1
|
Yao R, Song M, Shi L, Pei Y, Li H, Tan S, Wang B. Microstate D as a Biomarker in Schizophrenia: Insights from Brain State Transitions. Brain Sci 2024; 14:985. [PMID: 39451999 PMCID: PMC11505886 DOI: 10.3390/brainsci14100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives. There is a significant correlation between EEG microstate and the neurophysiological basis of mental illness, brain state, and cognitive function. Given that the unclear relationship between network dynamics and different microstates, this paper utilized microstate, brain network, and control theories to understand the microstate characteristics of short-term memory task, aiming to mechanistically explain the most influential microstates and brain regions driving the abnormal changes in brain state transitions in patients with schizophrenia. Methods. We identified each microstate and analyzed the microstate abnormalities in schizophrenia patients during short-term memory tasks. Subsequently, the network dynamics underlying the primary microstates were studied to reveal the relationships between network dynamics and microstates. Finally, using control theory, we confirmed that the abnormal changes in brain state transitions in schizophrenia patients are driven by specific microstates and brain regions. Results. The frontal-occipital lobes activity of microstate D decreased significantly, but the left frontal lobe of microstate B increased significantly in schizophrenia, when the brain was moving toward the easy-to-reach states. However, the frontal-occipital lobes activity of microstate D decreased significantly in schizophrenia, when the brain was moving toward the hard-to-reach states. Microstate D showed that the right-frontal activity had a higher priority than the left-frontal, but microstate B showed that the left-frontal priority decreased significantly in schizophrenia, when changes occur in the synchronization state of the brain. Conclusions. In conclusion, microstate D may be a biomarker candidate of brain abnormal activity during the states transitions in schizophrenia, and microstate B may represent a compensatory mechanism that maintains brain function and exchanges information with other brain regions. Microstate and brain network provide complementary perspectives on the neurodynamics, offering potential insights into brain function in health and disease.
Collapse
Affiliation(s)
- Rong Yao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Meirong Song
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Langhua Shi
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Yan Pei
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Haifang Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China;
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China; (R.Y.); (M.S.); (L.S.); (Y.P.); (H.L.)
| |
Collapse
|
2
|
Marino M, Mantini D. Human brain imaging with high-density electroencephalography: Techniques and applications. J Physiol 2024. [PMID: 39173191 DOI: 10.1113/jp286639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Electroencephalography (EEG) is a technique for non-invasively measuring neuronal activity in the human brain using electrodes placed on the participant's scalp. With the advancement of digital technologies, EEG analysis has evolved over time from the qualitative analysis of amplitude and frequency modulations to a comprehensive analysis of the complex spatiotemporal characteristics of the recorded signals. EEG is now considered a powerful tool for measuring neural processes in the same time frame in which they happen (i.e. the subsecond range). However, it is commonly argued that EEG suffers from low spatial resolution, which makes it difficult to localize the generators of EEG activity accurately and reliably. Today, the availability of high-density EEG (hdEEG) systems, combined with methods for incorporating information on head anatomy and sophisticated source-localization algorithms, has transformed EEG into an important neuroimaging tool. hdEEG offers researchers and clinicians a rich and varied range of applications. It can be used not only for investigating neural correlates in motor and cognitive neuroscience experiments, but also for clinical diagnosis, particularly in the detection of epilepsy and the characterization of neural impairments in a wide range of neurological disorders. Notably, the integration of hdEEG systems with other physiological recordings, such as kinematic and/or electromyography data, might be especially beneficial to better understand the neuromuscular mechanisms associated with deconditioning in ageing and neuromotor disorders, by mapping the neurokinematic and neuromuscular connectivity patterns directly in the brain.
Collapse
Affiliation(s)
- Marco Marino
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
- Department of General Psychology, University of Padua, Padua, Italy
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
3
|
Lin P, Zhu G, Xu X, Wang Z, Li X, Li B. Brain network analysis of working memory in schizophrenia based on multi graph attention network. Brain Res 2024; 1831:148816. [PMID: 38387716 DOI: 10.1016/j.brainres.2024.148816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The cognitive impairment in schizophrenia (SZ) is characterized by significant deficits in working memory task. In order to explore the brain changes of SZ during a working memory task, we performed time-domain and time-frequency analysis of event related potentials (ERP) of SZ during a 0-back task. The P3 wave amplitude was found to be significantly lower in SZ patients than in healthy controls (HC) (p < 0.05). The power in the θ and α bands was significantly enhanced in the SZ group 200 ms after stimulation, while the θ band was significantly enhanced and the β band was weakened in the HC group. Furthermore, phase lag index (PLI) based brain functional connectivity maps showed differences in the connections between parietal and frontotemporal lobes between SZ and HC (p < 0.05). Due to the natural similarity between brain networks and graph data, and the fact that graph attention network can aggregate the features of adjacent nodes, it has more advantages in learning the features of brain regions. We propose a multi graph attention network model combined with adaptive initial residual (AIR) for SZ classification, which achieves an accuracy of 90.90 % and 78.57 % on an open dataset (Zenodo) and our 0-back dataset, respectively. Overall, the proposed methodology offers promising potential for understanding the brain functional connections of schizophrenia.
Collapse
Affiliation(s)
- Ping Lin
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Geng Zhu
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Xinyi Xu
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhen Wang
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Xiaoou Li
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Yangpu Mental Health Center, Shanghai 200093, China.
| | - Bin Li
- Shanghai Yangpu Mental Health Center, Shanghai 200093, China.
| |
Collapse
|
4
|
An integrative prediction algorithm of drug-refractory epilepsy based on combined clinical-EEG functional connectivity features. J Neurol 2021; 269:1501-1514. [PMID: 34308506 DOI: 10.1007/s00415-021-10718-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Although the use of antiepileptic drugs (AEDs) is routine, 30-40% of patients with epilepsy (PWEs) experience drug resistance. Thus, early identification of AED resistance will help optimize treatment regimens and improve patients' prognoses. However, there have been few studies on this topic to date. Here, we try to establish an integrative prediction model of AED resistance for drug-naive PWEs, and to identify the clinical and Electroencephalogram (EEG) factors that affect their outcomes. METHODS One hundred sixty-four PWEs naive to AEDs treated at a tertiary care center from January 2014 to June 2020 were retrospectively analyzed. A total of 113 of these patients were well controlled and 53 were drug refractory with regular AED treatment for more than one year. Eighty clinical characteristics and 684 EEG functional connectivity variables based on phase lag index before drug initiation were identified. Overall, 80% of each group was chosen to establish a support vector machine (SVM) model with ten-fold cross validation, and the other 20% were used to evaluate the model's performance. Absolute weight value was used to rank the features that had impacts on classification. RESULTS An integrative algorithm was modeled to predict AED resistance for drug-naive PWEs by SVM based on clinical characteristics and EEG functional connectivity values. The model had an accuracy of 94% [95% confidence interval (CI) 0.85-1.0], sensitivity of 95% [95% CI 0.82-1.0], specificity of 93% [95% CI 0.77-1.0], and an area under the curve (AUC) of 0.98 [95% CI 0.91-1.0]. The p values of accuracy, sensitivity specificity and AUC were calculated as 0.001, 0.001, 0.01 and 0.001, respectively. The δ band fromT4-FZ and T3-PZ, α band from T3-T6 and β band from F7-CZ and FP2-F3 were the top five EEG features that impacted the SVM classifier. CONCLUSION We constructed an integrative prediction algorithm of AED resistance for drug-naive PWEs. Its utility in clinical settings should be evaluated in the future.
Collapse
|
5
|
Zhao Z, Li J, Niu Y, Wang C, Zhao J, Yuan Q, Ren Q, Xu Y, Yu Y. Classification of Schizophrenia by Combination of Brain Effective and Functional Connectivity. Front Neurosci 2021; 15:651439. [PMID: 34149345 PMCID: PMC8209471 DOI: 10.3389/fnins.2021.651439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
At present, lots of studies have tried to apply machine learning to different electroencephalography (EEG) measures for diagnosing schizophrenia (SZ) patients. However, most EEG measures previously used are either a univariate measure or a single type of brain connectivity, which may not fully capture the abnormal brain changes of SZ patients. In this paper, event-related potentials were collected from 45 SZ patients and 30 healthy controls (HCs) during a learning task, and then a combination of partial directed coherence (PDC) effective and phase lag index (PLI) functional connectivity were used as features to train a support vector machine classifier with leave-one-out cross-validation for classification of SZ from HCs. Our results indicated that an excellent classification performance (accuracy = 95.16%, specificity = 94.44%, and sensitivity = 96.15%) was obtained when the combination of functional and effective connectivity features was used, and the corresponding optimal feature number was 15, which included 12 PDC and three PLI connectivity features. The selected effective connectivity features were mainly located between the frontal/temporal/central and visual/parietal lobes, and the selected functional connectivity features were mainly located between the frontal/temporal and visual cortexes of the right hemisphere. In addition, most of the selected effective connectivity abnormally enhanced in SZ patients compared with HCs, whereas all the selected functional connectivity features decreased in SZ patients. The above results showed that our proposed method has great potential to become a tool for the auxiliary diagnosis of SZ.
Collapse
Affiliation(s)
- Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Xinxiang city, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang, China
| | - Jun Li
- School of International Education, Xinxiang Medical University, Xinxiang, China
| | - Yanxiang Niu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Chang Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Xinxiang city, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang, China
| | - Junqiang Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Xinxiang city, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang, China
| | - Qingli Yuan
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Qiongqiong Ren
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Xinxiang city, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Xinxiang city, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang, China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Xinxiang city, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang, China
| |
Collapse
|
6
|
Dynamic Changes of Brain Networks during Working Memory Tasks in Schizophrenia. Neuroscience 2020; 453:187-205. [PMID: 33249224 DOI: 10.1016/j.neuroscience.2020.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
Electroencephalograph (EEG) signals and graph theory measures have been widely used to characterize the brain functional networks of healthy individuals and patients by calculating the correlations between different electrodes over an entire time series. Although EEG signals have a high temporal resolution and can provide relatively stable results, the process of constructing and analyzing brain functional networks is inevitably complicated by high time complexity. Our goal in this research was to distinguish the brain function networks of schizophrenia patients from those of healthy participants during working memory tasks. Consequently, we utilized a method involving microstates, which are each characterized by a unique topography of electric potentials over an entire channel array, to reduce the dimension of the EEG signals during working memory tasks and then compared and analyzed the brain functional networks using the microstates time series (MTS) and original time series (OTS) of the schizophrenia patients and healthy individuals. We found that the right frontal and parietal-occipital regions neurons of the schizophrenia patients were less active than those of the healthy participants during working memory tasks. Notably, compared with OTS, the time needed to construct the brain functional networks was significantly reduced by using MTS. In conclusion, our results show that, like OTS, MTS can well distinguish the brain functional network of schizophrenia patients from those of healthy individuals during working memory tasks while greatly decreasing time complexity. MTS can thus provide a method for characterizing the original time series for the construction and analysis of EEG brain functional networks.
Collapse
|