuro 2021; 8:ENEURO.0081-21.2021. [PMID: 33707203 PMCID: PMC8114902 DOI: 10.1523/eneuro.0081-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Drugs of abuse engage overlapping but distinct molecular and cellular mechanisms to enhance dopamine (DA) signaling in the mesocorticolimbic circuitry. DA neurons of the ventral tegmental area (VTA) are key substrates of drugs of abuse and have been implicated in addiction-related behaviors. Enhanced VTA DA neurotransmission evoked by drugs of abuse can engage inhibitory G-protein-dependent feedback pathways, mediated by GABAB receptors (GABABRs) and D2 DA receptors (D2Rs). Chemogenetic inhibition of VTA DA neurons potently suppressed baseline motor activity, as well as the motor-stimulatory effect of cocaine and morphine, confirming the critical influence of VTA DA neurons and inhibitory G-protein signaling in these neurons on this addiction-related behavior. To resolve the relative influence of GABABR-dependent and D2R-dependent signaling pathways in VTA DA neurons on behavioral sensitivity to drugs of abuse, we developed a neuron-specific viral CRISPR/Cas9 approach to ablate D2R and GABABR in VTA DA neurons. Ablation of GABABR or D2R did not impact baseline physiological properties or excitability of VTA DA neurons, but it did preclude the direct somatodendritic inhibitory influence of GABABR or D2R activation. D2R ablation potentiated the motor-stimulatory effect of cocaine in male and female mice, whereas GABABR ablation selectively potentiated cocaine-induced activity in male subjects only. Neither D2R nor GABABR ablation impacted morphine-induced motor activity. Collectively, our data show that cocaine and morphine differ in the extent to which they engage inhibitory G-protein-dependent feedback pathways in VTA DA neurons and highlight key sex differences that may impact susceptibility to various facets of addiction.
Collapse
|
4
|
Keegan BM, Dreitzler AL, Sexton T, Beveridge TJR, Smith HR, Miller MD, Blough BE, Porrino LJ, Childers SR, Howlett AC. Chronic phenmetrazine treatment promotes D 2 dopaminergic and α2-adrenergic receptor desensitization and alters phosphorylation of signaling proteins and local cerebral glucose metabolism in the rat brain. Brain Res 2021; 1761:147387. [PMID: 33631209 PMCID: PMC8552242 DOI: 10.1016/j.brainres.2021.147387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
Phenmetrazine (PHEN) is a putative treatment for cocaine and psychostimulant recidivism; however, neurochemical changes underlying its activity have not been fully elucidated. We sought to characterize brain homeostatic adaptations to chronic PHEN, specifically on functional brain activity (local cerebral glucose utilization), G-Protein Coupled Receptor-stimulated G-protein activation, and phosphorylation of ERK1/2Thr202/Tyr204, GSK3βTyr216, and DARPP-32Thr34. Male Sprague-Dawley rats were implanted with sub-cutaneous minipumps delivering either saline (vehicle), acute (2-day) or chronic (14-day) low dose (25 mg/kg/day) or high dose (50 mg/kg/day) PHEN. Acute administration of high dose PHEN increased local cerebral glucose utilization measured by 2-[14C]-deoxyglucose uptake in basal ganglia and motor-related regions of the rat brain. However, chronically treated animals developed tolerance to these effects. To identify the neurochemical changes associated with PHEN's activity, we performed [35S]GTPγS binding assays on unfixed and immunohistochemistry on fixed coronal brain sections. Chronic PHEN treatment dose-dependently attenuated D2 dopamine and α2-adrenergic, but not 5-HT1A, receptor-mediated G-protein activation. Two distinct patterns of effects on pERK1/2 and pDARPP-32 were observed: 1) chronic low dose PHEN decreased pERK1/2, and also significantly increased pDARPP-32 levels in some regions; 2) acute and chronic PHEN increased pERK1/2, but chronic high dose PHEN treatment tended to decrease pDARPP-32. Chronic low dose, but not high dose, PHEN significantly reduced pGSK3β levels in several regions. Our study provides definitive evidence that extended length PHEN dosage schedules elicit distinct modes of neuronal acclimatization in cellular signaling. These pharmacodynamic modifications should be considered in drug development for chronic use.
Collapse
Affiliation(s)
- Bradley M Keegan
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Annie L Dreitzler
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Tammy Sexton
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Thomas J R Beveridge
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Hilary R Smith
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Mack D Miller
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA
| | - Linda J Porrino
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Steven R Childers
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Allyn C Howlett
- Center for the Neurobiology of Addiction Treatment, Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
5
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|