1
|
Zhu R, Chen H, Liu M, Xu Y, Jiang W, Si X, Yi L, Gu Y, Ren D, Wang J. Nontargeted screening of aldehydes and ketones by chemical isotope labeling combined with ultra-high performance liquid chromatography-high resolution mass spectrometry followed by hybrid filtering of features. J Chromatogr A 2023; 1708:464332. [PMID: 37703764 DOI: 10.1016/j.chroma.2023.464332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Aldehydes and ketones are important carbonyl compounds that are widely present in foodstuffs, biological organisms and human living environment. However, it is still challenging to comprehensively detect and capture them using liquid chromatography - mass spectrometry. In this work, a chemical isotope labeling (CIL) coupled with ultra-high performance liquid chromatography - high resolution mass spectrometry (UHPLC-HRMS) strategy was developed for the capture and detection of this class of compounds. 2,4-Dinitrophenylhydrazine (DNPH) and isotope-labeled DNPH (DNPH-d3) were utilized to selectively label the target analytes. To address the difficulties in processing UHPLC-HRMS data, a post-acquisition data processing method called MSFilter was proposed to facilitate the screening and identification aldehydes and ketones in complex matrices. The MSFilter consists of four independent filters, namely statistical characteristic-based filtering, mass defect filtering, CIL paired peaks filtering, and diagnostic fragmentation ion filtering. These filters can be used individually or in combination to eliminate unrelated interfering MS features and efficiently detect DNPH-labeled aldehydes and ketones. The results of a mixture containing 48 model compounds showed that although all individual filtering methods could significantly reduce more than 95% of the raw MS features with acceptable recall rates above 85%, but they had relatively high false positive ratios of over 90%. In comparison, the hybrid filtering method combining four filters is able to eliminate massive interfering features (> 99.5%) with a high recall rate of 81.25% and a much lower false positive ratio of 15.22%. By implementing the hybrid filtering method in MSFilter, a total of 154 features were identified as potential signals of CCs from the original 45,961 features of real tobacco samples, of which 70 were annotated. We believe that the proposed strategy is promising to analyze the potential CCs in complex samples by UHPLC-HRMS.
Collapse
Affiliation(s)
- Ruizhi Zhu
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Han Chen
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China; Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Meiyan Liu
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China; Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yanqun Xu
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Wei Jiang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Xiaoxi Si
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Lunzhao Yi
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Gu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Dabing Ren
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Juan Wang
- College of Arts and Sciences·Kunming, Kunming, 650221, China.
| |
Collapse
|
2
|
Peng Z, Luo Y, Song C, Zhang Y, Sun S, Yu A, Zhang W, Zhao W, Zhang S, Xie J. A novel methodology and strategy to detect low molecular aldehydes in beer based on charged microdroplet driving online derivatization and high resolution mass spectrometry. Food Chem 2022; 383:132380. [PMID: 35180599 DOI: 10.1016/j.foodchem.2022.132380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 01/11/2022] [Accepted: 02/05/2022] [Indexed: 11/25/2022]
Abstract
The concentration of aldehydes is one of the important indicators in the food quality and safety. To efficiently analyze the four aldehydes (methanal, ethanal, propanal and n-butanal) in beer, charged microdroplet driving online derivatization apparatus coupled with high resolution mass spectrometry was firstly developed. Utilizing the high-speed reaction accelerated by microdroplets, the offline derivative of aldehydes with 2,4-dinitrophenylhydrazine in bulk was transferred into online derivatization. The developed method featured acceptable linearities (R2 ≥ 0.95), high sensitivities (LODs at ng mL-1 level) and qualified precisions (RSDs ≤ 8.4 %) for target compounds. Four aldehydes with trace amount were successfully determined in beer. The results indicated that the novel online analytical strategy did not require complex sample preparation and could conduct simple, rapid, sensitive detection of small molecule aldehydes with high throughput in beer or even other food samples.
Collapse
Affiliation(s)
- Zifang Peng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yake Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chenchen Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, PR China.
| | - Shihao Sun
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianping Xie
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
3
|
Neuroplasticity and Multilevel System of Connections Determine the Integrative Role of Nucleus Accumbens in the Brain Reward System. Int J Mol Sci 2021; 22:ijms22189806. [PMID: 34575969 PMCID: PMC8471564 DOI: 10.3390/ijms22189806] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
A growing body of evidence suggests that nucleus accumbens (NAc) plays a significant role not only in the physiological processes associated with reward and satisfaction but also in many diseases of the central nervous system. Summary of the current state of knowledge on the morphological and functional basis of such a diverse function of this structure may be a good starting point for further basic and clinical research. The NAc is a part of the brain reward system (BRS) characterized by multilevel organization, extensive connections, and several neurotransmitter systems. The unique role of NAc in the BRS is a result of: (1) hierarchical connections with the other brain areas, (2) a well-developed morphological and functional plasticity regulating short- and long-term synaptic potentiation and signalling pathways, (3) cooperation among several neurotransmitter systems, and (4) a supportive role of neuroglia involved in both physiological and pathological processes. Understanding the complex function of NAc is possible by combining the results of morphological studies with molecular, genetic, and behavioral data. In this review, we present the current views on the NAc function in physiological conditions, emphasizing the role of its connections, neuroplasticity processes, and neurotransmitter systems.
Collapse
|
4
|
Harris AC, Muelken P, Swain Y, Palumbo M, Jain V, Goniewicz ML, Stepanov I, LeSage MG. Non-nicotine constituents in e-cigarette aerosol extract attenuate nicotine's aversive effects in adolescent rats. Drug Alcohol Depend 2019; 203:51-60. [PMID: 31404849 PMCID: PMC6941564 DOI: 10.1016/j.drugalcdep.2019.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Development of preclinical methodology for evaluating the abuse liability of electronic cigarettes (ECs) in adolescents is urgently needed to inform FDA regulation of these products. We previously reported reduced aversive effects of EC liquids containing nicotine and a range of non-nicotine constituents (e.g., propylene glycol, minor tobacco alkaloids) compared to nicotine alone in adult rats as measured using intracranial self-stimulation. The goal of this study was to compare the aversive effects of nicotine alone and EC aerosol extracts in adolescent rats as measured using conditioned taste aversion (CTA), which can be conducted during the brief adolescent period. METHODS AND RESULTS In Experiment 1, nicotine alone (1.0 or 1.5 mg/kg, s.c.) produced significant CTA in adolescent rats in a two-bottle procedure, thereby establishing a model to study the effects of EC extracts. At a nicotine dose of 1.0 mg/kg, CTA to Vuse Menthol EC extract, but not Aroma E-Juice EC extract, was attenuated compared to nicotine alone during repeated two-bottle CTA tests (Experiment 2a). At a nicotine dose of 0.5 mg/kg, CTA to Vuse Menthol EC extract did not differ from nicotine alone during the first two-bottle CTA test but extinguished more rapidly across repeated two-bottle tests (Experiment 2b). CONCLUSIONS Non-nicotine constituents in Vuse Menthol EC extracts attenuated CTA in a two-bottle procedure in adolescents. This model may be useful for anticipating the abuse liability of ECs in adolescents and for modeling FDA-mandated changes in product standards for nicotine or other constituents in ECs.
Collapse
Affiliation(s)
- Andrew C. Harris
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA,Department of Medicine, University of Minnesota, Minneapolis, MN, USA,Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Peter Muelken
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Yayi Swain
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA,Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Mary Palumbo
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Vipin Jain
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Maciej L. Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Irina Stepanov
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Mark G. LeSage
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA,Department of Medicine, University of Minnesota, Minneapolis, MN, USA,Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Masaoka H, Gallus S, Ito H, Watanabe M, Yokomizo A, Eto M, Matsuo K. Aldehyde Dehydrogenase 2 Polymorphism Is a Predictor of Smoking Cessation. Nicotine Tob Res 2018; 19:1087-1094. [PMID: 27986911 DOI: 10.1093/ntr/ntw316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/23/2016] [Indexed: 11/13/2022]
Abstract
Introduction Smoking cessation has been known to be associated with drinking behaviors, which are influenced by polymorphisms in genes encoding alcohol metabolizing enzymes. The aim was to evaluate the impact of aldehyde dehydrogenase 2 (ALDH2, rs671) and alcohol dehydrogenase 1B (ADH1B, rs1229984) polymorphisms together with drinking behaviors on smoking cessation. Methods We conducted a cross-sectional study with 1137 former smokers and 1775 current smokers without any cancer at Aichi Cancer Center Hospital between 2001 and 2005. Unconditional logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI) for successful smoking cessation by comparing former smokers (quitters) with current smokers (non-quitters). Results Older age, lower amount of cumulative smoking exposure, lower number of cigarettes per day, younger age of smoking initiation, shorter smoking duration, longer time to first cigarette in the morning, and lower amount of drinking among ever drinkers were predictors of smoking cessation. After careful adjustment for age, sex, smoking patterns, and drinking status, the ORs for smoking cessation among subjects with ALDH2 Glu/Lys and Lys/Lys were 1.02 (95% CI 0.84-1.23) and 1.78 (95% CI 1.23-2.58) compared with those with ALDH2 Glu/Glu, respectively Mediation analyses confirmed that the effect of ALDH2 Lys/Lys on smoking cessation was independent by dinking behaviors. No statistically significant association between ADH1B polymorphism and smoking cessation was observed. Conclusions In our Japanese population, ALDH2 polymorphism predicts smoking cessation, independent by drinking behaviors. Interventions for promoting smoking cessation by ALDH2 polymorphism may be useful in Asian populations. Implications We newly show that subjects with ALDH2 Lys/Lys genotype in a functional polymorphism, rs671, are more likely to quit smoking than those with ALDH2 Glu allele in a Japanese population. Our finding suggests that ALDH2 polymorphism may be useful for promoting smoking cessation in those specific populations as East Asian ones with frequent ALDH2 Lys allele carriers.
Collapse
Affiliation(s)
- Hiroyuki Masaoka
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Silvano Gallus
- Department of Epidemiology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Hidemi Ito
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miki Watanabe
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Akira Yokomizo
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
van de Nobelen S, Kienhuis AS, Talhout R. An Inventory of Methods for the Assessment of Additive Increased Addictiveness of Tobacco Products. Nicotine Tob Res 2016; 18:1546-55. [PMID: 26817491 PMCID: PMC4902882 DOI: 10.1093/ntr/ntw002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/30/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cigarettes and other forms of tobacco contain the addictive drug nicotine. Other components, either naturally occurring in tobacco or additives that are intentionally added during the manufacturing process, may add to the addictiveness of tobacco products. As such, these components can make cigarette smokers more easily and heavily dependent.Efforts to regulate tobacco product dependence are emerging globally. Additives that increase tobacco dependence will be prohibited under the new European Tobacco Product Directive. OBJECTIVE This article provides guidelines and recommendations for developing a regulatory strategy for assessment of increase in tobacco dependence due to additives. Relevant scientific literature is summarized and criteria and experimental studies that can define increased dependence of tobacco products are described. CONCLUSIONS Natural tobacco smoke is a very complex matrix of components, therefore analysis of the contribution of an additive or a combination of additives to the level of dependence on this product is challenging. We propose to combine different type of studies analyzing overall tobacco product dependence potential and the functioning of additives in relation to nicotine. By using a combination of techniques, changes associated with nicotine dependence such as behavioral, physiological, and neurochemical alterations can be examined to provide sufficient information.Research needs and knowledge gaps will be discussed and recommendations will be made to translate current knowledge into legislation. As such, this article aids in implementation of the Tobacco Product Directive, as well as help enable regulators and researchers worldwide to develop standards to reduce dependence on tobacco products. IMPLICATIONS This article provides an overall view on how to assess tobacco product constituents for their potential contribution to use and dependence. It provides guidelines that help enable regulators worldwide to develop standards to reduce dependence on tobacco products and guide researches to set research priorities on this topic.
Collapse
Affiliation(s)
- Suzanne van de Nobelen
- Center for Health Protection (GZB), National Institute of Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Anne S Kienhuis
- Center for Health Protection (GZB), National Institute of Public Health and Environment (RIVM), Bilthoven, The Netherlands
| | - Reinskje Talhout
- Center for Health Protection (GZB), National Institute of Public Health and Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
7
|
Brennan KA, Laugesen M, Truman P. Whole tobacco smoke extracts to model tobacco dependence in animals. Neurosci Biobehav Rev 2014; 47:53-69. [PMID: 25064817 DOI: 10.1016/j.neubiorev.2014.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/12/2014] [Accepted: 07/14/2014] [Indexed: 01/01/2023]
Abstract
Smoking tobacco is highly addictive and a leading preventable cause of death. The main addictive constituent is nicotine; consequently it has been administered to laboratory animals to model tobacco dependence. Despite extensive use, this model might not best reflect the powerful nature of tobacco dependence because nicotine is a weak reinforcer, the pharmacology of smoke is complex and non-pharmacological factors have a critical role. These limitations have led researchers to expose animals to smoke via the inhalative route, or to administer aqueous smoke extracts to produce more representative models. The aim was to review the findings from molecular/behavioural studies comparing the effects of nicotine to tobacco/smoke extracts to determine whether the extracts produce a distinct model. Indeed, nicotine and tobacco extracts yielded differential effects, supporting the initiative to use extracts as a complement to nicotine. Of the behavioural tests, intravenous self-administration experiments most clearly revealed behavioural differences between nicotine and extracts. Thus, future applications for use of this behavioural model were proposed that could offer new insights into tobacco dependence.
Collapse
Affiliation(s)
- Katharine A Brennan
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| | - Murray Laugesen
- Health New Zealand Ltd, 36 Winchester St, Lyttelton, Christchurch, New Zealand
| | - Penelope Truman
- Institute of Environmental Science and Research Ltd, PO Box 50348, Porirua 5240, New Zealand
| |
Collapse
|
8
|
Peana AT, Acquas E. Behavioral and biochemical evidence of the role of acetaldehyde in the motivational effects of ethanol. Front Behav Neurosci 2013; 7:86. [PMID: 23874276 PMCID: PMC3710953 DOI: 10.3389/fnbeh.2013.00086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/27/2013] [Indexed: 11/13/2022] Open
Abstract
Since Chevens' report, in the early 50's that his patients under treatment with the aldehyde dehydrogenase inhibitor, antabuse, could experience beneficial effects when drinking small volumes of alcoholic beverages, the role of acetaldehyde (ACD) in the effects of ethanol has been thoroughly investigated on pre-clinical grounds. Thus, after more than 25 years of intense research, a large number of studies have been published on the motivational properties of ACD itself as well as on the role that ethanol-derived ACD plays in the effects of ethanol. Accordingly, in particular with respect to the motivational properties of ethanol, these studies were developed following two main strategies: on one hand, were aimed to challenge the suggestion that also ACD may exert motivational properties on its own, while, on the other, with the aid of enzymatic manipulations or ACD inactivation, were aimed to test the hypothesis that ethanol-derived ACD might have a role in ethanol motivational effects. Furthermore, recent evidence significantly contributed to highlight, as possible mechanisms of action of ACD, its ability to commit either dopaminergic and opioidergic transmission as well as to activate the Extracellular signal Regulated Kinase cascade transduction pathway in reward-related brain structures. In conclusion, and despite the observation that ACD seems also to have inherited the elusive nature of its parent compound, the behavioral and biochemical evidence reviewed points to ACD as a neuroactive molecule able, on its own and as ethanol metabolite, to exert motivational effects.
Collapse
Affiliation(s)
- Alessandra T Peana
- Department of Chemistry and Pharmacy, University of Sassari Sassari, Italy
| | | |
Collapse
|
9
|
Correa M, Salamone JD, Segovia KN, Pardo M, Longoni R, Spina L, Peana AT, Vinci S, Acquas E. Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neurosci Biobehav Rev 2012; 36:404-30. [DOI: 10.1016/j.neubiorev.2011.07.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/14/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
|
10
|
Tamoxifen and mifepriston modulate nicotine induced conditioned place preference in female rats. Brain Res Bull 2011; 84:425-9. [DOI: 10.1016/j.brainresbull.2011.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/05/2011] [Accepted: 01/17/2011] [Indexed: 01/17/2023]
|
11
|
Abstract
It is well established that the continued intake of drugs of abuse is reinforcing-that is repeated consumption increases preference. This has been shown in some studies to extend to other drugs of abuse; use of one increases preference for another. In particular, the present review deals with the interaction of nicotine and alcohol as it has been shown that smoking is a risk factor for alcoholism and alcohol use is a risk factor to become a smoker. The review discusses changes in the brain caused by chronic nicotine and chronic alcohol intake to approach the possible mechanisms by which one drug increases the preference for another. Chronic nicotine administration was shown to affect nicotine receptors in the brain, affecting not only receptor levels and distribution, but also receptor subunit composition, thus affecting affinity to nicotine. Other receptor systems are also affected among others catecholamine, glutamate, GABA levels and opiate and cannabinoid receptors. In addition to receptor systems and transmitters, there are endocrine, metabolic and neuropeptide changes as well induced by nicotine. Similarly chronic alcohol intake results in changes in the brain, in multiple receptors, transmitters and peptides as discussed in this overview and also illustrated in the tables. The changes are sex and age-dependent-some changes in males are different from those in females and in general adolescents are more sensitive to drug effects than adults. Although nicotine and alcohol interact-not all the changes induced by the combined intake of both are additive-some are opposing. These opposing effects include those on locomotion, acetylcholine metabolism, nicotine binding, opiate peptides, glutamate transporters and endocannabinoid content among others. The two compounds lower the negative withdrawal symptoms of each other which may contribute to the increase in preference, but the mechanism by which preference increases-most likely consists of multiple components that are not clear at the present time. As the details of induced changes of nicotine and alcohol differ, it is likely that the mechanisms of increasing nicotine preference may not be identical to that of increasing alcohol preference. Stimulation of preference of yet other drugs may again be different -representing one aspect of drug specificity of reward mechanisms.
Collapse
Affiliation(s)
- A Lajtha
- Nathan Kline Institute, Orangeburg, NY 10962, USA
| | | |
Collapse
|
12
|
Cortez AM, Charntikov S, Der-Ghazarian T, Horn LR, Crawford CA, McDougall SA. Age-dependent effects of kappa-opioid receptor stimulation on cocaine-induced stereotyped behaviors and dopamine overflow in the caudate-putamen: an in vivo microdialysis study. Neuroscience 2010; 169:203-13. [PMID: 20435099 DOI: 10.1016/j.neuroscience.2010.04.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 04/07/2010] [Accepted: 04/23/2010] [Indexed: 11/28/2022]
Abstract
kappa-Opioid receptor stimulation attenuates psychostimulant-induced increases in extracellular dopamine in the caudate-putamen (CPu) and nucleus accumbens of adult rats, while reducing cocaine-induced locomotor activity and stereotyped behaviors. Because kappa-opioid receptor agonists (e.g., U50,488 or U69,593) often affect the behavior of preweanling rats in a paradoxical manner, the purpose of the present study was to determine whether kappa-opioid receptor stimulation differentially affects dopaminergic functioning in the CPu depending on age. In vivo microdialysis was used to determine whether U50,488 (5 mg/kg) attenuates cocaine-induced dopamine overflow in the dorsal CPu on postnatal day (PD) 17 and PD 85. In the microinjection experiment, cocaine-induced stereotyped behaviors were assessed in adult and preweanling rats after bilateral infusions of vehicle or U50,488 (1.6 or 6.4 microg per side) into the CPu. Results showed that U50,488 attenuated the cocaine-induced increases in CPu dopamine overflow on PD 85, while the same dose of U50,488 did not alter dopamine dialysate levels on PD 17. Cocaine also increased stereotyped behaviors (repetitive motor movements, behavioral intensity scores, and discrete behaviors) at both ages, but adult rats appeared to exhibit more intense stereotypic responses than the younger animals. Consistent with the microdialysis findings, bilateral infusions of U50,488 into the dorsal CPu decreased the cocaine-induced stereotypies of adult rats, while leaving the behaviors of preweanling rats unaffected. These results suggest that the neural mechanisms underlying kappa-opioid/dopamine interactions in the CPu are not fully mature during the preweanling period. This lack of functional maturity may explain why kappa-opioid receptor agonists frequently induce different behavioral effects in young and adult rats.
Collapse
Affiliation(s)
- A M Cortez
- Department of Psychology, California State University, San Bernardino, CA 92407, USA
| | | | | | | | | | | |
Collapse
|
13
|
|