1
|
Pańczyszyn-Trzewik P, Sowa-Kućma M, Misztak P, Tabecka-Lonczynska A, Stachowicz K. Time-dependent dual mode of action of COX-2 inhibition on mouse serum corticosterone levels. Steroids 2024; 207:109438. [PMID: 38723842 DOI: 10.1016/j.steroids.2024.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
To elucidate the effect of cyclooxygenase-2 (COX-2) inhibition on corticosterone release, mice were divided into a group receiving NS398, a selective COX-2 inhibitor at a dose of 3 mg/kg for seven days, and a group receiving NS398 for fourteen days. After this time, the mice were sacrificed, and blood serum was collected. An ELISA protocol was used to analyze serum corticosterone levels. Short-term COX-2 inhibition increased corticosterone levels, while long-term inhibition lowered them. The exact schedule of experiments was repeated after the lipopolysaccharide (LPS) Escherichia coli challenge in mice to check the influence of stress stimuli on the tested parameters. In this case, we observed increases in corticosterone levels, significant in a seven-day pattern. These results indicate that corticosterone levels are regulated through a COX-2-dependent mechanism in mice.
Collapse
Affiliation(s)
- Patrycja Pańczyszyn-Trzewik
- Medical College of Rzeszów University, Institute of Medical Science, Department of Human Physiology, 35-310 Rzeszow, Kopisto Street 2a, Poland
| | - Magdalena Sowa-Kućma
- Medical College of Rzeszów University, Institute of Medical Science, Department of Human Physiology, 35-310 Rzeszow, Kopisto Street 2a, Poland
| | - Paulina Misztak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Anna Tabecka-Lonczynska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Katarzyna Stachowicz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
2
|
Stachowicz K. Deciphering the mechanisms of reciprocal regulation or interdependence at the cannabinoid CB1 receptors and cyclooxygenase-2 level: Effects on mood, cognitive implications, and synaptic signaling. Neurosci Biobehav Rev 2023; 155:105439. [PMID: 37898448 DOI: 10.1016/j.neubiorev.2023.105439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
The lipid endocannabinoid system refers to endogenous cannabinoids (eCBs), the enzymes involved in their synthesis and metabolism, and the G protein-coupled cannabinoid receptors (GPCRs), CB1, and CB2. CB1 receptors (CB1Rs) are distributed in the brain at presynaptic terminals. Their activation induces inhibition of neurotransmitter release, which are gamma-aminobutyric acid (GABA), glutamate (Glu), dopamine, norepinephrine, serotonin, and acetylcholine. Postsynaptically localized CB1Rs regulate the activity of selected ion channels and N-methyl-D-aspartate receptors (NMDARs). CB2Rs are mainly peripheral and will not be considered here. Anandamide metabolism, mediated by cyclooxygenase-2 (COX-2), generates anandamide-derived prostanoids. In addition, COX-2 regulates the formation of CB1 ligands, which reduce excitatory transmission in the hippocampus (HC). The role of CB1Rs and COX-2 has been described in anxiety, depression, and cognition, among other central nervous system (CNS) disorders, affecting neurotransmission and behavior of the synapses. This review will analyze common pathways, mechanisms, and behavioral effects of manipulation at the CB1Rs/COX-2 level.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacoslogy, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
3
|
Pańczyszyn-Trzewik P, Czechowska E, Stachowicz K, Sowa-Kućma M. The Importance of α-Klotho in Depression and Cognitive Impairment and Its Connection to Glutamate Neurotransmission-An Up-to-Date Review. Int J Mol Sci 2023; 24:15268. [PMID: 37894946 PMCID: PMC10607524 DOI: 10.3390/ijms242015268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Depression is a serious neuropsychiatric disease affecting an increasing number of people worldwide. Cognitive deficits (including inattention, poor memory, and decision-making difficulties) are common in the clinical picture of depression. Cognitive impairment has been hypothesized to be one of the most important components of major depressive disorder (MDD; referred to as clinical depression), although typical cognitive symptoms are less frequent in people with depression than in people with schizophrenia or bipolar disorder (BD; sometimes referred to as manic-depressive disorder). The importance of α-Klotho in the aging process has been well-documented. Growing evidence points to the role of α-Klotho in regulating other biological functions, including responses to oxidative stress and the modulation of synaptic plasticity. It has been proven that a Klotho deficit may contribute to the development of various nervous system pathologies, such as behavioral disorders or neurodegeneration. Given the growing evidence of the role of α-Klotho in depression and cognitive impairment, it is assumed that this protein may be a molecular link between them. Here, we provide a research review of the role of α-Klotho in depression and cognitive impairment. Furthermore, we propose potential mechanisms (related to oxidative stress and glutamatergic transmission) that may be important in α-Klotho-mediated regulation of mental and cognitive function.
Collapse
Affiliation(s)
- Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (P.P.-T.); (E.C.)
| | - Ewelina Czechowska
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (P.P.-T.); (E.C.)
| | - Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland;
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (P.P.-T.); (E.C.)
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna Street 1A, 35-595 Rzeszow, Poland
| |
Collapse
|
4
|
Stachowicz K, Pańczyszyn-Trzewik P, Sowa-Kućma M, Misztak P. Changes in working memory induced by lipopolysaccharide administration in mice are associated with metabotropic glutamate receptors 5 and contrast with changes induced by cyclooxygenase-2: Involvement of postsynaptic density protein 95 and down syndrome cell adhesion molecule. Neuropeptides 2023; 100:102347. [PMID: 37182274 DOI: 10.1016/j.npep.2023.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The strength and quality of the signal propagated by the glutamate synapse (Glu) depend, among other things, on the structure of the postsynaptic part and the quality of adhesion between the interacting components of the synapse. Postsynaptic density protein 95 (PSD95), mammalian target of rapamycin (mTOR), and Down syndrome cell adhesion molecule (DSCAM) are components of the proper functioning of an excitatory synapse. PSD95 is a member of the membrane-associated guanylate kinases protein family, mainly located at the postsynaptic density of the excitatory synapse. PSD95, via direct interaction, regulates the clustering and functionality of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors at a synapse. Here, the effects of treatment with an antagonist of mGluR5 (MTEP) and NS398 (cyclooxygenase-2, COX-2 inhibitor) on PSD95, mTOR, and DSCAM in the hippocampus (HC) of C57B1/6 J mice using Western blots in the context of learning were examined. Moreover, the sensitivity of selected proteins to lipopolysaccharide (LPS) was monitored. MTEP injected for seven days induced upregulation of PSD95 in HC of mice. The observed effect was regulated by a COX-2 inhibitor and concurrently by LPS. Accompanying alterations in DSCAM protein were found, suggesting changes in adhesion strength after modulation of glutamatergic (Glu) synapse via tested compounds.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszów University, Kopisto Street 2a, 35-310 Rzeszow, Poland
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszów University, Kopisto Street 2a, 35-310 Rzeszow, Poland
| | - Paulina Misztak
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
5
|
Stachowicz K, Sowa-Kućma M. The treatment of depression - searching for new ideas. Front Pharmacol 2022; 13:988648. [PMID: 36278184 PMCID: PMC9585175 DOI: 10.3389/fphar.2022.988648] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 10/06/2023] Open
Abstract
Depression is a severe mental health problem that affects people regardless of social status or education, is associated with changes in mood and behavior, and can result in a suicide attempt. Therapy of depressive disorders is based mainly on drugs discovered in the 1960s and early 1970s. Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are frontline pharmacological strategies for the medical treatment of depression. In addition, approved by FDA in 2019, esketamine [as nasal spray; N-methyl-D-aspartate (NMDA) receptors antagonist with additional effects on α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, L-type voltage-dependent calcium channel (L-VDCC), opioid receptors, and monoaminergic receptors] is an essential compound in suicide and drug-resistant depression. However, the treatment of depression is burdened with severe side effects, and in many cases, it is ineffective. An equally important issue is the choice of antidepressant therapy in people with comorbid somatic diseases, for example, due to possible interactions with the patient's other drugs. Therefore, there is a great need for new antidepressants with different mechanisms of action and the need to refine the search for new substances. The purpose of this review was to discuss new research directions and new trends that dominate laboratories worldwide. We have reviewed the literature to present new points on the pharmacological target of substances with antidepressant activity. In addition, we propose a new perspective on depressive therapies.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| |
Collapse
|
6
|
Stachowicz K. Is PSD-95 entangled in the side effects of antidepressants? Neurochem Int 2022; 159:105391. [PMID: 35817245 DOI: 10.1016/j.neuint.2022.105391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
PSD-95 is a component and a building block of an excitatory synapse. PSD-95 is a specialized protein that is part of a "combination lock" system responsible for plastic events at the synapse, such as receptor expression, which consequently induces changes in the PSD structure and thus affects synaptic plasticity. The possible involvement of PSD-95 in antidepressant side effects related to cognitive function and psychosis will be considered. An attempt will be made to trace the sequence of events in the proposed mechanism leading to these disorders, focusing mainly on NMDA receptors. Understanding the mechanisms of action of compounds with antidepressant potential may facilitate the design of safer drugs.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna, 12, 31-343, Kraków, Poland.
| |
Collapse
|