1
|
Xu ZX, Xu D, Fang F, Fan YJ, Wu B, Chen YF, Huang HE, Huang XH, Zhuang YH, Xu WH. Enhanced axon outgrowth of spinal motor neurons in co-culturing with dorsal root ganglions antagonizes the growth inhibitory environment. Regen Ther 2024; 25:68-76. [PMID: 38148872 PMCID: PMC10750115 DOI: 10.1016/j.reth.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Forming a bridge made of functional axons to span the lesion is essential to reconstruct the motor circuitry following spinal cord injury (SCI). Dorsal root ganglion (DRG) axons are robust in axon growth and have been proved to facilitate the growth of cortical neurons in a process of axon-facilitated axon regeneration. However, whether DRG transplantation affects the axon outgrowth of spinal motor neurons (SMNs) that play crucial roles in motor circuitry remains unclear. Methods We investigated the axonal growth patterns of co-cultured DRGs and SMN aggregates (SMNAs) taking advantage of a well-designed 3D-printed in vitro system. Chondroitin sulphate proteoglycans (CSPG) induced inhibitory matrix was introduced to imitate the inhibitory environment following SCI. Axonal lengths of DRG, SMNA or DRG & SMNA cultured on the permissive or CSPG induced inhibitory matrix were measured and compared. Results Our results indicated that under the guidance of full axonal connection generated from two opposing populations of DRGs, SMNA axons were growth-enhanced and elongated along the DRG axon bridge to distances that they could not otherwise reach. Quantitatively, the co-culture increased the SMNA axonal length by 32.1 %. Moreover, the CSPG matrix reduced the axonal length of DRGs and SMNAs by 46.2 % and 17.7 %, respectively. This inhibitory effect was antagonized by the co-culture of DRGs and SMNAs. Especially for SMNAs, they extended the axons across the CSPG-coating matrix, reached the lengths close to those of SMNAs cultured on the permissive matrix alone. Conclusions This study deepens our understanding of axon-facilitated reconstruction of the motor circuitry. Moreover, the results support SCI treatment utilizing the enhanced outgrowth of axons to restore functional connectivity in SCI patients.
Collapse
Affiliation(s)
- Zi-Xing Xu
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Orthopedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Provincial Institute of Orthopedics, Fuzhou, Fujian Province, China
| | - Dan Xu
- Fujian Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Fang Fang
- Department of Pharmacology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ying-Juan Fan
- Department of Pharmacology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Bing Wu
- The Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yu-Fan Chen
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Hao-En Huang
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xin-Hao Huang
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yue-Hong Zhuang
- Fujian Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wei-Hong Xu
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Orthopedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Provincial Institute of Orthopedics, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Harris JP, Burrell JC, Struzyna LA, Chen HI, Serruya MD, Wolf JA, Duda JE, Cullen DK. Emerging regenerative medicine and tissue engineering strategies for Parkinson's disease. NPJ Parkinsons Dis 2020; 6:4. [PMID: 31934611 PMCID: PMC6949278 DOI: 10.1038/s41531-019-0105-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disease, affecting 1-2% of people over 65. The classic motor symptoms of PD result from selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in a loss of their long axonal projections to the striatum. Current treatment strategies such as dopamine replacement and deep brain stimulation (DBS) can only minimize the symptoms of nigrostriatal degeneration, not directly replace the lost pathway. Regenerative medicine-based solutions are being aggressively pursued with the goal of restoring dopamine levels in the striatum, with several emerging techniques attempting to reconstruct the entire nigrostriatal pathway-a key goal to recreate feedback pathways to ensure proper dopamine regulation. Although many pharmacological, genetic, and optogenetic treatments are being developed, this article focuses on the evolution of transplant therapies for the treatment of PD, including fetal grafts, cell-based implants, and more recent tissue-engineered constructs. Attention is given to cell/tissue sources, efficacy to date, and future challenges that must be overcome to enable robust translation into clinical use. Emerging regenerative medicine therapies are being developed using neurons derived from autologous stem cells, enabling the construction of patient-specific constructs tailored to their particular extent of degeneration. In the upcoming era of restorative neurosurgery, such constructs may directly replace SNpc neurons, restore axon-based dopaminergic inputs to the striatum, and ameliorate motor deficits. These solutions may provide a transformative and scalable solution to permanently replace lost neuroanatomy and improve the lives of millions of people afflicted by PD.
Collapse
Affiliation(s)
- James P. Harris
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Justin C. Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | - Laura A. Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Mijail D. Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - John A. Wolf
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Parkinson’s Disease Research, Education, and Clinical Center (PADRECC), Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
3
|
Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models. PLoS One 2015; 10:e0142660. [PMID: 26559822 PMCID: PMC4641584 DOI: 10.1371/journal.pone.0142660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/26/2015] [Indexed: 01/04/2023] Open
Abstract
Spinal cord injury (SCI) induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR) spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28). Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.
Collapse
|
4
|
Lin CL, Heron P, Hamann SR, Smith GM. Functional distinction between NGF-mediated plasticity and regeneration of nociceptive axons within the spinal cord. Neuroscience 2014; 272:76-87. [PMID: 24797326 PMCID: PMC4103020 DOI: 10.1016/j.neuroscience.2014.04.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Successful regeneration after injury requires either the direct reformation of the circuit or the formation of a bridge circuit to provide partial functional return through a more indirect route. Presently, little is known about the specificity of how regenerating axons reconnect or reconstruct functional circuits. We have established an in vivo Dorsal root entry zone (DREZ) model, which in the presence of Nerve Growth Factor (NGF), shows very robust regeneration of peptidergic nociceptive axons, but not other sensory axons. Expression of NGF in normal, non-injured animals leads to robust sprouting of only the peptidergic nociceptive axons. Interestingly, NGF-induced sprouting of these axons leads to severe chronic pain, whereas, regeneration leads to protective-like pain without chronic pain. Using this model we set out to compare differences in behavioral outcomes and circuit features between these two groups. In this study, we examined pre-synaptic and post-synaptic markers to evaluate the relationship between synaptic connections and behavioral responses. NGF-induced sprouting of calcitonin gene-related peptide (CGRP) axons resulted in a significant redistribution of synapses and cFos expression into the deeper dorsal horn. Regeneration of only the CGRP axons showed a general reduction in synapses and cFos expression within laminae I and II; however, inflammation of the hindpaw induced peripheral sensitization. These data show that although NGF-induced sprouting of peptidergic axons induces robust chronic pain and cFos expression throughout the entire dorsal horn, regeneration of the same axons resulted in normal protective pain with a synaptic and cFos distribution similar, albeit significantly less than that shown by the sprouting of CGRP axons.
Collapse
Affiliation(s)
- C-L Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States
| | - P Heron
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States
| | - S R Hamann
- Department of Anesthesiology, University of Kentucky, Lexington, KY 40536, United States
| | - G M Smith
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States; Shriners Hospitals for Pediatric Research Center, Department of Neuroscience, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
5
|
Kelamangalath L, Smith GM. Neurotrophin treatment to promote regeneration after traumatic CNS injury. ACTA ACUST UNITED AC 2013; 8:486-495. [PMID: 25419214 DOI: 10.1007/s11515-013-1269-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurotrophins are a family of growth factors that have been found to be central for the development and functional maintenance of the nervous system, participating in neurogenesis, neuronal survival, axonal growth, synaptogenesis and activity-dependent forms of synaptic plasticity. Trauma in the adult nervous system can disrupt the functional circuitry of neurons and result in severe functional deficits. The limitation of intrinsic growth capacity of adult nervous system and the presence of an inhospitable environment are the major hurdles for axonal regeneration of lesioned adult neurons. Neurotrophic factors have been shown to be excellent candidates in mediating neuronal repair and establishing functional circuitry via activating several growth signaling mechanisms including neuron-intrinsic regenerative programs. Here, we will review the effects of various neurotrophins in mediating recovery after injury to the adult spinal cord.
Collapse
Affiliation(s)
- Lakshmi Kelamangalath
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, & Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106, USA
| | - George M Smith
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, & Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106, USA
| |
Collapse
|
6
|
Colello RJ, Chow WN, Bigbee JW, Lin C, Dalton D, Brown D, Jha BS, Mathern BE, Lee KD, Simpson DG. The incorporation of growth factor and chondroitinase ABC into an electrospun scaffold to promote axon regrowth following spinal cord injury. J Tissue Eng Regen Med 2013; 10:656-68. [DOI: 10.1002/term.1805] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Raymond J. Colello
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Woon N. Chow
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - John W. Bigbee
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Charles Lin
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Dustin Dalton
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Damien Brown
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Balendu Shekhar Jha
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Bruce E. Mathern
- Department of Neurosurgery, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - Kangmin D. Lee
- Department of Neurosurgery, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| | - David G. Simpson
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus; Virginia Commonwealth University; Richmond VA USA
| |
Collapse
|
7
|
Smith GA, Snyder EY. Two cells are better than one: optimizing stem cell survival by co-grafting "helper" cells that offer regulated trophic support. Exp Neurol 2013; 247:751-4. [PMID: 23856435 DOI: 10.1016/j.expneurol.2013.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Gaynor A Smith
- Neuroregeneration Laboratories, Neuroregeneration Laboratories, Mailman Research Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | | |
Collapse
|
8
|
Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. J Mol Neurosci 2012; 49:334-46. [PMID: 22878912 DOI: 10.1007/s12031-012-9863-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/23/2012] [Indexed: 01/15/2023]
Abstract
The aim of our work is to utilize the crosstalk between the vascular and the neuronal system to enhance directed neuritogenesis in uniaxial guidance scaffolds for the repair of spinal cord injury. In this study, we describe a method for angioneural regenerative engineering, i.e., for generating biodegradable scaffolds, produced by a combination of controlled freezing (freeze-casting) and lyophilization, which contain longitudinally oriented channels, and provide uniaxial directionality to support and guide neuritogenesis from neuronal cells in the presence of endothelial cells. The optimized scaffolds, composed of 2.5 % gelatin and 1 % genipin crosslinked, were characterized by an elastic modulus of ~51 kPa and longitudinal channels of ~50 μm diameter. The scaffolds support the growth of endothelial cells, undifferentiated or NGF-differentiated PC12 cells, and primary cultures of fetal chick forebrain neurons. The angioneural crosstalk, as generated by first forming endothelial cell monolayers in the scaffolds followed by injection of neuronal cells, leads to the outgrowth of long aligned neurites in the PC12/endothelial cell co-cultures also in the absence of exogenously added nerve growth factor. Neuritogenesis was not observed in the scaffolds in the absence of the endothelial cells. This methodology is a promising approach for neural tissue engineering and may be applicable for regenerative spinal cord injury repair.
Collapse
|
9
|
Onifer SM, Smith GM, Fouad K. Plasticity after spinal cord injury: relevance to recovery and approaches to facilitate it. Neurotherapeutics 2011; 8:283-93. [PMID: 21384221 PMCID: PMC3101826 DOI: 10.1007/s13311-011-0034-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Motor, sensory, and autonomic functions can spontaneously return or recover to varying extents in both humans and animals, regardless of the traumatic spinal cord injury (SCI) level and whether it was complete or incomplete. In parallel, adverse and painful functions can appear. The underlying mechanisms for all of these diverse functional changes are summarized under the term plasticity. Our review will describe what is known regarding this phenomenon after traumatic SCI and focus on its relevance to motor and sensory recovery. Although it is still somewhat speculative, plasticity can be found throughout the neuraxis and includes various changes ranging from alterations in the properties of spared neuronal circuitries, intact or lesioned axon collateral sprouting, and synaptic rearrangements. Furthermore, we will discuss a selection of potential approaches for facilitating plasticity as possible SCI treatments. Because a mechanism underlying spontaneous plasticity and recovery might be motor activity and the related neuronal activity, activity-based therapies are being used and investigated both clinically and experimentally. Additional pharmacological and gene-delivery approaches, based on plasticity being dependent on the delicate balance between growth inhibition and promotion as well as the basic intrinsic growth ability of the neurons themselves, have been found to be effective alone and in combination with activity-based therapies. The positive results have to be tempered with the reality that not all plasticity is beneficial. Therefore, a tremendous number of questions still need to be addressed. Ultimately, answers to these questions will enhance plasticity's potential for improving the quality of life for persons with SCI.
Collapse
Affiliation(s)
- Stephen M. Onifer
- Spinal Cord and Brain Injury Research Center, University of Kentucky, College of Medicine, Lexington, Kentucky 40536-0509 USA
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, Kentucky 40536-0098 USA
| | - George M. Smith
- Spinal Cord and Brain Injury Research Center, University of Kentucky, College of Medicine, Lexington, Kentucky 40536-0509 USA
- Department of Physiology, University of Kentucky, College of Medicine, Lexington, Kentucky 40536-0298 USA
| | - Karim Fouad
- Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, T6G 2G4 Canada
| |
Collapse
|