1
|
Kuypers DRJ, Kamphorst JJ, de Loor H, O'Day EM. Perspective: metabolomics has the potential to change the landscape of kidney transplantation diagnostics. Biomark Med 2024; 18:787-794. [PMID: 39234983 PMCID: PMC11457662 DOI: 10.1080/17520363.2024.2394383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
Kidney transplantation is the most efficient renal replacement therapy. Current diagnostics for monitoring graft health are either invasive or lack precision. Metabolomics is an emerging discipline focused on the analysis of the small molecules involved in metabolism. Given the kidneys' central role in metabolic homeostasis and previous observations of altered metabolites correlating with restricted kidney graft function, metabolomics is highly promising for the discovery of novel biomarkers and the development of novel diagnostics. In this perspective, we summarize the known metabolic roles for the kidney, discuss biomarkers of graft health and immune status emerging from metabolomics research, and provide our perspective on how these and future findings can be integrated in clinical practice to enable precision diagnostics.
Collapse
Affiliation(s)
- Dirk R J Kuypers
- Department of Nephrology & Renal Transplantation, University Hospitals Leuven, Belgium
- Department of Microbiology, Immunology & Transplantation, Nephrology & Renal Transplantation Research Group, KU Leuven, Belgium
| | | | - Henriette de Loor
- Department of Nephrology & Renal Transplantation, University Hospitals Leuven, Belgium
| | | |
Collapse
|
2
|
Ashenden AJ, Chowdhury A, Anastasi LT, Lam K, Rozek T, Ranieri E, Siu CWK, King J, Mas E, Kassahn KS. The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges. Int J Neonatal Screen 2024; 10:42. [PMID: 39051398 PMCID: PMC11270328 DOI: 10.3390/ijns10030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Newborn screening programs have seen significant evolution since their initial implementation more than 60 years ago, with the primary goal of detecting treatable conditions within the earliest possible timeframe to ensure the optimal treatment and outcomes for the newborn. New technologies have driven the expansion of screening programs to cover additional conditions. In the current era, the breadth of screened conditions could be further expanded by integrating omic technologies such as untargeted metabolomics and genomics. Genomic screening could offer opportunities for lifelong care beyond the newborn period. For genomic newborn screening to be effective and ready for routine adoption, it must overcome barriers such as implementation cost, public acceptability, and scalability. Metabolomics approaches, on the other hand, can offer insight into disease phenotypes and could be used to identify known and novel biomarkers of disease. Given recent advances in metabolomic technologies, alongside advances in genomics including whole-genome sequencing, the combination of complementary multi-omic approaches may provide an exciting opportunity to leverage the best of both approaches and overcome their respective limitations. These techniques are described, along with the current outlook on multi-omic-based NBS research.
Collapse
Affiliation(s)
- Alex J. Ashenden
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Ayesha Chowdhury
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
| | - Lucy T. Anastasi
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
| | - Khoa Lam
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Tomas Rozek
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Enzo Ranieri
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Carol Wai-Kwan Siu
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Jovanka King
- Immunology Directorate, SA Pathology, Adelaide, SA 5000, Australia
- Department of Allergy and Clinical Immunology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia
- Discipline of Paediatrics, Women’s and Children’s Hospital, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Emilie Mas
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Karin S. Kassahn
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
3
|
Dorrani M, Zhao J, Bekhti N, Trimigno A, Min S, Ha J, Han A, O’Day E, Kamphorst JJ. Olaris Global Panel (OGP): A Highly Accurate and Reproducible Triple Quadrupole Mass Spectrometry-Based Metabolomics Method for Clinical Biomarker Discovery. Metabolites 2024; 14:280. [PMID: 38786757 PMCID: PMC11123370 DOI: 10.3390/metabo14050280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Mass spectrometry (MS)-based clinical metabolomics is very promising for the discovery of new biomarkers and diagnostics. However, poor data accuracy and reproducibility limit its true potential, especially when performing data analysis across multiple sample sets. While high-resolution mass spectrometry has gained considerable popularity for discovery metabolomics, triple quadrupole (QqQ) instruments offer several benefits for the measurement of known metabolites in clinical samples. These benefits include high sensitivity and a wide dynamic range. Here, we present the Olaris Global Panel (OGP), a HILIC LC-QqQ MS method for the comprehensive analysis of ~250 metabolites from all major metabolic pathways in clinical samples. For the development of this method, multiple HILIC columns and mobile phase conditions were compared, the robustness of the leading LC method assessed, and MS acquisition settings optimized for optimal data quality. Next, the effect of U-13C metabolite yeast extract spike-ins was assessed based on data accuracy and precision. The use of these U-13C-metabolites as internal standards improved the goodness of fit to a linear calibration curve from r2 < 0.75 for raw data to >0.90 for most metabolites across the entire clinical concentration range of urine samples. Median within-batch CVs for all metabolite ratios to internal standards were consistently lower than 7% and less than 10% across batches that were acquired over a six-month period. Finally, the robustness of the OGP method, and its ability to identify biomarkers, was confirmed using a large sample set.
Collapse
Affiliation(s)
- Masoumeh Dorrani
- Olaris, Inc., 175 Crossing Boulevard Suite 410, Framingham, MA 01702, USA; (M.D.); (J.Z.); (N.B.); (A.T.); (E.O.)
| | - Jifang Zhao
- Olaris, Inc., 175 Crossing Boulevard Suite 410, Framingham, MA 01702, USA; (M.D.); (J.Z.); (N.B.); (A.T.); (E.O.)
| | - Nihel Bekhti
- Olaris, Inc., 175 Crossing Boulevard Suite 410, Framingham, MA 01702, USA; (M.D.); (J.Z.); (N.B.); (A.T.); (E.O.)
| | - Alessia Trimigno
- Olaris, Inc., 175 Crossing Boulevard Suite 410, Framingham, MA 01702, USA; (M.D.); (J.Z.); (N.B.); (A.T.); (E.O.)
| | - Sangil Min
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; (S.M.); (J.H.); (A.H.)
| | - Jongwon Ha
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; (S.M.); (J.H.); (A.H.)
| | - Ahram Han
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; (S.M.); (J.H.); (A.H.)
| | - Elizabeth O’Day
- Olaris, Inc., 175 Crossing Boulevard Suite 410, Framingham, MA 01702, USA; (M.D.); (J.Z.); (N.B.); (A.T.); (E.O.)
| | - Jurre J. Kamphorst
- Olaris, Inc., 175 Crossing Boulevard Suite 410, Framingham, MA 01702, USA; (M.D.); (J.Z.); (N.B.); (A.T.); (E.O.)
| |
Collapse
|
4
|
Camelo ALM, Zamora Obando HR, Rocha I, Dias AC, Mesquita ADS, Simionato AVC. COVID-19 and Comorbidities: What Has Been Unveiled by Metabolomics? Metabolites 2024; 14:195. [PMID: 38668323 PMCID: PMC11051775 DOI: 10.3390/metabo14040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic has brought about diverse impacts on the global population. Individuals with comorbidities were more susceptible to the severe symptoms caused by the virus. Within the crisis scenario, metabolomics represents a potential area of science capable of providing relevant information for understanding the metabolic pathways associated with the intricate interaction between the viral disease and previous comorbidities. This work aims to provide a comprehensive description of the scientific production pertaining to metabolomics within the specific context of COVID-19 and comorbidities, while highlighting promising areas for exploration by those interested in the subject. In this review, we highlighted the studies of metabolomics that indicated a variety of metabolites associated with comorbidities and COVID-19. Furthermore, we observed that the understanding of the metabolic processes involved between comorbidities and COVID-19 is limited due to the urgent need to report disease outcomes in individuals with comorbidities. The overlap of two or more comorbidities associated with the severity of COVID-19 hinders the comprehension of the significance of each condition. Most identified studies are observational, with a restricted number of patients, due to challenges in sample collection amidst the emergent situation.
Collapse
Affiliation(s)
- André Luiz Melo Camelo
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Hans Rolando Zamora Obando
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Isabela Rocha
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Aline Cristina Dias
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Alessandra de Sousa Mesquita
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
| | - Ana Valéria Colnaghi Simionato
- Laboratory of Analysis of Biomolecules Tiselius, Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil; (A.L.M.C.); (H.R.Z.O.); (I.R.); (A.C.D.); (A.d.S.M.)
- National Institute of Science and Technology for Bioanalytics—INCTBio, Institute of Chemistry, Universidade Estadual de (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| |
Collapse
|
5
|
Gątarek P, Kałużna-Czaplińska J. Integrated metabolomics and proteomics analysis of plasma lipid metabolism in Parkinson's disease. Expert Rev Proteomics 2024; 21:13-25. [PMID: 38346207 DOI: 10.1080/14789450.2024.2315193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Metabolomics and proteomics are two growing fields of science which may shed light on the molecular mechanisms that contribute to neurodegenerative diseases. Studies focusing on these aspects can reveal specific metabolites and proteins that can halt or reverse the progressive neurodegenerative process leading to dopaminergic cell death in the brain. AREAS COVERED In this article, an overview of the current status of metabolomic and proteomic profiling in the neurodegenerative disease such as Parkinson's disease (PD) is presented. We discuss the importance of state-of-the-art metabolomics and proteomics using advanced analytical methodologies and their potential for discovering new biomarkers in PD. We critically review the research to date, highlighting how metabolomics and proteomics can have an important impact on early disease diagnosis, future therapy development and the identification of new biomarkers. Finally, we will discuss interactions between lipids and α-synuclein (SNCA) and also consider the role of SNCA in lipid metabolism. EXPERT OPINION Metabolomic and proteomic studies contribute to understanding the biological basis of PD pathogenesis, identifying potential biomarkers and introducing new therapeutic strategies. The complexity and multifactorial nature of this disease requires a comprehensive approach, which can be achieved by integrating just these two omic studies.
Collapse
Affiliation(s)
- Paulina Gątarek
- Institute Of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| | - Joanna Kałużna-Czaplińska
- Institute Of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
6
|
Kurano M, Saito Y, Yatomi Y. Comprehensive Analysis of Metabolites in Postmortem Brains of Patients with Alzheimer's Disease. J Alzheimers Dis 2024; 97:1139-1159. [PMID: 38250775 DOI: 10.3233/jad-230942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Disturbed metabolism has been proposed as being involved in the pathogenesis of Alzheimer's disease (AD), and more evidence from human AD brains is required. OBJECTIVE In this study, we attempted to identify or confirm modulations in the levels of metabolites associated with AD in postmortem AD brains. METHODS We performed metabolomics analyses using a gas chromatography mass spectrometry system in postmortem brains of patients with confirmed AD, patients with CERAD score B, and control subjects. RESULTS Impaired phosphorylation of glucose and elevation of several tricarboxylic acid (TCA) metabolites, except citrate, were observed and the degree of impaired phosphorylation and elevation in the levels of the TCA cycle metabolites were negatively and positively correlated, respectively, with the clinical phenotypes of AD. The levels of uronic acid pathway metabolites were modulated in AD and correlated positively with the amyloid-β content. The associations of nucleic acid synthesis and amino acid metabolites with AD depended on the kinds of metabolites; in particular, the contents of ribose 5-phosphate, serine and glycine were negatively correlated, while those of ureidosuccinic acid and indole-3-acetic acid were positively modulated in AD. Comprehensive statistical analyses suggested that alterations in the inositol pathway were most closely associated with AD. CONCLUSIONS The present study revealed many novel associations between metabolites and AD, suggesting that some of these might serve as novel potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Hobbs NZ, Papoutsi M, Delva A, Kinnunen KM, Nakajima M, Van Laere K, Vandenberghe W, Herath P, Scahill RI. Neuroimaging to Facilitate Clinical Trials in Huntington's Disease: Current Opinion from the EHDN Imaging Working Group. J Huntingtons Dis 2024; 13:163-199. [PMID: 38788082 PMCID: PMC11307036 DOI: 10.3233/jhd-240016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Neuroimaging is increasingly being included in clinical trials of Huntington's disease (HD) for a wide range of purposes from participant selection and safety monitoring, through to demonstration of disease modification. Selection of the appropriate modality and associated analysis tools requires careful consideration. On behalf of the EHDN Imaging Working Group, we present current opinion on the utility and future prospects for inclusion of neuroimaging in HD trials. Covering the key imaging modalities of structural-, functional- and diffusion- MRI, perfusion imaging, positron emission tomography, magnetic resonance spectroscopy, and magnetoencephalography, we address how neuroimaging can be used in HD trials to: 1) Aid patient selection, enrichment, stratification, and safety monitoring; 2) Demonstrate biodistribution, target engagement, and pharmacodynamics; 3) Provide evidence for disease modification; and 4) Understand brain re-organization following therapy. We also present the challenges of translating research methodology into clinical trial settings, including equipment requirements and cost, standardization of acquisition and analysis, patient burden and invasiveness, and interpretation of results. We conclude, that with appropriate consideration of modality, study design and analysis, imaging has huge potential to facilitate effective clinical trials in HD.
Collapse
Affiliation(s)
- Nicola Z. Hobbs
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
| | - Marina Papoutsi
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
- IXICO plc, London, UK
| | - Aline Delva
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | | - Koen Van Laere
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | |
Collapse
|
8
|
Jain PR, Yates M, de Celis CR, Drineas P, Jahanshad N, Thompson P, Paschou P. Multiomic approach and Mendelian randomization analysis identify causal associations between blood biomarkers and subcortical brain structure volumes. Neuroimage 2023; 284:120466. [PMID: 37995919 DOI: 10.1016/j.neuroimage.2023.120466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Alterations in subcortical brain structure volumes have been found to be associated with several neurodegenerative and psychiatric disorders. At the same time, genome-wide association studies (GWAS) have identified numerous common variants associated with brain structure. In this study, we integrate these findings, aiming to identify proteins, metabolites, or microbes that have a putative causal association with subcortical brain structure volumes via a two-sample Mendelian randomization approach. This method uses genetic variants as instrument variables to identify potentially causal associations between an exposure and an outcome. The exposure data that we analyzed comprised genetic associations for 2994 plasma proteins, 237 metabolites, and 103 microbial genera. The outcome data included GWAS data for seven subcortical brain structure volumes including accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Eleven proteins and six metabolites were found to have a significant association with subcortical structure volumes, with nine proteins and five metabolites replicated using independent exposure data. We found causal associations between accumbens volume and plasma protease c1 inhibitor as well as strong association between putamen volume and Agouti signaling protein. Among metabolites, urate had the strongest association with thalamic volume. No significant associations were detected between the microbial genera and subcortical brain structure volumes. We also observed significant enrichment for biological processes such as proteolysis, regulation of the endoplasmic reticulum apoptotic signaling pathway, and negative regulation of DNA binding. Our findings provide insights to the mechanisms through which brain volumes may be affected in the pathogenesis of neurodevelopmental and psychiatric disorders and point to potential treatment targets for disorders that are associated with subcortical brain structure volumes.
Collapse
Affiliation(s)
- Pritesh R Jain
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Madison Yates
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Carlos Rubin de Celis
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Petros Drineas
- Department of Computer Science, Purdue University, United States
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of South California, United States
| | - Paul Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of South California, United States
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
9
|
Faquih TO, Aziz NA, Gardiner SL, Li-Gao R, de Mutsert R, Milaneschi Y, Trompet S, Jukema JW, Rosendaal FR, van Hylckama Vlieg A, van Dijk KW, Mook-Kanamori DO. Normal range CAG repeat size variations in the HTT gene are associated with an adverse lipoprotein profile partially mediated by body mass index. Hum Mol Genet 2023; 32:1741-1752. [PMID: 36715614 PMCID: PMC10448954 DOI: 10.1093/hmg/ddad020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/18/2022] [Accepted: 11/26/2023] [Indexed: 01/31/2023] Open
Abstract
Tandem cytosine-adenine-guanine (CAG) repeat sizes of 36 or more in the huntingtin gene (HTT) cause Huntington's disease (HD). Apart from neuropsychiatric complications, the disease is also accompanied by metabolic dysregulation and weight loss, which contribute to a progressive functional decline. Recent studies also reported an association between repeats below the pathogenic threshold (<36) for HD and body mass index (BMI), suggesting that HTT repeat sizes in the non-pathogenic range are associated with metabolic dysregulation. In this study, we hypothesized that HTT repeat sizes < 36 are associated with metabolite levels, possibly mediated through reduced BMI. We pooled data from three European cohorts (n = 10 228) with genotyped HTT CAG repeat size and metabolomic measurements. All 145 metabolites were measured on the same targeted platform in all studies. Multilevel mixed-effects analysis using the CAG repeat size in HTT identified 67 repeat size metabolite associations. Overall, the metabolomic profile associated with larger CAG repeat sizes in HTT were unfavorable-similar to those of higher risk of coronary artery disease and type 2 diabetes-and included elevated levels of amino acids, fatty acids, low-density lipoprotein (LDL)-, very low-density lipoprotein- and intermediate density lipoprotein (IDL)-related metabolites while with decreased levels of very large high-density lipoprotein (HDL)-related metabolites. Furthermore, the associations of 50 metabolites, in particular, specific very large HDL-related metabolites, were mediated by lower BMI. However, no mediation effect was found for 17 metabolites related to LDL and IDL. In conclusion, our findings indicate that large non-pathogenic CAG repeat sizes in HTT are associated with an unfavorable metabolomic profile despite their association with a lower BMI.
Collapse
Affiliation(s)
- Tariq O Faquih
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn 53175, Germany
- Department of Neurology, Bonn University Hospital, Bonn 53175, Germany
| | - Sarah L Gardiner
- Department of Neurology, Amsterdam UMC, Amsterdam 1080 HZ, The Netherlands
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Metabolon, Inc., Morrisville, NC 27560, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam 1081 HV, The Netherlands
| | - Stella Trompet
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Astrid van Hylckama Vlieg
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| |
Collapse
|
10
|
Fu J, Li J, Sun Y, Liu S, Song F, Liu Z. An integrated study on the comprehensive mechanism of Schisandra chinensis polysaccharides mitigating Alzheimer's disease in rats using a UPLC-Q-TOF-MS based serum and urine metabolomics strategy. Food Funct 2023; 14:734-745. [PMID: 36562313 DOI: 10.1039/d2fo02842e] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a well-known traditional Chinese medicine and functional food, Schisandra chinensis (S. chinensis) has been proved to possess excellent neuroprotective effects, and particularly the role of the polysaccharide fraction in neuroprotection has been increasingly emphasized. The aim of this study was to investigate the therapeutic effects and potential mechanism of action of the homogeneous polysaccharide SCP2, isolated and purified from S. chinensis polysaccharide (SCP), on Alzheimer's disease (AD) rats based on a holistic metabolomics approach in serum and urine. The results of the pharmacodynamics study showed that SCP2 significantly improved Aβ25-35-induced cognitive dysfunction, improved oxidative damage and reduced Aβ deposition in the hippocampus. The holistic metabolomics results of serum and urine showed that the intervention with SCP2 significantly reversed the metabolic profile disorder in AD rats. A total of 40 metabolites (21 serum metabolites and 19 urine metabolites) were identified, which were mainly involved in linoleic acid metabolism, alpha-linolenic acid metabolism and arachidonic acid metabolism. The results obtained in this study will provide new insights into the mechanisms of SCP2 in the treatment of AD and provide a basis for the subsequent structure-activity studies of SCP2.
Collapse
Affiliation(s)
- Jun Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China. .,Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun; Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Jixun Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China. .,Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun; Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Yuzhen Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China. .,Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun; Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Shu Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun; Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Fengrui Song
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun; Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
11
|
Shute A, Bihan DG, Lewis IA, Nasser Y. Metabolomics: The Key to Unraveling the Role of the Microbiome in Visceral Pain Neurotransmission. Front Neurosci 2022; 16:917197. [PMID: 35812241 PMCID: PMC9260117 DOI: 10.3389/fnins.2022.917197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease and Ulcerative colitis, is a relapsing and remitting disease of the gastrointestinal tract, presenting with chronic inflammation, ulceration, gastrointestinal bleeding, and abdominal pain. Up to 80% of patients suffering from IBD experience acute pain, which dissipates when the underlying inflammation and tissue damage resolves. However, despite achieving endoscopic remission with no signs of ongoing intestinal inflammation or damage, 30-50% of IBD patients in remission experience chronic abdominal pain, suggesting altered sensory neuronal processing in this disorder. Furthermore, effective treatment for chronic pain is limited such that 5-25% of IBD outpatients are treated with narcotics, with associated morbidity and mortality. IBD patients commonly present with substantial alterations to the microbial community structure within the gastrointestinal tract, known as dysbiosis. The same is also true in irritable bowel syndrome (IBS), a chronic disorder characterized by altered bowel habits and abdominal pain, in the absence of inflammation. An emerging body of literature suggests that the gut microbiome plays an important role in visceral hypersensitivity. Specific microbial metabolites have an intimate relationship with host receptors that are highly expressed on host cell and neurons, suggesting that microbial metabolites play a key role in visceral hypersensitivity. In this review, we will discuss the techniques used to analysis the metabolome, current potential metabolite targets for visceral hypersensitivity, and discuss the current literature that evaluates the role of the post-inflammatory microbiota and metabolites in visceral hypersensitivity.
Collapse
Affiliation(s)
- Adam Shute
- Department of Medicine, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Dominique G. Bihan
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ian A. Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Yasmin Nasser
- Department of Medicine, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
da Silva Zandonadi F, dos Santos EAF, Marques MS, Sussulini A. Metabolomics: A Powerful Tool to Understand the Schizophrenia Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:105-119. [DOI: 10.1007/978-3-030-97182-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|