1
|
Chen J, Zhang M, Shen Z, Tang M, Zeng Y, Bai D, Zhao P, Jiang G. Low-dose diazepam improves cognitive function in APP/PS1 mouse models: Involvement of AMPA receptors. Brain Res 2024; 1845:149207. [PMID: 39214326 DOI: 10.1016/j.brainres.2024.149207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Previous studies have indicated a close association between cognitive impairment in patients with neurodegenerative diseases, such as Alzheimer's disease (AD), and synaptic damage. Diazepam (DZP), a benzodiazepine class drug, is used to control symptoms such as seizures, anxiety, and sleep disorders. These symptoms can potentially manifest throughout the entire course of AD. Therefore, DZP may be utilized in the treatment of AD to manage these symptoms. However, the specific role and mechanisms of DZP in AD remain unclear. In this study, we discovered that long-term administration of a low dose of DZP (0.5 mg/kg) improved cognitive function and protected neurons from damage in APP/PS1 mice. Mechanistic investigations revealed that DZP exerted its neuroprotective effects and reduced Aβ deposition by modulating GluA1 (glutamate AMPA receptor subunit) to influence synaptic function. In conclusion, these findings highlight the potential benefits of DZP as a novel therapeutic approach, suggesting that long-term use of low-dose DZP in early-stage AD patients may be advantageous in slowing disease progression.
Collapse
Affiliation(s)
- Junwen Chen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ming Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ziyi Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yumei Zeng
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dazhang Bai
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Peilin Zhao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
2
|
Ren X, Wen Y, Yuan M, Li C, Zhang J, Li S, Zhang X, Wang L, Wang S. Cerebroprotein hydrolysate-I ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via the p53/SAT1/ALOX15 signalling pathway. Eur J Pharmacol 2024; 979:176820. [PMID: 39032765 DOI: 10.1016/j.ejphar.2024.176820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Ferroptosis, an iron-dependent lipid peroxidation-driven cell death pathway, has been linked to the development of Alzheimer's disease (AD). However, the role of ferroptosis in the pathogenesis of AD remains unclear. Cerebroprotein hydrolysate-I (CH-I) is a mixture of peptides with neurotrophic effects that improves cognitive deficits and reduces amyloid burden. The present study investigated the ferroptosis-induced signalling pathways and the neuroprotective effects of CH-I in the brains of AD transgenic mice. Seven-month-old male APPswe/PS1dE9 (APP/PS1) transgenic mice were treated with intraperitoneal injections of CH-I and saline for 28 days. The Morris water maze test was used to assess cognitive function. CH-I significantly improved cognitive deficits and attenuated beta-amyloid (Aβ) aggregation and tau phosphorylation in the hippocampus of APP/PS1 mice. RNA sequencing revealed that multiple genes and pathways, including ferroptosis-related pathways, were involved in the neuroprotective effects of CH-I. The increased levels of lipid peroxidation, ferrous ions, reactive oxygen species (ROS), and altered expression of ferroptosis-related genes (recombinant solute carrier family 7, member 11 (SLC7A11), spermidine/spermine N1-acetyltransferase 1 (SAT1) and glutathione peroxidase 4 (GPX4)) were significantly alleviated after CH-I treatment. Quantitative real-time PCR and western blotting were performed to investigate the expression of key ferroptosis-related genes and the p53/SAT1/arachidonic acid 15-lipoxygenase (ALOX15) signalling pathway. The p53/SAT1/ALOX15 signalling pathway was found to be involved in mediating ferroptosis, and the activation of this pathway was significantly suppressed in AD by CH-I. CH-I demonstrated neuroprotective effects against AD by attenuating ferroptosis and the p53/SAT1/ALOX15 signalling pathway, thus providing new targets for AD treatment.
Collapse
Affiliation(s)
- Xin Ren
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Ya Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Mu Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Chang Li
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Jiejie Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Siyu Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xiaowei Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Liang Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
3
|
Meng Y, Sun J, Zhang G. Take the bull by the horns and tackle the potential downsides of the ketogenic diet. Nutrition 2024; 125:112480. [PMID: 38788511 DOI: 10.1016/j.nut.2024.112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The ketogenic diet (KD) is a distinctive dietary regimen known for its low-carbohydrate and high-fat composition. Recently, it has garnered considerable interest from the scientific community and the general population because of its claimed efficacy in facilitating weight reduction, improving the management of glucose levels, and raising overall energy levels. The core principle of the KD is the substantial decrease in carbohydrate consumption, which is subsequently substituted by ingesting nourishing fats. While the KD has promising advantages and is gaining popularity, it must be acknowledged that this dietary method may not be appropriate for all individuals. The dietary regimen may give rise to adverse effects, including constipation, halitosis, and imbalances in electrolyte levels, which may pose a potential risk if not adequately supervised. Hence, thorough and meticulous inquiry is needed to better comprehend the possible hazards and advantages linked to the KD over prolonged durations. By obtaining a more comprehensive perspective, we can enhance our ability to make well-informed judgments and suggestions as to implementation of this specific dietary regimen.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
4
|
Cui L, Zhou H, Hao Y, Yang X, Li Z, Gao Y, Zhang Z, Ren L, Ji L, Sun R, Wang Y, Wang X. Effect of ferric citrate on hippocampal iron accumulation and widespread molecular alterations associated with cognitive disorder in an ovariectomized mice model. CNS Neurosci Ther 2024; 30:e70018. [PMID: 39252474 PMCID: PMC11386256 DOI: 10.1111/cns.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE Nowadays, the prevalence of cognitive impairment in women has gradually increased, especially in postmenopausal women. There were few studies on the mechanistic effects of iron exposure on neurotoxicity in postmenopausal women. The aim of this study is to investigate the effect of iron accumulation on cognitive ability in ovariectomized mice and its possible mechanism and to provide a scientific basis for the prevention of cognitive dysfunction in postmenopausal women. METHODS Female C57BL/6N ovariectomized model mice were induced with ferric citrate (FAC). The mice were randomly divided into 5 groups: control, sham, ovariectomized (Ovx), Ovx + 50 mg/kg FAC (Ovx + l), and Ovx + 100 mg/kg FAC (Ovx + h). The impact of motor and cognitive function was verified by a series of behavioral tests. The levels of serum iron parameters, malondialdehyde, and superoxide dismutase were measured. The ultrastructure of mice hippocampal microglia was imaged by transmission electron microscopy. The differential expression of hippocampal proteins was analyzed by Tandem Mass Tag labeling. RESULTS Movement and cognitive function in Ovx + l/Ovx + h mice were significantly decreased compared to control and Sham mice. Then, iron exposure caused histopathological changes in the hippocampus of mice. In addition, proteomic analysis revealed that 29/27/41 proteins were differentially expressed in the hippocampus when compared by Ovx vs. Sham, Ovx + l vs. Ovx, as well as Ovx + h vs. Ovx + l groups, respectively. Moreover, transferrin receptor protein (TFR1) and divalent metal transporter 1 (DMT1) protein expression were significantly increased in the iron accumulation mice model with ovariectomy. CONCLUSION Iron exposure could cause histopathological damage in the hippocampus of ovariectomised mice and, by altering hippocampal proteomics, particularly the expression of hippocampal iron metabolism-related proteins, could further influence cognitive impairment in ovariectomized mice.
Collapse
Affiliation(s)
- Lingling Cui
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Huijun Zhou
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Yudan Hao
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Xiaoli Yang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Zhiqian Li
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Yuting Gao
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Zhengya Zhang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Lina Ren
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Linpu Ji
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Ruijie Sun
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Yibo Wang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Xian Wang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
5
|
Ribeiro KS, Karmakar E, Park C, Garg R, Kung GP, Kadakia I, Gopianand JS, Arun T, Kisselev O, Gnana-Prakasam JP. Iron Regulates Cellular Proliferation by Enhancing the Expression of Glucose Transporter GLUT3 in the Liver. Cells 2024; 13:1147. [PMID: 38994998 PMCID: PMC11240476 DOI: 10.3390/cells13131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Iron is often accumulated in the liver during pathological conditions such as cirrhosis and cancer. Elevated expression of glucose transporters GLUT1 and GLUT3 is associated with reduced overall survival in patients with hepatocellular carcinoma. However, it is not known whether iron can regulate glucose transporters and contribute to tumor proliferation. In the present study, we found that treatment of human liver cell line HepG2 with ferric ammonium citrate (FAC) resulted in a significant upregulation of GLUT3 mRNA and protein in a dose-dependent manner. Similarly, iron accumulation in mice fed with high dietary iron as well as in mice injected intraperitoneally with iron dextran enhanced the GLUT3 expression drastically in the liver. We demonstrated that iron-induced hepatic GLUT3 upregulation is mediated by the LKB1/AMPK/CREB1 pathway, and this activation was reversed when treated with iron chelator deferiprone. In addition, inhibition of GLUT3 using siRNA prevented iron-mediated increase in the expression of cell cycle markers and cellular hyperproliferation. Furthermore, exogenous sodium beta-hydroxybutyrate treatment prevented iron-mediated hepatic GLUT3 activation both in vitro and in vivo. Together, these results underscore the importance of iron, AMPK, CREB1 and GLUT3 pathways in cell proliferation and highlight the therapeutic potential of sodium beta-hydroxybutyrate in hepatocellular carcinoma with high GLUT3 expression.
Collapse
Affiliation(s)
- Kleber S Ribeiro
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Eshani Karmakar
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Christine Park
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Richa Garg
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - George P Kung
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Isha Kadakia
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | | | - Tejas Arun
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Oleg Kisselev
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | | |
Collapse
|
6
|
Valiauga R, Talley S, Khemmani M, Fontes Noronha M, Gogliotti R, Wolfe AJ, Campbell E. Sex-dependent effects of carbohydrate source and quantity on caspase-1 activity in the mouse central nervous system. J Neuroinflammation 2024; 21:151. [PMID: 38840215 PMCID: PMC11155082 DOI: 10.1186/s12974-024-03140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Mounting evidence links glucose intolerance and diabetes as aspects of metabolic dysregulation that are associated with an increased risk of developing dementia. Inflammation and inflammasome activation have emerged as a potential link between these disparate pathologies. As diet is a key factor in both the development of metabolic disorders and inflammation, we hypothesize that long term changes in dietary factors can influence nervous system function by regulating inflammasome activity and that this phenotype would be sex-dependent, as sex hormones are known to regulate metabolism and immune processes. METHODS 5-week-old male and female transgenic mice expressing a caspase-1 bioluminescent reporter underwent cranial window surgeries and were fed control (65% complex carbohydrates, 15% fat), high glycemic index (65% carbohydrates from sucrose, 15% fat), or ketogenic (1% complex carbohydrates, 79% fat) diet from 6 to 26 weeks of age. Glucose regulation was assessed with a glucose tolerance test following a 4-h morning fast. Bioluminescence in the brain was quantified using IVIS in vivo imaging. Blood cytokine levels were measured using cytokine bead array. 16S ribosomal RNA gene amplicon sequencing of mouse feces was performed to assess alterations in the gut microbiome. Behavior associated with these dietary changes was also evaluated. RESULTS The ketogenic diet caused weight gain and glucose intolerance in both male and female mice. In male mice, the high glycemic diet led to increased caspase-1 biosensor activation over the course of the study, while in females the ketogenic diet drove an increase in biosensor activation compared to their respective controls. These changes correlated with an increase in inflammatory cytokines present in the serum of test mice and the emergence of anxiety-like behavior. The microbiome composition differed significantly between diets; however no significant link between diet, glucose tolerance, or caspase-1 signal was established. CONCLUSIONS Our findings suggest that diet composition, specifically the source and quantity of carbohydrates, has sex-specific effects on inflammasome activation in the central nervous system and behavior. This phenotype manifested as increased anxiety in male mice, and future studies are needed to determine if this phenotype is linked to alterations in microbiome composition.
Collapse
Affiliation(s)
- Rasa Valiauga
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Sarah Talley
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | | | - Rocco Gogliotti
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Edward Campbell
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
7
|
Long Q, Li T, Zhu Q, He L, Zhao B. SuanZaoRen decoction alleviates neuronal loss, synaptic damage and ferroptosis of AD via activating DJ-1/Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117679. [PMID: 38160863 DOI: 10.1016/j.jep.2023.117679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE SuanZaoRen Decoction (SZRD), a famous herbal prescription, and has been widely proven to have positive therapeutic effects on insomnia, depression and Alzheimer's disease (AD). However, the anti-AD molecular mechanism of SZRD remains to be further investigated. AIM OF THE STUDY To elucidate the molecular mechanism of SZRD's improvement in AD's neuronal loss, synaptic damage and ferroptosis by regulating DJ-1/Nrf2 signaling pathway. MATERIALS AND METHODS LC-MS/MS was used to detect the active ingredients from SZRD. APP/PS1 mice was treated with SZRD and a ferroptosis inhibitor (Liproxstatin-1), respectively. Upon the completion of behavioral tests, Nissl staining, FJB staining, Golgi staining, immunofluorescence, immunohistochemistry, and transmission electron microscopy were preformed to evaluate the effects of SZRD on neuronal loss, synaptic damage, Aβ deposition. Iron staining, transmission electron microscopy, and iron assay kit was performed to estimate the effects of SZRD on ferroptosis. SOD kit, MDA kit, GSH kit, and GSH/GSSG kit were utilized to measure the oxidative stress levels in the hippocampus. The protein expression of TfR1, FTH1, FTL, FPN1, DJ-1, Nrf2, GPX4, SLC7A11, and ACSL4 were detected by Western blot. RESULTS A total of 16 active ingredients were identified from SZRD extract. SZRD SZRD significantly alleviated learning and memory impairment in APP/PS1 mice. SZRD improved the hippocampal neuronal loss and degenerated neurons in APP/PS1 mice via inhibiting the Aβ deposit. SZRD mitigated the hippocampal synaptic damage in APP/PS1 mice. SZRD inhibited iron accumulation, and alleviated the oxidative stress level in the hippocampus of APP/PS1 mice. Meanwhile, SZRD could up-regulate the protein expression level of FPN1, DJ-1, Nrf2, GPX4 and SLC7A11 in the hippocampus, and inhibit TfR1, FTH1, FTL, and ACSL4 protein expression. CONCLUSION SZRD alleviated neuronal loss, synaptic damage and ferroptosis in AD via activating DJ-1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qinghua Long
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, 445000, China
| | - Tong Li
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China
| | - Qihang Zhu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, 445000, China
| | - Liling He
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China.
| | - Binbin Zhao
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
8
|
Grabowska K, Grabowski M, Przybyła M, Pondel N, Barski JJ, Nowacka-Chmielewska M, Liśkiewicz D. Ketogenic diet and behavior: insights from experimental studies. Front Nutr 2024; 11:1322509. [PMID: 38389795 PMCID: PMC10881757 DOI: 10.3389/fnut.2024.1322509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
As a journal page for full details. The ketogenic diet (KD) has been established as a treatment for epilepsy, but more recently it has been explored as an alternative or add-on therapy for many other diseases ranging from weight loss to neurological disorders. Animal models are widely used in studies investigating the therapeutic effects of the KD as well as underlying mechanisms. Especially in the context of neurological, psychiatric, and neurodevelopmental disorders essential endpoints are assessed by behavioral and motor tests. Here we summarized research evaluating the influence of the KD on cognition, depressive and anxiety-related behaviors, and social and nutritional behaviors of laboratory rodents. Each section contains a brief description of commonly used behavioral tests highlighting their limitations. Ninety original research articles, written in English, performed on mice or rats, providing measurement of blood beta-hydroxybutyrate (BHB) levels and behavioral evaluation were selected for the review. The majority of research performed in various disease models shows that the KD positively impacts cognition. Almost an equal number of studies report a reduction or no effect of the KD on depressive-related behaviors. For anxiety-related behaviors, the majority of studies show no effect. Despite the increasing use of the KD in weight loss and its appetite-reducing properties the behavioral evaluation of appetite regulation has not been addressed in preclinical studies. This review provides an overview of the behavioral effects of nutritional ketosis addressed to a broad audience of scientists interested in the KD field but not necessarily specializing in behavioral tests.
Collapse
Affiliation(s)
- Konstancja Grabowska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mateusz Grabowski
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Przybyła
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Natalia Pondel
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Jarosław J Barski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
9
|
Jang J, Kim SR, Lee JE, Lee S, Son HJ, Choe W, Yoon KS, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms of Neuroprotection by Ketone Bodies and Ketogenic Diet in Cerebral Ischemia and Neurodegenerative Diseases. Int J Mol Sci 2023; 25:124. [PMID: 38203294 PMCID: PMC10779133 DOI: 10.3390/ijms25010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Ketone bodies (KBs), such as acetoacetate and β-hydroxybutyrate, serve as crucial alternative energy sources during glucose deficiency. KBs, generated through ketogenesis in the liver, are metabolized into acetyl-CoA in extrahepatic tissues, entering the tricarboxylic acid cycle and electron transport chain for ATP production. Reduced glucose metabolism and mitochondrial dysfunction correlate with increased neuronal death and brain damage during cerebral ischemia and neurodegeneration. Both KBs and the ketogenic diet (KD) demonstrate neuroprotective effects by orchestrating various cellular processes through metabolic and signaling functions. They enhance mitochondrial function, mitigate oxidative stress and apoptosis, and regulate epigenetic and post-translational modifications of histones and non-histone proteins. Additionally, KBs and KD contribute to reducing neuroinflammation and modulating autophagy, neurotransmission systems, and gut microbiome. This review aims to explore the current understanding of the molecular mechanisms underpinning the neuroprotective effects of KBs and KD against brain damage in cerebral ischemia and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su Rim Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jo Eun Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seoyeon Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeong Jig Son
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|