1
|
Cai X, Jiang J, Zhou G, Zhang Y. Mechanisms of Vagus Nerve Stimulation in Improving Motor Dysfunction After Stroke. Neuropsychiatr Dis Treat 2024; 20:2593-2601. [PMID: 39723115 PMCID: PMC11669332 DOI: 10.2147/ndt.s492043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Patients with stroke would have persistent functional deficits despite undergoing physiotherapy and rehabilitation training. Recently, vagus nerve stimulation (VNS), a newly emerging neuroregulatory technique, has been shown to improve motor dysfunction after stroke. Evidence from clinical and preclinical studies has proven the safety, feasibility, and efficacy of invasive and noninvasive VNS. It has been reported that the positive effect may be related to anti-inflammatory effects, mediating neuroplasticity, increasing blood-brain barrier integrity, promoting angiogenesis and reducing spreading depolarization. However, the underlying mechanism remains poorly understood. In this review, we have summarized the potential molecular mechanisms by which VNS promotes stroke prognosis. We believe that VNS combined with upper-extremity rehabilitation can improve impairment and function among moderately to severely impaired stroke survivors. The applications and further exploration are discussed to provide new insights into this novel therapeutic technique.
Collapse
Affiliation(s)
- Xiaohu Cai
- Department of Rehabilitation Medicine, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, People’s Republic of China
| | - Jiayao Jiang
- Department of Orthopedics, The 904th Hospital of the Joint Logistics Support Force of the PLA, Wuxi, Jiangsu, People’s Republic of China
| | - Guochao Zhou
- Department of Orthopedics, The Army 947th Hospital, Kashgar, People’s Republic of China
| | - Yelei Zhang
- Department of Neurosurgery, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, People’s Republic of China
| |
Collapse
|
2
|
Carroll AM, Pruitt DT, Riley JR, Danaphongse TT, Rennaker RL, Engineer CT, Hays SA, Kilgard MP. Vagus nerve stimulation during training fails to improve learning in healthy rats. Sci Rep 2024; 14:18955. [PMID: 39147873 PMCID: PMC11327266 DOI: 10.1038/s41598-024-69666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
Learning new skills requires neuroplasticity. Vagus nerve stimulation (VNS) during sensory and motor events can increase neuroplasticity in networks related to these events and might therefore serve to facilitate learning on sensory and motor tasks. We tested if VNS could broadly improve learning on a wide variety of tasks across different skill domains in healthy, female adult rats. VNS was paired with presentation of stimuli or on successful trials during training, strategies known to facilitate plasticity and improve recovery in models of neurological disorders. VNS failed to improve either rate of learning or performance for any of the tested tasks, which included skilled forelimb motor control, speech sound discrimination, and paired-associates learning. These results contrast recent findings from multiple labs which found VNS pairing during training produced learning enhancements across motor, auditory, and cognitive domains. We speculate that these contrasting results may be explained by key differences in task designs, training timelines and animal handling approaches, and that while VNS may be able to facilitate rapid and early learning processes in healthy subjects, it does not broadly enhance learning for difficult tasks.
Collapse
Affiliation(s)
- Alan M Carroll
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
| | - David T Pruitt
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Jonathan R Riley
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Tanya T Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert L Rennaker
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Seth A Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|
3
|
Xie L, Zhang B, Chen Q, Ji H, Chen J, Jiang Z, Zhu L, Wu X. Effect of Electrical Stimulation of the Vagus Nerve on Inflammation in Rats With Spinal Cord Injury. J Manipulative Physiol Ther 2024; 47:166-174. [PMID: 39466207 DOI: 10.1016/j.jmpt.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVE The purpose of this study was to assess the effect of electroacupuncture stimulation (EAS) of the vagus nerve on the inflammatory response in rat models of spinal cord injury (SCI). METHODS The T10 SCI model in adult male Sprague Dawley rats was established using the modified Allen's method. The EAS group was treated with the therapy on the vagus nerve of rat ear nails, while the SCI group did not receive any EAS treatment. The degree of inflammatory infiltration was reflected by hematoxylin-eosin staining. The inflammatory cytokines in spinal cord tissues, cerebrospinal fluid inflammation, and peripheral blood were detected by enzyme-linked immunosorbent assay. Changes in astrocytes and microglia were assessed using an immunofluorescence assay. RESULTS Electroacupuncture stimulation treatment inhibited inflammatory infiltration, as well as the concentrations of interleukin-6, interleukin-1β, tumor necrosis factor-α, astrocytes, and microglia at 1, 6, and 24 hours after 1 EAS treatment. Multiple EAS treatments had an obvious effect on SCI inflammation. CONCLUSION A single EAS treatment had a limited effect on inflammation, but multiple treatments had a significant inhibitory effect on inflammation.
Collapse
Affiliation(s)
- Linghan Xie
- School of Medicine, Southeast University, Nanjing, China; Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hangyu Ji
- Spinal Surgery Center, Zhongda Hospital Southeast University, Nanjing, China
| | - Ji Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zanli Jiang
- Spinal Surgery Center, Zhongda Hospital Southeast University, Nanjing, China
| | - Lei Zhu
- Spinal Surgery Center, Zhongda Hospital Southeast University, Nanjing, China
| | - Xiaotao Wu
- Spinal Surgery Center, Zhongda Hospital Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Décarie-Spain L, Hayes AMR, Lauer LT, Kanoski SE. The gut-brain axis and cognitive control: A role for the vagus nerve. Semin Cell Dev Biol 2024; 156:201-209. [PMID: 36803834 PMCID: PMC10427741 DOI: 10.1016/j.semcdb.2023.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Survival requires the integration of external information and interoceptive cues to effectively guide advantageous behaviors, particularly foraging and other behaviors that promote energy acquisition and consumption. The vagus nerve acts as a critical relay between the abdominal viscera and the brain to convey metabolic signals. This review synthesizes recent findings from rodent models and humans revealing the impact of vagus nerve signaling from the gut on the control of higher-order neurocognitive domains, including anxiety, depression, reward motivation, and learning and memory. We propose a framework where meal consumption engages gastrointestinal tract-originating vagal afferent signaling that functions to alleviate anxiety and depressive-like states, while also promoting motivational and memory functions. These concurrent processes serve to favor the encoding of meal-relevant information into memory storage, thus facilitating future foraging behaviors. Modulation of these neurocognitive domains by vagal tone is also discussed in the context of pathological conditions, including the use of transcutaneous vagus nerve stimulation for the treatment of anxiety disorders, major depressive disorder, and dementia-associated memory impairments. Collectively, these findings highlight the contributions of gastrointestinal vagus nerve signaling to the regulation of neurocognitive processes that shape various adaptive behavioral responses.
Collapse
Affiliation(s)
- Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Anna M R Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Logan Tierno Lauer
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
5
|
Vagus nerve stimulation to improve post‐stroke motor function and activity. Cochrane Database Syst Rev 2024; 2024:CD015859. [PMCID: PMC10870707 DOI: 10.1002/14651858.cd015859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the effectiveness and safety of vagus nerve stimulation as an add‐on treatment to rehabilitate people with post‐stroke motor function impairments and activity limitations.
Collapse
|
6
|
Tseng CT, Welch HF, Gi AL, Kang EM, Mamidi T, Pydimarri S, Ramesh K, Sandoval A, Ploski JE, Thorn CA. Frequency Specific Optogenetic Stimulation of the Locus Coeruleus Induces Task-Relevant Plasticity in the Motor Cortex. J Neurosci 2024; 44:e1528232023. [PMID: 38124020 PMCID: PMC10869157 DOI: 10.1523/jneurosci.1528-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
The locus ceruleus (LC) is the primary source of neocortical noradrenaline, which is known to be involved in diverse brain functions including sensory perception, attention, and learning. Previous studies have shown that LC stimulation paired with sensory experience can induce task-dependent plasticity in the sensory neocortex and in the hippocampus. However, it remains unknown whether LC activation similarly impacts neural representations in the agranular motor cortical regions that are responsible for movement planning and production. In this study, we test whether optogenetic stimulation of the LC paired with motor performance is sufficient to induce task-relevant plasticity in the somatotopic cortical motor map. Male and female TH-Cre + rats were trained on a skilled reaching lever-pressing task emphasizing the use of the proximal forelimb musculature, and a viral approach was used to selectively express ChR2 in noradrenergic LC neurons. Once animals reached criterial behavioral performance, they received five training sessions in which correct task performance was paired with optogenetic stimulation of the LC delivered at 3, 10, or 30 Hz. After the last stimulation session, motor cortical mapping was performed using intracortical microstimulation. Our results show that lever pressing paired with LC stimulation at 10 Hz, but not at 3 or 30 Hz, drove the expansion of the motor map representation of the task-relevant proximal FL musculature. These findings demonstrate that phasic, training-paired activation of the LC is sufficient to induce experience-dependent plasticity in the agranular motor cortex and that this LC-driven plasticity is highly dependent on the temporal dynamics of LC activation.
Collapse
Affiliation(s)
- Ching-Tzu Tseng
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Hailey F Welch
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Ashley L Gi
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Erica Mina Kang
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Tanushree Mamidi
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Sahiti Pydimarri
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Kritika Ramesh
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Alfredo Sandoval
- Department of Neurobiology, The University of Texas Medical Branch, Galveston 77555, Texas
| | - Jonathan E Ploski
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey 17033-0850, Pennsylvania
| | - Catherine A Thorn
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas,
| |
Collapse
|
7
|
Olsen LK, Solis E, McIntire LK, Hatcher-Solis CN. Vagus nerve stimulation: mechanisms and factors involved in memory enhancement. Front Hum Neurosci 2023; 17:1152064. [PMID: 37457500 PMCID: PMC10342206 DOI: 10.3389/fnhum.2023.1152064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 07/18/2023] Open
Abstract
Vagus nerve stimulation (VNS) has been recognized as a useful neuromodulation tool to target the central nervous system by electrical stimulation of peripheral nerves. Activation of the nucleus of the solitary tract (NTS) in the brainstem by vagal afferent nerve fibers allows for modulation of various higher order brain regions, including limbic and cerebral cortex structures. Along with neurological and psychiatric indications, clinical and preclinical studies suggest that VNS can improve memory. While the underlying mechanisms to improve memory with VNS involve brain areas, such as the prefrontal cortex and processes including alertness and arousal, here we focus on VNS-induced memory improvements related to the hippocampus, the main area implicated in memory acquisition. In addition, we detail research demonstrating that a targeted approach to VNS can modify memory outcomes and delve into the molecular mechanisms associated with these changes. These findings indicate that a greater understanding of VNS mechanisms while also considering stimulation parameters, administration site, timing in relation to training, and sex-specific factors, may allow for optimal VNS application to enhance memory.
Collapse
Affiliation(s)
- Laura K. Olsen
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Ernesto Solis
- Air Force Research Laboratory, 711th Human Performance Wing, Aerospace Physiology, Wright-Patterson Air Force Base, OH, United States
- Consortium of Universities of the Washington Metropolitan Area, Washington, DC, United States
| | - Lindsey K. McIntire
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
- Infoscitex Corporation, Dayton, OH, United States
| | - Candice N. Hatcher-Solis
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
| |
Collapse
|
8
|
Morrison RA, Abe ST, Danaphongse T, Ezhil V, Somaney A, Adcock KS, Rennaker RL, Kilgard MP, Hays SA. Common Cholinergic, Noradrenergic, and Serotonergic Drugs Do Not Block VNS-Mediated Plasticity. Front Neurosci 2022; 16:849291. [PMID: 35281514 PMCID: PMC8904722 DOI: 10.3389/fnins.2022.849291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vagus nerve stimulation (VNS) delivered during motor rehabilitation enhances recovery from a wide array of neurological injuries and was recently approved by the U.S. FDA for chronic stroke. The benefits of VNS result from precisely timed engagement of neuromodulatory networks during rehabilitative training, which promotes synaptic plasticity in networks activated by rehabilitation. Previous studies demonstrate that lesions that deplete these neuromodulatory networks block VNS-mediated plasticity and accompanying enhancement of recovery. There is a great deal of interest in determining whether commonly prescribed pharmacological interventions that influence these neuromodulatory networks would similarly impair VNS effects. Here, we sought to directly test the effects of three common pharmaceuticals at clinically relevant doses that target neuromodulatory pathways on VNS-mediated plasticity in rats. To do so, rats were trained on a behavioral task in which jaw movement during chewing was paired with VNS and received daily injections of either oxybutynin, a cholinergic antagonist, prazosin, an adrenergic antagonist, duloxetine, a serotonin-norepinephrine reuptake inhibitor, or saline. After the final behavioral session, intracortical microstimulation (ICMS) was used to evaluate reorganization of motor cortex representations, with area of cortex eliciting jaw movement as the primary outcome. In animals that received control saline injections, VNS paired with training significantly increased the movement representation of the jaw compared to naïve animals, consistent with previous studies. Similarly, none of the drugs tested blocked this VNS-dependent reorganization of motor cortex. The present results provide direct evidence that these common pharmaceuticals, when used at clinically relevant doses, are unlikely to adversely impact the efficacy of VNS therapy.
Collapse
Affiliation(s)
- Robert A. Morrison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
- *Correspondence: Robert A. Morrison,
| | - Stephanie T. Abe
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Tanya Danaphongse
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Vikram Ezhil
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Armaan Somaney
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Katherine S. Adcock
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Robert L. Rennaker
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Michael P. Kilgard
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Seth A. Hays
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
- Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
9
|
Brougher J, Aziz U, Adari N, Chaturvedi M, Jules A, Shah I, Syed S, Thorn CA. Self-Administration of Right Vagus Nerve Stimulation Activates Midbrain Dopaminergic Nuclei. Front Neurosci 2022; 15:782786. [PMID: 34975384 PMCID: PMC8716493 DOI: 10.3389/fnins.2021.782786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Left cervical vagus nerve stimulation (l-VNS) is an FDA-approved treatment for neurological disorders including epilepsy, major depressive disorder, and stroke, and l-VNS is increasingly under investigation for a range of other neurological indications. Traditional l-VNS is thought to induce therapeutic neuroplasticity in part through the coordinated activation of multiple broadly projecting neuromodulatory systems in the brain. Recently, it has been reported that striking lateralization exists in the anatomical and functional connectivity between the vagus nerves and the dopaminergic midbrain. These emerging findings suggest that VNS-driven activation of this important plasticity-promoting neuromodulatory system may be preferentially driven by targeting the right, rather than the left, cervical nerve. Objective: To compare the effects of right cervical VNS (r-VNS) vs. traditional l-VNS on self-administration behavior and midbrain dopaminergic activation in rats. Methods: Rats were implanted with a stimulating cuff electrode targeting either the right or left cervical vagus nerve. After surgical recovery, rats underwent a VNS self-administration assay in which lever pressing was paired with r-VNS or l-VNS delivery. Self-administration was followed by extinction, cue-only reinstatement, and stimulation reinstatement sessions. Rats were sacrificed 90 min after completion of behavioral training, and brains were removed for immunohistochemical analysis of c-Fos expression in the dopaminergic ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), as well as in the noradrenergic locus coeruleus (LC). Results: Rats in the r-VNS cohort performed significantly more lever presses throughout self-administration and reinstatement sessions than did rats in the l-VNS cohort. Moreover, this appetitive behavioral responding was associated with significantly greater c-Fos expression among neuronal populations within the VTA, SNc, and LC. Differential c-Fos expression following r-VNS vs. l-VNS was particularly prominent within dopaminergic midbrain neurons. Conclusion: Our results support the existence of strong lateralization within vagal-mesencephalic signaling pathways, and suggest that VNS targeted to the right, rather than left, cervical nerve preferentially activates the midbrain dopaminergic system. These findings raise the possibility that r-VNS could provide a promising strategy for enhancing dopamine-dependent neuroplasticity, opening broad avenues for future research into the efficacy and safety of r-VNS in the treatment of neurological disease.
Collapse
Affiliation(s)
- Jackson Brougher
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Umaymah Aziz
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Nikitha Adari
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Muskaan Chaturvedi
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Aryela Jules
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Iqra Shah
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Saba Syed
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Catherine A Thorn
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
10
|
Sanchez CA, Brougher J, Krishnan DG, Thorn CA. Longitudinal Assessment of Skilled Forelimb Motor Impairments in DJ-1 Knockout Rats. Behav Brain Res 2022; 424:113774. [PMID: 35101457 PMCID: PMC8941633 DOI: 10.1016/j.bbr.2022.113774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND DJ-1 knockout (DJ-1 KO) rats exhibit a moderate parkinsonian phenotype, with gross motor deficits and ca. 50% loss of midbrain dopaminergic neurons appearing around 6-8 months of age. Fine motor impairments are often observed in Parkinson's disease (PD), but skilled motor function in recently developed transgenic rat models of PD is not well characterized. OBJECTIVES To assess the longitudinal performance of DJ-1 KO rats on a skilled forelimb reaching task. METHODS DJ-1 KO and wild-type (WT) rats were trained from 2 to 10 months of age on an isometric pullbar task designed to test forelimb strength and coordination. After 36 consecutive weeks of training (ca. 10 months old), task difficulty was then increased to challenge the motor capabilities of the DJ-1 KO rats. Throughout the study, subjects also received weekly assessments of gross locomotor activity in an open field. RESULTS Pull-task performance of the DJ-1 KO rats was impaired compared to WT, with deficits reaching significance around 7-9 months of age. When challenged, DJ-1 KO rats were able to exert increased force on the pullbar but continued to exhibit deficits compared to WT rats. Throughout the study, no differences in distance traveled or rearing frequency were observed in the open field, but DJ-1 KO rats were found to spend significantly more time in the center of the open field than WT rats. CONCLUSIONS Using a sensitive, automated assay of forelimb strength and coordination, we find that skilled forelimb motor performance is impaired in DJ-1 KO rats.
Collapse
|
11
|
Tseng CT, Gaulding SJ, Dancel CLE, Thorn CA. Local activation of α2 adrenergic receptors is required for vagus nerve stimulation induced motor cortical plasticity. Sci Rep 2021; 11:21645. [PMID: 34737352 PMCID: PMC8568982 DOI: 10.1038/s41598-021-00976-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Vagus nerve stimulation (VNS) paired with rehabilitation training is emerging as a potential treatment for improving recovery of motor function following stroke. In rats, VNS paired with skilled forelimb training results in significant reorganization of the somatotopic cortical motor map; however, the mechanisms underlying this form of VNS-dependent plasticity remain unclear. Recent studies have shown that VNS-driven cortical plasticity is dependent on noradrenergic innervation of the neocortex. In the central nervous system, noradrenergic α2 receptors (α2-ARs) are widely expressed in the motor cortex and have been critically implicated in synaptic communication and plasticity. In current study, we examined whether activation of cortical α2-ARs is necessary for VNS-driven motor cortical reorganization to occur. Consistent with previous studies, we found that VNS paired with motor training enlarges the map representation of task-relevant musculature in the motor cortex. Infusion of α2-AR antagonists into M1 blocked VNS-driven motor map reorganization from occurring. Our results suggest that local α2-AR activation is required for VNS-induced cortical reorganization to occur, providing insight into the mechanisms that may underlie the neuroplastic effects of VNS therapy.
Collapse
Affiliation(s)
- Ching-Tzu Tseng
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Solomon J Gaulding
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Canice Lei E Dancel
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Catherine A Thorn
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
12
|
Brougher J, Sanchez CA, Aziz US, Gove KF, Thorn CA. Vagus Nerve Stimulation Induced Motor Map Plasticity Does Not Require Cortical Dopamine. Front Neurosci 2021; 15:693140. [PMID: 34497484 PMCID: PMC8420970 DOI: 10.3389/fnins.2021.693140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Vagus nerve stimulation (VNS) paired with motor rehabilitation is an emerging therapeutic strategy to enhance functional recovery after neural injuries such as stroke. Training-paired VNS drives significant neuroplasticity within the motor cortex (M1), which is thought to underlie the therapeutic effects of VNS. Though the mechanisms are not fully understood, VNS-induced cortical plasticity is known to depend on intact signaling from multiple neuromodulatory nuclei that innervate M1. Cortical dopamine (DA) plays a key role in mediating M1 synaptic plasticity and is critical for motor skill acquisition, but whether cortical DA contributes to VNS efficacy has not been tested. Objective: To determine the impact of cortical DA depletion on VNS-induced cortical plasticity. Methods: Rats were trained on a skilled reaching lever press task prior to implantation of VNS electrodes and 6-hydroxydopamine (6-OHDA) mediated DA depletion in M1. Rats then underwent training-paired VNS treatment, followed by cortical motor mapping and lesion validation. Results: In both intact and DA-depleted rats, VNS significantly increased the motor map representation of task-relevant proximal forelimb musculature and reduced task-irrelevant distal forelimb representations. VNS also significantly increased tyrosine hydroxylase (TH+) fiber density in intact M1, but this effect was not observed in lesioned hemispheres. Conclusion: Our results reveal that though VNS likely upregulates catecholaminergic signaling in intact motor cortices, DA itself is not required for VNS-induced plasticity to occur. As DA is known to critically support M1 plasticity during skill acquisition, our findings suggest that VNS may engage a unique set of neuromodulatory signaling pathways to promote neocortical plasticity.
Collapse
Affiliation(s)
- Jackson Brougher
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Camilo A Sanchez
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Umaymah S Aziz
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Kiree F Gove
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Catherine A Thorn
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
13
|
Morrison RA, Hays SA, Kilgard MP. Vagus Nerve Stimulation as a Potential Adjuvant to Rehabilitation for Post-stroke Motor Speech Disorders. Front Neurosci 2021; 15:715928. [PMID: 34489632 PMCID: PMC8417469 DOI: 10.3389/fnins.2021.715928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Stroke often leaves lasting impairments affecting orofacial function. While speech therapy is able to enhance function after stroke, many patients see only modest improvements after treatment. This partial restoration of function after rehabilitation suggests that there is a need for further intervention. Rehabilitative strategies that augment the effects of traditional speech therapy hold promise to yield greater efficacy and reduce disability associated with motor speech disorders. Recent studies demonstrate that brief bursts of vagus nerve stimulation (VNS) can facilitate the benefits of rehabilitative interventions. VNS paired with upper limb rehabilitation enhances recovery of upper limb function in patients with chronic stroke. Animal studies reveal that these improvements are driven by VNS-dependent synaptic plasticity in motor networks. Moreover, preclinical evidence demonstrates that a similar strategy of pairing VNS can promote synaptic reorganization in orofacial networks. Building on these findings, we postulate that VNS-directed orofacial plasticity could target post-stroke motor speech disorders. Here, we outline the rationale for pairing VNS with traditional speech therapy to enhance recovery in the context of stroke of speech motor function. We also explore similar treatments that aim to enhance synaptic plasticity during speech therapy, and how VNS differs from these existing therapeutic strategies. Based on this evidence, we posit that VNS-paired speech therapy shows promise as a means of enhancing recovery after post-stroke motor speech disorders. Continued development is necessary to comprehensively establish and optimize this approach, which has the potential to increase quality of life for the many individuals suffering with these common impairments.
Collapse
Affiliation(s)
- Robert A Morrison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Seth A Hays
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States.,Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX, United States
| | - Michael P Kilgard
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
14
|
Altidor LKP, Bruner MM, Deslauriers JF, Garman TS, Ramirez S, Dirr EW, Olczak KP, Maurer AP, Lamb DG, Otto KJ, Burke SN, Bumanglag AV, Setlow B, Bizon JL. Acute vagus nerve stimulation enhances reversal learning in rats. Neurobiol Learn Mem 2021; 184:107498. [PMID: 34332068 DOI: 10.1016/j.nlm.2021.107498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/24/2021] [Indexed: 01/19/2023]
Abstract
Cognitive flexibility is a prefrontal cortex-dependent neurocognitive process that enables behavioral adaptation in response to changes in environmental contingencies. Electrical vagus nerve stimulation (VNS) enhances several forms of learning and neuroplasticity, but its effects on cognitive flexibility have not been evaluated. In the current study, a within-subjects design was used to assess the effects of VNS on performance in a novel visual discrimination reversal learning task conducted in touchscreen operant chambers. The task design enabled simultaneous assessment of acute VNS both on reversal learning and on recall of a well-learned discrimination problem. Acute VNS delivered in conjunction with stimuli presentation during reversal learning reliably enhanced learning of new reward contingencies. Enhancement was not observed, however, if VNS was delivered during the session but was not coincident with presentation of to-be-learned stimuli. In addition, whereas VNS delivered at 30 HZ enhanced performance, the same enhancement was not observed using 10 or 50 Hz. Together, these data show that acute VNS facilitates reversal learning and indicate that the timing and frequency of the VNS are critical for these enhancing effects. In separate rats, administration of the norepinephrine reuptake inhibitor atomoxetine also enhanced reversal learning in the same task, consistent with a noradrenergic mechanism through which VNS enhances cognitive flexibility.
Collapse
Affiliation(s)
| | - Matthew M Bruner
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Tyler S Garman
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Saúl Ramirez
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Elliott W Dirr
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kaitlynn P Olczak
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
| | - Damon G Lamb
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
| | - Kevin J Otto
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Argyle V Bumanglag
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA.
| |
Collapse
|
15
|
Ahmed U, Chang YC, Lopez MF, Wong J, Datta-Chaudhuri T, Rieth L, Al-Abed Y, Zanos S. Implant- and anesthesia-related factors affecting cardiopulmonary threshold intensities for vagus nerve stimulation. J Neural Eng 2021; 18. [PMID: 34036940 DOI: 10.1088/1741-2552/ac048a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
Objective.Vagus nerve stimulation (VNS) is typically delivered at increasing stimulus intensity until a neurological or physiological response is observed ('threshold') for dose calibration, preclinically and therapeutically. Factors affecting VNS thresholds have not been studied systematically. In a rodent model of VNS we measured neural and physiological responses to increasing VNS intensity, determined neurological and physiological thresholds and examined the effect of implant- and anesthesia-related factors on thresholds.Approach.In acute and chronic vagus implants (45 and 20 rats, respectively) VNS was delivered under isoflurane, ketamine-xylazine, or awake conditions. Evoked compound action potentials (CAPs) were recorded and activation of different fiber types was extracted. Elicited physiological responses were registered, including changes in heart rate (HR), breathing rate (BR), and blood pressure (BP). CAP and physiological thresholds were determined.Main results. The threshold for evoking discernable CAPs (>10µV) (CAP threshold) is significantly lower than what elicits 5%-10% drop in heart rate (heart rate threshold, HRT) (25µA ± 1.8 vs. 80µA ± 5.1, respectively; mean ± SEM). Changes in BP and small changes in BR (bradypnea) occur at lowest intensities (70µA ± 8.3), followed by HR changes (80µA ± 5.1) and finally significant changes in BR (apnea) (310μA ± 32.5). HRT and electrode impedance are correlated in chronic (Pearson correlationr= 0.47;p< 0.001) but not in acute implants (r= -0.34;pNS); HRT and impedance both increase with implant age (r= 0.44;p< 0.001 andr= 0.64;p< 0.001, respectively). HRT is lowest when animals are awake (200µA ± 35.5), followed by ketamine-xylazine (640µA ± 151.5), and isoflurane (1000µA ± 139.5). The sequence of physiological responses with increasing VNS intensity is the same in anesthetized and awake animals. Pulsing frequency affects physiological responses but not CAPs.Significance. Implant age, electrode impedance, and type of anesthesia affect VNS thresholds and should be accounted for when calibrating stimulation dose.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Maria F Lopez
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Jason Wong
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Loren Rieth
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, United States of America
| |
Collapse
|