1
|
Caputi V, Hill L, Figueiredo M, Popov J, Hartung E, Margolis KG, Baskaran K, Joharapurkar P, Moshkovich M, Pai N. Functional contribution of the intestinal microbiome in autism spectrum disorder, attention deficit hyperactivity disorder, and Rett syndrome: a systematic review of pediatric and adult studies. Front Neurosci 2024; 18:1341656. [PMID: 38516317 PMCID: PMC10954784 DOI: 10.3389/fnins.2024.1341656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Critical phases of neurodevelopment and gut microbiota diversification occur in early life and both processes are impacted by genetic and environmental factors. Recent studies have shown the presence of gut microbiota alterations in neurodevelopmental disorders. Here we performed a systematic review of alterations of the intestinal microbiota composition and function in pediatric and adult patients affected by autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and Rett syndrome (RETT). Methods We searched selected keywords in the online databases of PubMed, Cochrane, and OVID (January 1980 to December 2021) with secondary review of references of eligible articles. Two reviewers independently performed critical appraisals on the included articles using the Critical Appraisal Skills Program for each study design. Results Our systematic review identified 18, 7, and 3 original articles describing intestinal microbiota profiles in ASD, ADHD, and RETT, respectively. Decreased Firmicutes and increased Bacteroidetes were observed in the gut microbiota of individuals affected by ASD and ADHD. Proinflammatory cytokines, short-chain fatty acids and neurotransmitter levels were altered in ASD and RETT. Constipation and visceral pain were related to changes in the gut microbiota in patients affected by ASD and RETT. Hyperactivity and impulsivity were negatively correlated with Faecalibacterium (phylum Firmicutes) and positively correlated with Bacteroides sp. (phylum Bacteroidetes) in ADHD subjects. Five studies explored microbiota-or diet-targeted interventions in ASD and ADHD. Probiotic treatments with Lactobacillus sp. and fecal microbiota transplantation from healthy donors reduced constipation and ameliorated ASD symptoms in affected children. Perinatal administration of Lactobacillus sp. prevented the onset of Asperger and ADHD symptoms in adolescence. Micronutrient supplementation improved disease symptomatology in ADHD without causing significant changes in microbiota communities' composition. Discussion Several discrepancies were found among the included studies, primarily due to sample size, variations in dietary practices, and a high prevalence of functional gastrointestinal symptoms. Further studies employing longitudinal study designs, larger sample sizes and multi-omics technologies are warranted to identify the functional contribution of the intestinal microbiota in developmental trajectories of the human brain and neurobehavior. Systematic review registration https://clinicaltrials.gov/, CRD42020158734.
Collapse
Affiliation(s)
- Valentina Caputi
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR, United States
| | - Lee Hill
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Melanie Figueiredo
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jelena Popov
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Harvard Medical School, Boston, MA, United States
- Boston Children’s Hospital, Boston, MA, United States
| | - Emily Hartung
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Kara Gross Margolis
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, United States
- New York University Pain Research Center, New York, NY, United States
- New York University College of Dentistry, New York, NY, United States
| | - Kanish Baskaran
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Papiha Joharapurkar
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michal Moshkovich
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, McMaster Children’s Hospital, Hamilton, ON, Canada
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Division of Gastroenterology, Hepatology, and Nutrition, the Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
2
|
Szigetvari PD, Patil S, Birkeland E, Kleppe R, Haavik J. The effects of phenylalanine and tyrosine levels on dopamine production in rat PC12 cells. Implications for treatment of phenylketonuria, tyrosinemia type 1 and comorbid neurodevelopmental disorders. Neurochem Int 2023; 171:105629. [PMID: 37865339 DOI: 10.1016/j.neuint.2023.105629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutations in the phenylalanine hydroxylase (PAH) gene, resulting in phenylalanine accumulation and impaired tyrosine production. In Tyrosinemia type 1 (TYRSN1) mutations affect fumarylacetoacetate hydrolase, leading to accumulation of toxic intermediates of tyrosine catabolism. Treatment of TYRSN1 with nitisinone results in extreme tissue levels of tyrosine. Although PKU and TYRSN1 have opposite effects on tyrosine levels, both conditions have been associated with neuro-psychiatric symptoms typically present in ADHD, possibly indicating an impaired dopamine (DA) synthesis. However, concrete in vivo data on the possible molecular basis for disrupted DA production under disease mimicking conditions have been lacking. In pursuit to uncover associated molecular mechanisms, we exposed an established, DA producing cell line (PC12) to different concentrations of phenylalanine and tyrosine in culture media. We measured the effects on viability, proteomic composition, tyrosine, DA and tyrosine hydroxylase (TH) levels and TH phosphorylation. TH catalyzes the rate-limiting step in DA synthesis. High extracellular levels of phenylalanine depleted cells of intracellular tyrosine and DA. Compared to physiological levels (75 μM), either low (35 μM) or high concentrations of tyrosine (275 or 835 μM) decreased cellular DA, TH protein, and its phosphorylation levels. Using deep proteomic analysis, we identified multiple proteins, biological processes and pathways that were altered, including enzymes and transporters involved in amino acid metabolism. Using this information and published data, we developed a mathematical model to predict how extracellular levels of aromatic amino acids can affect the cellular synthesis of DA via different mechanisms. Together, these data provide new information about the normal regulation of neurotransmitter synthesis and how this may be altered in neurometabolic disorders, such as PKU and TYRSN1, with implications for the treatment of cognitive symptoms resulting from comorbid neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Sudarshan Patil
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
| | - Even Birkeland
- Department of Genetic Research & Bioinformatics, Norwegian Institute of Public Health, Bergen, Norway; The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, Bergen, Norway
| | - Rune Kleppe
- Norwegian Centre for Maritime- and Diving Medicine, Department of Occupational Medicine, Haukeland University Hospital, 5021, Bergen, Norway.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, 5009, Bergen, Norway; Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
3
|
Barone H, Elgen IB, Bliksrud YT, Vangsøy Hansen E, Skavhellen RR, Furevik MI, Haavik J. Case report: ADHD and prognosis in tyrosinemia type 1. Front Psychiatry 2023; 14:1213590. [PMID: 37533886 PMCID: PMC10392124 DOI: 10.3389/fpsyt.2023.1213590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Neurometabolic disorders such as tyrosinemia type 1 (TYRSN1) may interfere with brain metabolism and show symptoms of attention-deficit hyperactivity disorder (ADHD) in patients treated with the enzyme inhibitor nitisinone [2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione, NTBC]. It has been reported that ADHD treatment improves treatment compliance, which is imperative for the long-term prognosis of patients with TYRSN1. In this study, we report the case of a male patient who was diagnosed with TYRSN1 at 3 months of age and was subsequently treated with NTBC, restricted protein intake, and amino acids supplementation. At 7 years of age, he was referred for neuropsychiatric assessment, diagnosed with ADHD, and treated with methylphenidate. The effects of the treatment were monitored via parental interviews, questionnaires covering ADHD symptoms, and a continuous performance test. A reduction in ADHD symptoms, particularly inattentiveness, was observed across all measures. The early identification of ADHD and the treatment of neurometabolic disorders, such as TYRSN1, may be important from a lifetime perspective as this may improve the prognosis of the medical condition as well.
Collapse
Affiliation(s)
- Helene Barone
- Regional Resource Center for Autism, ADHD and Tourette Syndrome, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Irene Bircow Elgen
- Department of Child and Adolescent Psychiatry, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | | | | | - Rita Rigmor Skavhellen
- Department of Child and Adolescent Psychiatry, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Magne Ivar Furevik
- Department of Child and Adolescent Psychiatry, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Jan Haavik
- Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Romani C, Olson A, Aitkenhead L, Baker L, Patel D, Spronsen FV, MacDonald A, Wegberg AV, Huijbregts S. Meta-analyses of cognitive functions in early-treated adults with phenylketonuria. Neurosci Biobehav Rev 2022; 143:104925. [PMID: 36283539 DOI: 10.1016/j.neubiorev.2022.104925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
Our study estimated size of impairment for different cognitive functions in early-treated adults with PKU (AwPKU) by combining literature results in a meta-analytic way. We analysed a large set of functions (N = 19), each probed by different measures (average = 12). Data were extracted from 26 PKU groups and matched controls, with 757 AwPKU contributing 220 measures. Effect sizes (ESs) were computed using Glass' ∆ where differences in performance between clinical/PKU and control groups are standardized using the mean and standard deviation of the control groups. Significance was assessed using measures nested within independent PKU groups as a random factor. The weighted Glass' ∆ was - 0.44 for all functions taken together, and - 0.60 for IQ, both highly significant. Separate, significant impairments were found for most functions, but with great variability (ESs from -1.02 to -0.18). The most severe impairments were in reasoning, visual-spatial attention speed, sustained attention, visuo-motor control, and flexibility. Effect sizes were larger with speed than accuracy measures, and with visuo-spatial than verbal stimuli. Results show a specific PKU profile that needs consideration when monitoring the disease.
Collapse
Affiliation(s)
| | - Andrew Olson
- Psychology Department, University of Birmingham, UK.
| | | | - Lucy Baker
- Psychology Department, Aston University, UK.
| | | | | | - Anita MacDonald
- Birmingham Women' s and Children's NHS Foundation Trust, UK.
| | | | | |
Collapse
|
5
|
Elhawary NA, AlJahdali IA, Abumansour IS, Elhawary EN, Gaboon N, Dandini M, Madkhali A, Alosaimi W, Alzahrani A, Aljohani F, Melibary EM, Kensara OA. Genetic etiology and clinical challenges of phenylketonuria. Hum Genomics 2022; 16:22. [PMID: 35854334 PMCID: PMC9295449 DOI: 10.1186/s40246-022-00398-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 02/08/2023] Open
Abstract
This review discusses the epidemiology, pathophysiology, genetic etiology, and management of phenylketonuria (PKU). PKU, an autosomal recessive disease, is an inborn error of phenylalanine (Phe) metabolism caused by pathogenic variants in the phenylalanine hydroxylase (PAH) gene. The prevalence of PKU varies widely among ethnicities and geographic regions, affecting approximately 1 in 24,000 individuals worldwide. Deficiency in the PAH enzyme or, in rare cases, the cofactor tetrahydrobiopterin results in high blood Phe concentrations, causing brain dysfunction. Untreated PKU, also known as PAH deficiency, results in severe and irreversible intellectual disability, epilepsy, behavioral disorders, and clinical features such as acquired microcephaly, seizures, psychological signs, and generalized hypopigmentation of skin (including hair and eyes). Severe phenotypes are classic PKU, and less severe forms of PAH deficiency are moderate PKU, mild PKU, mild hyperphenylalaninaemia (HPA), or benign HPA. Early diagnosis and intervention must start shortly after birth to prevent major cognitive and neurological effects. Dietary treatment, including natural protein restriction and Phe-free supplements, must be used to maintain blood Phe concentrations of 120-360 μmol/L throughout the life span. Additional treatments include the casein glycomacropeptide (GMP), which contains very limited aromatic amino acids and may improve immunological function, and large neutral amino acid (LNAA) supplementation to prevent plasma Phe transport into the brain. The synthetic BH4 analog, sapropterin hydrochloride (i.e., Kuvan®, BioMarin), is another potential treatment that activates residual PAH, thus decreasing Phe concentrations in the blood of PKU patients. Moreover, daily subcutaneous injection of pegylated Phe ammonia-lyase (i.e., pegvaliase; PALYNZIQ®, BioMarin) has promised gene therapy in recent clinical trials, and mRNA approaches are also being studied.
Collapse
Affiliation(s)
- Nasser A. Elhawary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955 Saudi Arabia
| | - Imad A. AlJahdali
- Department of Community Medicine, College of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955 Saudi Arabia
| | - Iman S. Abumansour
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955 Saudi Arabia
| | - Ezzeldin N. Elhawary
- Faculty of Medicine, MS Genomic Medicine Program, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nagwa Gaboon
- Department of Clinical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohammed Dandini
- Department of Laboratory and Blood Bank, Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Abdulelah Madkhali
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Wafaa Alosaimi
- Department of Hematology, Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Abdulmajeed Alzahrani
- Department of Laboratory and Blood Bank at Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Fawzia Aljohani
- Department of Pediatric Clinics, Maternity and Children Hospital, King Salman Medical City, Madinah, Saudi Arabia
| | - Ehab M. Melibary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955 Saudi Arabia
| | - Osama A. Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Jeddah, Saudi Arabia
- Department of Biochemistry, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Cannon Homaei S, Barone H, Kleppe R, Betari N, Reif A, Haavik J. ADHD symptoms in neurometabolic diseases: Underlying mechanisms and clinical implications. Neurosci Biobehav Rev 2021; 132:838-856. [PMID: 34774900 DOI: 10.1016/j.neubiorev.2021.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022]
Abstract
Neurometabolic diseases (NMDs) are typically caused by genetic abnormalities affecting enzyme functions, which in turn interfere with normal development and activity of the nervous system. Although the individual disorders are rare, NMDs are collectively relatively common and often lead to lifelong difficulties and high societal costs. Neuropsychiatric manifestations, including ADHD symptoms, are prominent in many NMDs, also when the primary biochemical defect originates in cells and tissues outside the nervous system. ADHD symptoms have been described in phenylketonuria, tyrosinemias, alkaptonuria, succinic semialdehyde dehydrogenase deficiency, X-linked ichthyosis, maple syrup urine disease, and several mitochondrial disorders, but are probably present in many other NMDs and may pose diagnostic and therapeutic challenges. Here we review current literature linking NMDs with ADHD symptoms. We cite emerging evidence that many NMDs converge on common neurochemical mechanisms that interfere with monoamine neurotransmitter synthesis, transport, metabolism, or receptor functions, mechanisms that are also considered central in ADHD pathophysiology and treatment. Finally, we discuss the therapeutic implications of these findings and propose a path forward to increase our understanding of these relationships.
Collapse
Affiliation(s)
- Selina Cannon Homaei
- Division of Psychiatry, Haukeland University Hospital, Norway; Department of Biomedicine, University of Bergen, Norway.
| | - Helene Barone
- Regional Resource Center for Autism, ADHD, Tourette Syndrome and Narcolepsy, Western Norway, Division of Psychiatry, Haukeland University Hospital, Norway.
| | - Rune Kleppe
- Division of Psychiatry, Haukeland University Hospital, Norway; Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine, Haukeland University Hospital, Norway.
| | - Nibal Betari
- Department of Biomedicine, University of Bergen, Norway.
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Jan Haavik
- Division of Psychiatry, Haukeland University Hospital, Norway; Department of Biomedicine, University of Bergen, Norway.
| |
Collapse
|
7
|
Kittel-Schneider S, Arteaga-Henriquez G, Vasquez AA, Asherson P, Banaschewski T, Brikell I, Buitelaar J, Cormand B, Faraone SV, Freitag CM, Ginsberg Y, Haavik J, Hartman CA, Kuntsi J, Larsson H, Matura S, McNeill RV, Ramos-Quiroga JA, Ribases M, Romanos M, Vainieri I, Franke B, Reif A. Non-mental diseases associated with ADHD across the lifespan: Fidgety Philipp and Pippi Longstocking at risk of multimorbidity? Neurosci Biobehav Rev 2021; 132:1157-1180. [PMID: 34757108 DOI: 10.1016/j.neubiorev.2021.10.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022]
Abstract
Several non-mental diseases seem to be associated with an increased risk of ADHD and ADHD seems to be associated with increased risk for non-mental diseases. The underlying trajectories leading to such brain-body co-occurrences are often unclear - are there direct causal relationships from one disorder to the other, or does the sharing of genetic and/or environmental risk factors lead to their occurring together more frequently or both? Our goal with this narrative review was to provide a conceptual synthesis of the associations between ADHD and non-mental disease across the lifespan. We discuss potential shared pathologic mechanisms, genetic background and treatments in co-occurring diseases. For those co-occurrences for which published studies with sufficient sample sizes exist, meta-analyses have been published by others and we discuss those in detail. We conclude that non-mental diseases are common in ADHD and vice versa and add to the disease burden of the patient across the lifespan. Insufficient attention to such co-occurring conditions may result in missed diagnoses and suboptimal treatment in the affected individuals.
Collapse
Affiliation(s)
- Sarah Kittel-Schneider
- Center of Mental Health, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany.
| | - Gara Arteaga-Henriquez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain
| | - Alejandro Arias Vasquez
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Phil Asherson
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Isabell Brikell
- National Centre for Register-based Research, Department of Economics and Business Economics Aarhus BSS, Aarhus University, Fuglesangs Allé 26, DK-8210 Aarhus V, Aarhus, Denmark; iPSYCH - The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen and Aarhus, Denmark; Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Box 281, 171 77, Stockholm, Sweden
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Deutschordenstraße 50, D-60528 Frankfurt am Main, Germany
| | - Ylva Ginsberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Norra Stationsgatan 69, SE-113 64 Stockholm, Sweden
| | - Jan Haavik
- Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Postboks 1400, 5021 Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Catharina A Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Jonna Kuntsi
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Box 281, 171 77, Stockholm, Sweden; Örebro University, School of Medical Sciences, Campus USÖ, S-701 82 Örebro, Sweden
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany
| | - Rhiannon V McNeill
- Center of Mental Health, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany
| | - J Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Ribases
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain
| | - Marcel Romanos
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital of Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany
| | - Isabella Vainieri
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany
| |
Collapse
|
8
|
da Silva FGS, e Vairo FP, de Souza CFM, Schwartz IVD. Attention-deficit hyperactivity disorder in Brazilian patients with phenylketonuria. Acta Neurol Belg 2020; 120:893-899. [PMID: 29981005 DOI: 10.1007/s13760-018-0972-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
Recent studies have shown that patients with phenylketonuria (PKU), even with the early diagnosis and continuous treatment, may have symptoms of attention-deficit hyperactivity disorder (ADHD) and that the prevalence of ADHD in this population would be higher than in the general population. This study aims to determine the prevalence of ADHD in a sample of PKU patients from Southern Brazil. Patients were prospectively assessed by clinical interviews, neurological examination, and application of the MTA-SNAP-IV scales for patients aged 5-17 years and the Adult Self-Report Scale for patients over 17 years. Thirty-one patients (mean age = 17.4; early diagnosis = 27) were followed. Patients with ADHD and younger than 17 years had a median Phe in the last 6 months of life higher than those without the diagnosis of ADHD (ADHD patients = 617.1 µmol/L, no-ADHD patients 393.2 µmol/L, and p = 0.03). There was a predominantly hyperactive/impulsivity clinical presentation of ADHD (n = 4/5 patients), which differs from that reported elsewhere in the literature. Future studies are essential to better define the clinical presentation of ADHD in these patients and further elucidate its pathophysiology.
Collapse
|
9
|
Trimarco B, Manti F, Nardecchia F, Melogno S, Testa M, Meledandri G, Carducci C, Penge R, Leuzzi V. Executive functioning, adaptive skills, emotional and behavioral profile: A comparison between autism spectrum disorder and phenylketonuria. Mol Genet Metab Rep 2020; 23:100577. [PMID: 32181141 PMCID: PMC7066217 DOI: 10.1016/j.ymgmr.2020.100577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Influential theories maintain that some of Autism Spectrum Disorder (ASD) core symptoms may arise from deficits in executive functions (EF). EF deficits are also considered a neuropsychological marker of early treated individuals with phenylketonuria (PKU). Aims of this study were: to verify the occurrence and patterns of specific EF impairments in both clinical groups; to explore the coexistence of EF alterations with adaptive, behavioral and emotional problems in each clinical condition. MATERIAL AND METHODS We assessed EF, adaptive, behavioral and emotional profile in 21 participants with ASD, 15 early treated PKU individuals, comparable for age and IQ, and 14 controls, comparable for age to the clinical groups (age range: 7-14 years). RESULTS ASD and PKU participants presented two different, but partially overlapping patterns of EF impairment. While ASD participants showed a specific deficit in cognitive flexibility only, PKU individuals showed a more extensive impairment in EF with a weaker performance in two core EF domains (inhibition, cognitive flexibility) as compared to healthy controls. Psychological and adaptive profile was typical in PKU participants, while ASD participants experienced behavioral (externalizing symptoms), emotional (internalizing symptoms) and adaptive disorders (general, practical, social domains). CONCLUSIONS Present results support the view of a relative disengagement of adaptive and emotional-behavioral profile with respect to EF skills and suggest that other dysfunctions contribute to the multidimensional phenotype of ASD participants.
Collapse
Affiliation(s)
- Barbara Trimarco
- Department of Human Neuroscience, “Sapienza” University of Rome, Via dei Sabelli 108, 00185 Rome, Italy
| | - Filippo Manti
- Department of Human Neuroscience, “Sapienza” University of Rome, Via dei Sabelli 108, 00185 Rome, Italy
| | - Francesca Nardecchia
- Department of Human Neuroscience, “Sapienza” University of Rome, Via dei Sabelli 108, 00185 Rome, Italy
| | - Sergio Melogno
- Department of Human Neuroscience, “Sapienza” University of Rome, Via dei Sabelli 108, 00185 Rome, Italy
| | - Mara Testa
- Department of Human Neuroscience, “Sapienza” University of Rome, Via dei Sabelli 108, 00185 Rome, Italy
| | - Giovanni Meledandri
- Department of Human Science, “Università degli Studi Guglielmo Marconi”, Via Plinio 44, 00193 Rome, Italy
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University of Rome, Viale del policlinico 155, 00161 Rome, Italy
| | - Roberta Penge
- Department of Human Neuroscience, “Sapienza” University of Rome, Via dei Sabelli 108, 00185 Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, “Sapienza” University of Rome, Via dei Sabelli 108, 00185 Rome, Italy
| |
Collapse
|
10
|
McNaughton N. Personality neuroscience and psychopathology: should we start with biology and look for neural-level factors? PERSONALITY NEUROSCIENCE 2020; 3:e4. [PMID: 32524065 PMCID: PMC7253689 DOI: 10.1017/pen.2020.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
"Personality is an abstraction used to explain consistency and coherency in an individual's pattern of affects, cognitions, desires and behaviors [ABCDs]" (Revelle, 2007, p. 37). But personality research currently provides more a taxonomy of patterns than theories of fundamental causes. Psychiatric disorders can be viewed as involving extremes of personality but are diagnosed via symptom patterns not biological causes. Such surface-level taxonomic description is necessary for science, but consistent predictive explanation requires causal theory. Personality constructs, and especially their clinical extremes, should predict variation in ABCD patterns, with parsimony requiring the lowest effective causal level of explanation. But, even biologically inspired personality theories currently use an intuitive language-based approach for scale development that lacks biological anchors. I argue that teleonomic "purpose" explains the organisation and outputs of conserved brain emotion systems, where high activation is adaptive in specific situations but is otherwise maladaptive. Simple modulators of whole-system sensitivity evolved because the requisite adaptive level can vary across people and time. Sensitivity to a modulator is an abstract predictive personality factor that operates at the neural level but provides a causal explanation of both coherence and occasional apparent incoherence in ABCD variation. Neuromodulators impact all levels of the "personality hierarchy" from metatraits to aspects: stability appears altered by serotonergic drugs, neuroticism by ketamine and trait anxiety by simple anxiolytic drugs. Here, the tools of psychiatry transfer to personality research and imply both interaction between levels and oblique factor mappings to ABCD. On this view, much psychopathology reflects extremes of neural-level personality factors, and we can view much pharmacotherapy as temporarily altering personality. So, particularly for personality factors linked to basic emotions and their disorders, I think we should start with evolutionary biology and look directly at conserved neural-level modulators for our explanatory personality constructs and only invoke higher order, emergent, explanations when neural-level explanation fails.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Barone H, Bliksrud YT, Elgen IB, Szigetvari PD, Kleppe R, Ghorbani S, Hansen EV, Haavik J. Tyrosinemia Type 1 and symptoms of ADHD: Biochemical mechanisms and implications for treatment and prognosis. Am J Med Genet B Neuropsychiatr Genet 2020; 183:95-105. [PMID: 31633311 DOI: 10.1002/ajmg.b.32764] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/25/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
Abstract
Hereditary tyrosinemia Type 1 (HT-1) is a rare metabolic disease where the enzyme catalyzing the final step of tyrosine breakdown is defect, leading to accumulation of toxic metabolites. Nitisinone inhibits the degradation of tyrosine and thereby the production of harmful metabolites, however, the concentration of tyrosine also increases. We investigated the relationship between plasma tyrosine concentrations and cognitive functions and how tyrosine levels affected enzyme activities of human tyrosine hydroxylase (TH) and tryptophan hydroxylase 2 (TPH2). Eight Norwegian children between 6 and 18 years with HT-1 were assessed using questionnaires measuring Attention Deficit Hyperactivity Disorder (ADHD)-symptoms and executive functioning. Recent and past levels of tyrosine were measured and the enzyme activities of TH and TPH2 were studied at conditions replicating normal and pathological tyrosine concentrations. We observed a significant positive correlation between mean tyrosine levels and inattention symptoms. While TH exhibited prominent substrate inhibition kinetics, TPH2 activity also decreased at elevated tyrosine levels. Inhibition of both enzymes may impair syntheses of dopamine, noradrenaline, and serotonin in brain tissue. Inattention in treated HT-1 patients may be related to decreased production of these monoamines. Our results support recommendations of strict guidelines on plasma tyrosine levels in HT-1. ADHD-related deficits, particularly inattention, should be monitored in HT-1 patients to determine whether intervention is necessary.
Collapse
Affiliation(s)
- Helene Barone
- Department of Child and Adolescent Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Yngve T Bliksrud
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Irene B Elgen
- Department of Child and Adolescent Psychiatry, Haukeland University Hospital, Bergen, Norway
| | | | - Rune Kleppe
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Sadaf Ghorbani
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Eirik V Hansen
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
12
|
Neuropsychological Profile of Children with Early and Continuously Treated Phenylketonuria: Systematic Review and Future Approaches. J Int Neuropsychol Soc 2019; 25:624-643. [PMID: 31030702 DOI: 10.1017/s1355617719000146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To provide a comprehensive systematic review of the literature by examining studies published on all cognitive aspects of children with early and continuously treated phenylketonuria (ECT-PKU) included in the databases Medline, PsycINFO, and PsycARTICLE. METHOD In addition to a classical approach, we summarized methodology and results of each study in order to discuss current theoretical and methodological issues. We also examined recent advances in biochemical markers and treatments of PKU, with implications for future research on metabolic control and its role as a determinant of neuropsychological outcome. RESULTS Consistent with previous reviews, the hypothesis of a specific and central executive impairment in children with ECT-PKU was suggested. However, findings are inconclusive regarding the nature of executive impairments as well as their specificity, impact on everyday life, persistence over time, and etiology. CONCLUSION Given the current state of the science, we suggest future directions for research that utilizes a developmental and integrative approach to examine the effects of recent advances in biochemical markers and treatment of PKU. (JINS, 2019, 25, 624-643).
Collapse
|
13
|
Pilotto A, Blau N, Leks E, Schulte C, Deuschl C, Zipser C, Piel D, Freisinger P, Gramer G, Kölker S, Haas D, Burgard P, Nawroth P, Georg H, Scheffler K, Berg D, Trefz F. Cerebrospinal fluid biogenic amines depletion and brain atrophy in adult patients with phenylketonuria. J Inherit Metab Dis 2019; 42:398-406. [PMID: 30706953 DOI: 10.1002/jimd.12049] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/31/2018] [Indexed: 01/29/2023]
Abstract
Biogenic amines synthesis in phenylketonuria (PKU) patients with high phenylalanine (Phe) concentration is thought to be impaired due to inhibition of tyrosine and tryptophan hydroxylases and competition with amino acids at the blood-brain barrier. Dopamine and serotonin deficits might explain brain damage and progressive neuropsychiatric impairment in adult PKU patients. Ten early treated adult PKU patients (mean age 38.2 years) and 15 age-matched controls entered the study. Plasma and cerebrospinal fluid (CSF) Phe, 5-hydroxyindoleacetic acid (5-HIAA), 5-hydroxytryptophan (5-HTP), 3,4-dihydroxy-l-phenylalanine (l-DOPA) and homovanillic acid (HVA) were analyzed. Voxel-based morphometry statistical nonparametric mapping was used to test the age-corrected correlation between gray matter atrophy and CSF biogenic amines levels. 5-HIAA and 5-HTP were significantly reduced in PKU patients compared to controls. Significant negative correlations were found between CSF 5-HIAA, HVA, and 5-HTP and Phe levels. A decrease in 5-HIAA and 5-HTP concentrations correlated with precuneus and frontal atrophy, respectively. Lower HVA levels correlated with occipital atrophy. Biogenic amines deficits correlate with specific brain atrophy patterns in adult PKU patients, in line with serotonin and dopamine projections. These findings may support a more rigorous Phe control in adult PKU to prevent neurotransmitter depletion and accelerated brain damage due to aging.
Collapse
Affiliation(s)
- Andrea Pilotto
- Department of Neurodegeneration, Hertie Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Parkinson's Disease Rehabilitation Centre, FERB ONLUS S. Isidoro Hospital, Trescore Balneario, Italy
| | - Nenad Blau
- Department of Pediatrics, Division for Neuropediatrics and Metabolic Medicine, University of Heidelberg, Heidelberg, Germany
| | - Edytha Leks
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, Hertie Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, Department of Neurodegeneration, Tübingen, Germany
| | - Christian Deuschl
- Department of Neurodegeneration, Hertie Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, Department of Neurodegeneration, Tübingen, Germany
| | - Carl Zipser
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - David Piel
- Department of Endocrinology, Internal Medicine I, University of Heidelberg, Heidelberg, Germany
| | | | - Gwendolyn Gramer
- Department of Pediatrics, Division for Neuropediatrics and Metabolic Medicine, University of Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Department of Pediatrics, Division for Neuropediatrics and Metabolic Medicine, University of Heidelberg, Heidelberg, Germany
| | - Dorothea Haas
- Department of Pediatrics, Division for Neuropediatrics and Metabolic Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Burgard
- Department of Pediatrics, Division for Neuropediatrics and Metabolic Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Nawroth
- Department of Endocrinology, Internal Medicine I, University of Heidelberg, Heidelberg, Germany
| | - Hoffmann Georg
- Department of Pediatrics, Division for Neuropediatrics and Metabolic Medicine, University of Heidelberg, Heidelberg, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Magnetic Resonance Centre, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Daniela Berg
- Department of Neurodegeneration, Hertie Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, Department of Neurodegeneration, Tübingen, Germany
- Department of Neurology, University-Hospital-Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Friedrich Trefz
- Department of Pediatrics, Division for Neuropediatrics and Metabolic Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
McNaughton N, Smillie LD. Some Metatheoretical Principles for Personality Neuroscience. PERSONALITY NEUROSCIENCE 2018; 1:e11. [PMID: 32435730 PMCID: PMC7219693 DOI: 10.1017/pen.2018.9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 12/20/2022]
Abstract
Theories in personality neuroscience must aim to be consistent with several levels of explanation. If we view personality traits as constructs located only at the psychological level, we must still make their explanations compatible with observations and theories at lower levels, particularly with what we know at the neural level. If we view personality traits as constructs located only at the neural level, we will still need to predict their emergent effects at the psychological level. Personality theory at present treats traits as psychological-level constructs, with even the recent neurally oriented Cybernetic Big Five Theory specified in terms of a "conceptual nervous system" and not requiring complete or immediate translation into neural mechanisms. Here, we argue for the existence of phylogenetically old, neural-level traits that are substantially conserved across many vertebrate species. We first ask what known mechanisms control trait-like properties of neural systems: Focusing on hormones, the GABAA receptor, and amine neurotransmitter systems. We derive from what we know about these sources of neuronal modulation some metatheoretical principles to guide the future development of those aspects of personality theory, starting with neural-level trait constructs and drawing implications for higher-level trait psychology observations. Current descriptive approaches such as the Big Five are an essential precursor to personality neuroscience, but may not map one-to-one to the mechanisms and constructs of a neuroscience-based approach to traits.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Luke D. Smillie
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
Bisiacchi P, Mento G, Tarantino V, Burlina A. Subclinical executive function impairment in children with asymptomatic, treated phenylketonuria: A comparison with children with immunodeficiency virus. Cogn Neuropsychol 2017; 35:200-208. [PMID: 29117799 DOI: 10.1080/02643294.2017.1396207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study we compared the neuropsychological profile of phenylketonuria (PKU) and human immunodeficiency virus (HIV) to examine the specificity of the executive function (EF) impairment reported in these two patologies. A total of 55 age-matched children and adolescents were assessed, including 11 patients with PKU, 16 patients with HIV and 28 healthy controls, underwent a neuropsychological assessment. Although neither the PKU nor the HIV group scored below the normative ranges, both groups showed lower scores in neuropsychological tests engaging EFs than controls. In addition, compared to patients with PKU the HIV group performed significantly worse in the Trail-Making Test A, Corsi Span and Verbal Fluency. These findings suggest that EF impairments in PKU (a) are limited to EFs (i.e., working memory and attentional shifting), (b) are not simply due to generalized processing speed deficits and
Collapse
Affiliation(s)
- Patrizia Bisiacchi
- a Department of General Psychology , University of Padua , Padua , Italy
| | - Giovanni Mento
- a Department of General Psychology , University of Padua , Padua , Italy
| | | | - Alberto Burlina
- c Division of Inherited Metabolic Diseases , University Hospital Padua
| |
Collapse
|
16
|
Aarts E, Ederveen THA, Naaijen J, Zwiers MP, Boekhorst J, Timmerman HM, Smeekens SP, Netea MG, Buitelaar JK, Franke B, van Hijum SAFT, Arias Vasquez A. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS One 2017; 12:e0183509. [PMID: 28863139 PMCID: PMC5581161 DOI: 10.1371/journal.pone.0183509] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Microorganisms in the human intestine (i.e. the gut microbiome) have an increasingly recognized impact on human health, including brain functioning. Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder associated with abnormalities in dopamine neurotransmission and deficits in reward processing and its underlying neuro-circuitry including the ventral striatum. The microbiome might contribute to ADHD etiology via the gut-brain axis. In this pilot study, we investigated potential differences in the microbiome between ADHD cases and undiagnosed controls, as well as its relation to neural reward processing. METHODS We used 16S rRNA marker gene sequencing (16S) to identify bacterial taxa and their predicted gene functions in 19 ADHD and 77 control participants. Using functional magnetic resonance imaging (fMRI), we interrogated the effect of observed microbiome differences in neural reward responses in a subset of 28 participants, independent of diagnosis. RESULTS For the first time, we describe gut microbial makeup of adolescents and adults diagnosed with ADHD. We found that the relative abundance of several bacterial taxa differed between cases and controls, albeit marginally significant. A nominal increase in the Bifidobacterium genus was observed in ADHD cases. In a hypothesis-driven approach, we found that the observed increase was linked to significantly enhanced 16S-based predicted bacterial gene functionality encoding cyclohexadienyl dehydratase in cases relative to controls. This enzyme is involved in the synthesis of phenylalanine, a precursor of dopamine. Increased relative abundance of this functionality was significantly associated with decreased ventral striatal fMRI responses during reward anticipation, independent of ADHD diagnosis and age. CONCLUSIONS Our results show increases in gut microbiome predicted function of dopamine precursor synthesis between ADHD cases and controls. This increase in microbiome function relates to decreased neural responses to reward anticipation. Decreased neural reward anticipation constitutes one of the hallmarks of ADHD.
Collapse
Affiliation(s)
- Esther Aarts
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- * E-mail:
| | - Thomas H. A. Ederveen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jilly Naaijen
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel P. Zwiers
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jos Boekhorst
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- NIZO, Ede, The Netherlands
| | | | - Sanne P. Smeekens
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sacha A. F. T. van Hijum
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- NIZO, Ede, The Netherlands
| | - Alejandro Arias Vasquez
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Bouchereau J, Leduc-Leballeur J, Pichard S, Imbard A, Benoist JF, Abi Warde MT, Arnoux JB, Barbier V, Brassier A, Broué P, Cano A, Chabrol B, Damon G, Gay C, Guillain I, Habarou F, Lamireau D, Ottolenghi C, Paermentier L, Sabourdy F, Touati G, Ogier de Baulny H, de Lonlay P, Schiff M. Neurocognitive profiles in MSUD school-age patients. J Inherit Metab Dis 2017; 40:377-383. [PMID: 28324240 DOI: 10.1007/s10545-017-0033-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 01/07/2023]
Abstract
Maple syrup urine disease (MSUD), an inborn error of amino acids catabolism is characterized by accumulation of branched chain amino acids (BCAAs) leucine, isoleucine, valine and their corresponding alpha-ketoacids. Impact on the cognitive development has been reported historically, with developmental delays of varying degree. Currently, earlier diagnosis and improved management allow a better neurodevelopment, without requirement of special education. However, specific impairments can be observed, and so far, results of detailed neurocognitive assessments are not available. The aim of this study was to analyse neurocognitive profiles of French MSUD patients. This was a multicentre retrospective study on MSUD patients who underwent neurocognitive evaluation at primary school age. Twenty-one patients with classical neonatal onset MSUD were included. The patients' mean age at the time of evaluation was 8.7 years. The mean intellectual quotient (IQ) score was in the normal range (95.1 ± 12.6). In a subset of eight patients, a consistent developmental pattern of higher verbal than performance IQ was observed (mean of the difference 25.7 ± 8.7, p < 0.0001). No correlation could be established between this pattern and long-term metabolic balance (BCAA blood levels), or severity of acute metabolic imbalances, or leucine blood levels at diagnosis and time to toxin removal procedure. These data show that some MSUD patients may exhibit an abnormal neurocognitive profile with higher verbal than performance abilities. This might suggest an executive dysfunction disorder that would need to be further investigated by specialized testing. This pattern is important to detect in MSUD, as appropriate neuropsychological treatment strategies should be proposed.
Collapse
Affiliation(s)
- Juliette Bouchereau
- Reference Centre for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France
| | - Julie Leduc-Leballeur
- Reference Centre for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France
| | - Samia Pichard
- Reference Centre for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France
| | - Apolline Imbard
- Biochemistry Department, Robert Debré University Hospital, APHP, Paris, France
- Robert Debré University Hospital, PROTECT, INSERM U1141, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jean-François Benoist
- Biochemistry Department, Robert Debré University Hospital, APHP, Paris, France
- Robert Debré University Hospital, PROTECT, INSERM U1141, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marie-Thérèse Abi Warde
- Reference Centre for Inborn Errors of Metabolism, Necker University Hospital, APHP, Paris, France
| | - Jean-Baptiste Arnoux
- Reference Centre for Inborn Errors of Metabolism, Necker University Hospital, APHP, Paris, France
| | - Valérie Barbier
- Reference Centre for Inborn Errors of Metabolism, Necker University Hospital, APHP, Paris, France
| | - Anaïs Brassier
- Reference Centre for Inborn Errors of Metabolism, Necker University Hospital, APHP, Paris, France
| | - Pierre Broué
- Metabolic Disease Department, Children University Hospital, Toulouse, France
| | - Aline Cano
- Reference Centre for Inborn Errors of Metabolism, La Timone University Hospital, APHM, Marseille, France
| | - Brigitte Chabrol
- Reference Centre for Inborn Errors of Metabolism, La Timone University Hospital, APHM, Marseille, France
| | - Gilles Damon
- Pediatrics Department, Hôpital Nord, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Claire Gay
- Pediatrics Department, Hôpital Nord, Saint-Etienne University Hospital, Saint-Etienne, France
| | | | - Florence Habarou
- Biochemistry Department, Necker University Hospital, APHP, Paris, France
- INSERM UMR-S 1124, University Paris Descartes, Paris, France
| | - Delphine Lamireau
- Pediatrics Department, Bordeaux University Pellegrin Hospital, Bordeaux, France
| | - Chris Ottolenghi
- Biochemistry Department, Necker University Hospital, APHP, Paris, France
- INSERM UMR-S 1124, University Paris Descartes, Paris, France
| | - Laetitia Paermentier
- Reference Centre for Inborn Errors of Metabolism, La Timone University Hospital, APHM, Marseille, France
| | - Frédérique Sabourdy
- Biochemistry Department, Institut Fédératif de Biologie, Purpan University Hospital, Toulouse, France
- INSERM UMR1037, Toulouse III University, Toulouse, France
| | - Guy Touati
- Metabolic Disease Department, Children University Hospital, Toulouse, France
| | - Hélène Ogier de Baulny
- Reference Centre for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France
| | - Pascale de Lonlay
- Reference Centre for Inborn Errors of Metabolism, Necker University Hospital, APHP, Paris, France
- INSERM UMR-S 1124, University Paris Descartes, Paris, France
| | - Manuel Schiff
- Reference Centre for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, 48 boulevard Sérurier, 75019, Paris, France.
- Robert Debré University Hospital, PROTECT, INSERM U1141, University Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
18
|
Abstract
Cerebral neurotransmitter (NT) deficiency has been suggested as a contributing factor in the pathophysiology of brain dysfunction in phenylketonuria (PKU), even in early-treated phenylketonuric patients. The study aimed to review dopamine and serotonin status in PKU, and the effect of the impaired neurotransmission. Several mechanisms are involved in the pathophysiology of PKU, primarily characterized by impaired dopamine and serotonin synthesis. These deficits are related to executive dysfunctions and social-emotional problems, respectively, in early treated patients. Blood phenylalanine is the main biomarker for treatment compliance follow-up, but further investigations and validation of peripheral biomarkers may be performed to monitor NT status. The development of new therapies is needed not only for decreasing blood and brain phenylalanine levels but also to improve NT syntheses.
Collapse
|
19
|
Mechanisms of comorbidity, continuity, and discontinuity in anxiety-related disorders. Dev Psychopathol 2016; 28:1053-1069. [DOI: 10.1017/s0954579416000699] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractWe discuss comorbidity, continuity, and discontinuity of anxiety-related disorders from the perspective of a two-dimensional neuropsychology of fear (threat avoidance) and anxiety (threat approach). Pharmacological dissection of the “neurotic” disorders justifies both a categorical division between fear and anxiety and a subdivision of each mapped to a hierarchy of neural modules that process different immediacies of threat. It is critical that each module can generate normal responses, symptoms of another syndrome, or syndromal responses. We discuss the resultant possibilities for comorbid dysfunction of these modules both with each other and with some disorders not usually classified as anxiety related. The simplest case is symptomatic fear/anxiety comorbidity, where dysfunction in one module results in excess activity in a second, otherwise normal, module to generate symptoms and apparent comorbidity. More complex is syndromal fear/anxiety comorbidity, where more than one module is concurrently dysfunctional. Yet more complex are syndromal comorbidities of anxiety that go beyond the two dimensional fear/anxiety systems: depression, substance use disorder, and attention-deficit/hyperactivity disorder. Our account of attention-deficit/hyperactivity disorder–anxiety comorbidity entails discussion of the neuropsychology of externalizing disorders to account for the lack of anxiety comorbidity in some of these. Finally, we link the neuropsychology of disorder to personality variation, and to the development of a biomarker of variation in the anxiety system among individuals that, if extreme, may provide a means of unambiguously identifying the first of a range of anxiety syndromes.
Collapse
|
20
|
Burton B, Grant M, Feigenbaum A, Singh R, Hendren R, Siriwardena K, Phillips J, Sanchez-Valle A, Waisbren S, Gillis J, Prasad S, Merilainen M, Lang W, Zhang C, Yu S, Stahl S. A randomized, placebo-controlled, double-blind study of sapropterin to treat ADHD symptoms and executive function impairment in children and adults with sapropterin-responsive phenylketonuria. Mol Genet Metab 2015; 114:415-24. [PMID: 25533024 DOI: 10.1016/j.ymgme.2014.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 11/23/2022]
Abstract
Symptoms of attention deficit-hyperactivity disorder (ADHD), particularly inattention, and impairments in executive functioning have been reported in early and continuously treated children, adolescents, and adults with phenylketonuria (PKU). In addition, higher blood phenylalanine (Phe) levels have been correlated with the presence of ADHD symptoms and executive functioning impairment. The placebo-controlled PKU ASCEND study evaluated the effects of sapropterin therapy on PKU-associated symptoms of ADHD and executive and global functioning in individuals who had a therapeutic blood Phe response to sapropterin therapy. The presence of ADHD inattentive symptoms and executive functioning deficits was confirmed in this large cohort of 206 children and adults with PKU, of whom 118 responded to sapropterin therapy. In the 38 individuals with sapropterin-responsive PKU and ADHD symptoms at baseline, sapropterin therapy resulted in a significant improvement in ADHD inattentive symptoms in the first 4 weeks of treatment, and improvements were maintained throughout the 26 weeks of treatment. Sapropterin was well-tolerated with a favorable safety profile. The improvements in ADHD inattentive symptoms and aspects of executive functioning in response to sapropterin therapy noted in a large cohort of individuals with PKU indicate that these symptoms are potentially reversible when blood Phe levels are reduced.
Collapse
Affiliation(s)
- B Burton
- The Ann and Robert H. Lurie Children's Hospital and the Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - M Grant
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - A Feigenbaum
- The Hospital for Sick Children and University of Toronto, ON, Canada
| | - R Singh
- Emory University School of Medicine, Decatur, GA, USA
| | - R Hendren
- University of California, San Francisco, San Francisco, CA, USA
| | - K Siriwardena
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - J Phillips
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - A Sanchez-Valle
- University of South Florida and Tampa General Hospital, Tampa, FL, USA
| | - S Waisbren
- Boston Children's Hospital, Boston, MA, USA
| | - J Gillis
- IWK Health Centre Maritime Medical Genetics Services, Halifax, NS, Canada
| | - S Prasad
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | | | - W Lang
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - C Zhang
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - S Yu
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - S Stahl
- University of California, San Diego School of Medicine, San Diego, CA, USA
| |
Collapse
|
21
|
Sawin EA, Murali SG, Ney DM. Differential effects of low-phenylalanine protein sources on brain neurotransmitters and behavior in C57Bl/6-Pah(enu2) mice. Mol Genet Metab 2014; 111:452-61. [PMID: 24560888 PMCID: PMC3995025 DOI: 10.1016/j.ymgme.2014.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 01/30/2014] [Indexed: 11/24/2022]
Abstract
Phenylketonuria (PKU) is an inborn error of metabolism caused by a deficiency of the enzyme phenylalanine hydroxylase, which metabolizes phenylalanine (phe) to tyrosine. A low-phe diet plus amino acid (AA) formula is necessary to prevent cognitive impairment; glycomacropeptide (GMP) contains minimal phe and provides a palatable alternative to the AA formula. Our objective was to assess neurotransmitter concentrations in the brain and the behavioral phenotype of PKU mice (Pah(enu2) on the C57Bl/6 background) and how this is affected by low-phe protein sources. Wild type (WT) and PKU mice, both male and female, were fed high-phe casein, low-phe AA, or low-phe GMP diets between 3 and 18 weeks of age. Behavioral phenotype was assessed using the open field and marble burying tests, and brain neurotransmitter concentrations were measured using HPLC with electrochemical detection system. Data were analyzed by 3-way ANOVA with genotype, sex, and diet as the main treatment effects. Brain mass and the concentrations of catecholamines and serotonin were reduced in PKU mice compared to WT mice; the low-phe AA and GMP diets improved these parameters in PKU mice. Relative brain mass was increased in female PKU mice fed the GMP diet compared to the AA diet. PKU mice exhibited hyperactivity and impaired vertical exploration compared to their WT littermates during the open field test. Regardless of genotype or diet, female mice demonstrated increased vertical activity time and increased total ambulatory and horizontal activity counts compared with male mice. PKU mice fed the high-phe casein diet buried significantly fewer marbles than WT control mice fed casein; this was normalized in PKU mice fed the low-phe AA and GMP diets. In summary, C57Bl/6-Pah(enu2) mice showed an impaired behavioral phenotype and reduced brain neurotransmitter concentrations that were improved by the low-phe AA or GMP diets. These data support lifelong adherence to a low-phe diet for PKU.
Collapse
Affiliation(s)
- Emily A Sawin
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706, USA.
| | - Sangita G Murali
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706, USA.
| | - Denise M Ney
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706, USA.
| |
Collapse
|