1
|
Gedikli Ö, Akca M, Yildirim M. Electroencephalographic investigation of the effects of Ginkgo biloba on spike-wave discharges in rats with genetic absence epilepsy. Epilepsy Behav 2021; 122:108165. [PMID: 34343959 DOI: 10.1016/j.yebeh.2021.108165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE EGb 761, a plant extract obtained from the leaves of the Ginkgo biloba tree, is widely used in modern medicine and traditional medicine applications in the treatment of many diseases. However, in some clinical case reports, it has been suggested that G. biloba causes epileptic seizures. A limited number of experimental animal studies related to the effects of G. biloba on epileptic seizures do not provide sufficient information on the solution of a serious clinical problem with contrasting findings. We aimed to investigate the effects of EGb 761 administered in different doses to adult male Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats which is the genetic animal model of absence epilepsy, on absence seizures using in vivo electrophysiological method. In addition, the effects of EGb 761 doses on locomotor behavior of WAG/Rij rats were evaluated with open-field and rotarod behavioral tests. METHODS 50, 100, 200, and 400 mg/kg doses of EGb 761 were administered to male WAG/Rij rats with implanted EEG electrodes by oral gavage for 28 days. Evaluation of absence seizures was performed on spike-wave discharges (SWDs) in EEG recorded for 4 h each week. The number of SWDs, the total duration of SWDs, and the mean duration of SWD were determined for the analysis. RESULTS In the group treated with 400 mg/kg EGb 761, the number of SWDs and the mean duration of SWD at the 1st and 7th doses and the total duration of SWDs at the 1st, 7th and 14th doses were significantly increased (p < 0.05). In all experimental groups treated with EGb 761 doses, there was no significant change in locomotor activity in the open-field and the rotarod tests. CONCLUSION Ginkgo biloba extract EGb 761 increased the epileptic SWD parameters of WAG/Rij rats at high doses (400 mg/kg), causing a pro-epileptic effect on absence seizures. It should be noted that in patients with epilepsy and in high-dose applications, G. biloba extract EGb 761 may lead to an increase in neuronal excitability.
Collapse
Affiliation(s)
- Öznur Gedikli
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - Metehan Akca
- Electroneurophysiology Program, Hamidiye Vocational School of Health Services, University of Health Sciences, Istanbul, Turkey
| | - Mehmet Yildirim
- Department of Physiology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
2
|
Cırrık S, Hacioglu G, Abidin İ, Aydın-Abidin S, Noyan T. Endoplasmic reticulum stress in the livers of BDNF heterozygous knockout mice. Arch Physiol Biochem 2019; 125:378-386. [PMID: 30039987 DOI: 10.1080/13813455.2018.1489850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context: Involvement of endoplasmic reticulum (ER) stress and brain-derived neurotrophic factor (BDNF) in hepatic lipid metabolism has been reported previously. Objective: The effects of chronic BDNF deficiency on ER stress response in the livers were examined in this study. Methods: BDNF(+/-) mice, characterised by BDNF deficiency, and their wild-type (WT) littermates were used. The ER stress was induced by tunicamycin (Tm) (0.5 mg/kg, intraperitoneal). Animals were divided into four groups; WT, WT + Tm, BDNF(+/-), and BDNF(+/-)+Tm. Results: At the basal conditions, BDNF deficiency did not affect hepatic cell death or lipid accumulation. However, during ER stress, BDNF(+/-)+Tm group showed increased apoptosis, GADD153 immunostaining, sterol regulatory element-binding protein-1c (SREBP-1c) level, and steatosis compared to the WT + Tm group. Conclusion: Endogenous BDNF might be protective against apoptosis through GADD153 suppression and steatosis via SREBP-1c suppression during ER stress. This effect of BDNF might be clinically important for type 2 diabetes and obesity, which are related with both ER stress and BDNF deficiency.
Collapse
Affiliation(s)
- Selma Cırrık
- a Department of Physiology, Faculty of Medicine, Ordu University , Ordu , Turkey
| | - Gulay Hacioglu
- b Department of Physiology, Faculty of Medicine, Giresun University , Giresun , Turkey
| | - İsmail Abidin
- c Department of Biophysics, Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| | - Selcen Aydın-Abidin
- c Department of Biophysics, Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| | - Tevfik Noyan
- d Department of Medical Biochemistry, Faculty of Medicine, Ordu University , Ordu , Turkey
| |
Collapse
|
3
|
Bodur A, İnce İ, Kahraman C, Abidin İ, Aydin-Abidin S, Alver A. Effect of a high sucrose and high fat diet in BDNF (+/-) mice on oxidative stress markers in adipose tissues. Arch Biochem Biophys 2019; 665:46-56. [PMID: 30797748 DOI: 10.1016/j.abb.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to investigate the effects of a high fat and a high sucrosediet in wild type and BDNF (+/-) mice on oxidative stress in epididymal and subcutaneousadipose tissues by measuring different markers of oxidative stress and antioxidant enzymes. Wild type (WT) and BDNF (+/-) male mice were divided into six groups receiving fed control diet (CD), high sucrose diet (HSD), or high fat diet (HFD) for four months. Levels of 3-nitrotyrosine (3-NT) increased in the HFD-fed BDNF (+/-) mice, while 4-hydroxynonenal (4-HNE) levels increased in the CD and HFD-fed BDNF (+/-) groups. Malondialdehyde (MDA) levels decreased in subcutaneous tissue compared to epididymal adipose tissue, independently of diet type. Superoxide dismutase (SOD) activity was reduced by HFD (p < 0.05), butglutathione peroxidase (GSH-Px) activity was increased by HSD in epididymal adipose tissuein BDNF (+/-) mice (p < 0.05). GSH-Px activities was increased by CD and HFD in subcutaneous adipose tissue of BDNF (+/-) (p < 0.05). SOD2 and GSH-Px3 expressions were only decreased by HSD in epididymal and subcutaneous adipose tissues of BDNF (+/-) mice (p < 0.05). In conclusion, reduced BDNF may increase OS in epididymal adipose tissue, but not in subcutaneous adipose tissue following HSD and HFD.
Collapse
Affiliation(s)
- Akın Bodur
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - İmran İnce
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Cemil Kahraman
- Department of Nutrition and Dietetics, School of Health, Düzce University, Düzce, Turkey
| | - İsmail Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selcen Aydin-Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
4
|
Neuronal excitability and spontaneous synaptic transmission in the entorhinal cortex of BDNF heterozygous mice. Neurosci Lett 2018; 690:69-75. [PMID: 30316983 DOI: 10.1016/j.neulet.2018.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 02/04/2023]
Abstract
Brain Derived Neurotropic Factor (BDNF) is a neutrophic factor that is required for the normal neuronal development and function. BDNF is involved in regulation of synapses as well as neuronal excitability. Entorhinal Cortex (EC) is a key brain area involved in many physiological and pathological processes. In this study we investigated the effects of chronically reduced BDNF levels on layer 3 pyramidal neurons of EC. We aimed to assess the effects of reduced levels of BDNF on firing properties, spontaneous synaptic currents and excitation/inhibition balance from acute brain slices. Patch clamp recordings were obtained from pyramidal neurons of Entorhinal Cortex Layer 3. Findings of BDNF heterozygous (BDNF (+/-)) mice compared to their wild-type littermates at the age of 23-28 days. Action potential threshold was shifted (p = 0,002) to depolarized potentials and spike frequency was smaller in response to somatic current injection steps in BDNF (+/-) mice. Spontaneous synaptic currents were also affected. sEPSC amplitude (p = 0,009), sIPSC frequency (p = 0,001) and sIPSC amplitudes (p = 0,023) were reduced in BDNF (+/-). Decay times of sIPSCs were longer in BDNF (+/-) (p = 0,014). Calculated balance of excitatory/inhibitory balance was shifted in the favor of excitation in BDNF (+/-) mice (p = 0,01). These findings suggest that reductions in concentrations of BDNF results in altered status of excitability and excitation/inhibition imbalance. However, these differences observed in BDNF (+/-) seem to have opposing effects on neuronal activity.
Collapse
|
5
|
Wang F, Wang X, Shapiro LA, Cotrina ML, Liu W, Wang EW, Gu S, Wang W, He X, Nedergaard M, Huang JH. NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility. Brain Struct Funct 2016; 222:1543-1556. [PMID: 27586142 PMCID: PMC5368191 DOI: 10.1007/s00429-016-1292-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 08/16/2016] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is not only a leading cause for morbidity and mortality in young adults (Bruns and Hauser, Epilepsia 44(Suppl 10):210, 2003), but also a leading cause of seizures. Understanding the seizure-inducing mechanisms of TBI is of the utmost importance, because these seizures are often resistant to traditional first- and second-line anti-seizure treatments. The early post-traumatic seizures, in turn, are a contributing factor to ongoing neuropathology, and it is critically important to control these seizures. Many of the available anti-seizure drugs target gamma-aminobutyric acid (GABAA) receptors. The inhibitory activity of GABAA receptor activation depends on low intracellular Cl−, which is achieved by the opposing regulation of Na+–K+–Cl− cotransporter 1 (NKCC1) and K+–Cl−–cotransporter 2 (KCC2). Up-regulation of NKCC1 in neurons has been shown to be involved in neonatal seizures and in ammonia toxicity-induced seizures. Here, we report that TBI-induced up-regulation of NKCC1 and increased intracellular Cl− concentration. Genetic deletion of NKCC1 or pharmacological inhibition of NKCC1 with bumetanide suppresses TBI-induced seizures. TGFβ expression was also increased after TBI and competitive antagonism of TGFβ reduced NKKC1 expression, ameliorated reactive astrocytosis, and inhibited seizures. Thus, TGFβ might be an important pathway involved in NKCC1 up-regulation after TBI. Our findings identify neuronal up-regulation of NKCC1 and its mediation by TGFβ, as a potential and important mechanism in the early post-traumatic seizures, and demonstrate the therapeutic potential of blocking this pathway.
Collapse
Affiliation(s)
- Fushun Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA.,Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, 76504, USA.,Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Central Division, Temple, TX, 76508, USA
| | - Xiaowei Wang
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA.,Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14642, USA
| | - Lee A Shapiro
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, 76504, USA.
| | - Maria L Cotrina
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA
| | - Weimin Liu
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA
| | - Ernest W Wang
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Central Division, Temple, TX, 76508, USA
| | - Simeng Gu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, 4th Military Medical University, Xi'an, China
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, 14642, USA
| | - Jason H Huang
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Temple, TX, 76504, USA. .,Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Central Division, Temple, TX, 76508, USA.
| |
Collapse
|
6
|
Soysal H, Doğan Z, Kamışlı Ö. Effects of phenytoin and lamotrigine treatment on serum BDNF levels in offsprings of epileptic rats. Neuropeptides 2016; 56:1-8. [PMID: 26706181 DOI: 10.1016/j.npep.2015.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 12/01/2015] [Accepted: 12/06/2015] [Indexed: 12/01/2022]
Abstract
The role of brain-derived neurotrophic factor (BDNF) is to promote and modulate neuronal responses across neurotransmitter systems in the brain. Therefore, abnormal BDNF signaling may be associated with the pathophysiology of schizophrenia. Low BDNF levels have been reported in brains and serums of patients with psychotic disorders. In the present study, we investigated the effects of antiepileptic drugs on BDNF in developing rats. Pregnant rats were treated with phenytoin (PHT), lamotrigine (LTG) and folic acid for long-term, all through their gestational periods. Experimental epilepsy (EE) model was applied in pregnant rats. Epileptic seizures were determined with electroencephalography. After birth, serum BDNF levels were measured in 136 newborn rats on postnatal day (PND) 21 and postnatal day 38. In postnatal day 21, serum BDNF levels of experimental epilepsy group were significantly lower compared with PHT group. This decrease is statistically significant. Serum BDNF levels increased in the group LTG. This increase compared with LTG+EE group was statistically significant. In the folic acid (FA) group, levels of serum BDNF decreased statistically significantly compared to the PHT group. On postnatal day 38, no significant differences were found among the groups for serum BDNF levels. We concluded that, the passed seizures during pregnancy adversely affect fetal brain development, lowering of serum BDNF levels. PHT use during pregnancy prevents seizure-induced injury by increasing the levels of BDNF. About the increase level of BDNF, LTG is much less effective than PHT, the positive effect of folic acid on serum BDNF levels was not observed. LTG increase in BDNF is much less effective than PHT, folic acid did not show a positive effect on serum BDNF levels. Epilepsy affects fetal brain development during gestation in pregnant rats, therefore anti-epileptic therapy should be continued during pregnancy.
Collapse
Affiliation(s)
- Handan Soysal
- Faculty of Medicine, Department of Anatomy, Başkent University, Ankara, Turkey.
| | - Zümrüt Doğan
- Faculty of Medicine, Department of Anatomy, Adıyaman University, Adıyaman, Turkey
| | - Özden Kamışlı
- Faculty of Medicine, Department of Nörology, Inönü University, Malatya, Turkey
| |
Collapse
|