1
|
Andrade MT, Barbosa NHS, Souza-Junior RCS, Fonseca CG, Damasceno WC, Regina-Oliveira K, Drummond LR, Bittencourt MA, Kunstetter AC, Andrade PVR, Hudson ASR, Prímola-Gomes TN, Teixeira-Coelho F, Coimbra CC, Pires W, Wanner SP. Aerobic performance in rats subjected to incremental-speed running exercise: A multiple regression analysis study emphasizing thermoregulation-related variables. J Therm Biol 2024; 126:104016. [PMID: 39653632 DOI: 10.1016/j.jtherbio.2024.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024]
Abstract
Single-variable analyses have limited ability to explain complex phenomena such as the regulation of prolonged physical (aerobic) performance. Our study aimed to identify predictors of performance in rats subjected to incremental-speed running exercise. Notably, most variables assessed were associated with rats' thermoregulation. We extracted data from 355 records obtained in 216 adult Wistar rats. Hierarchical multiple linear regression analyses were conducted to identify the predictive power of eight variables. The distance traveled, a performance index, was the dependent variable. The independent variables included body mass, biological sex, body core temperature (TCORE) measurement site, and the following thermoregulation-related variables: ambient temperature (TAMB), initial TCORE, exercise-induced change in TCORE (ΔTCORE), ΔTCORE from 0 to 10 min (ΔTCORE 0-10; when TCORE increase is fastest), and heat loss index (HLI). This analysis with eight variables revealed an adjusted R2 of 0.495; TAMB, ΔTCORE, body mass, and ΔTCORE 0-10 had the highest predictive powers (β values: -0.700, 0.463, -0.353, and -0.130, respectively). Additional analyses consisted of separate regressions for each TCORE index measured: abdominal (TABD), brain (TBRAIN), and colonic (TCOL) temperature. These analyses yielded adjusted R2 values of 0.608 (TABD), 0.550 (TBRAIN), and 0.437 (TCOL). Again, the distance traveled was primarily predicted by body mass and thermoregulation-related variables (TAMB, ΔTCORE, and ΔTCORE 0-10). Among these four variables, ΔTCORE was the only one with a positive β value (directly predicted performance), while the others had negative values. Collectively, these findings advance our understanding of performance regulation in rats, especially regarding the role of thermoregulation-related variables.
Collapse
Affiliation(s)
- Marcelo T Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Psychology Program, Faculdade de Minas (FAMINAS), Belo Horizonte, MG, Brazil
| | - Nicolas H S Barbosa
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberto C S Souza-Junior
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cletiana G Fonseca
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - William C Damasceno
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Kássya Regina-Oliveira
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas R Drummond
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Physical Education, Universidade do Estado de Minas Gerais, Unidade Divinópolis, Divinópolis, MG, Brazil
| | - Myla A Bittencourt
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana C Kunstetter
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro V R Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre S R Hudson
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thales N Prímola-Gomes
- Exercise Biology Laboratory, Department of Physical Education, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Francisco Teixeira-Coelho
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Sport Sciences, Institute of Health Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Cândido C Coimbra
- Laboratory of Endocrinology and Metabolism, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Washington Pires
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Physical Activity Laboratory, School of Physical Education, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Samuel P Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Belviranlı M, Okudan N, Sezer T. Exercise Training Alleviates Symptoms and Cognitive Decline in a Reserpine-induced Fibromyalgia Model by Activating Hippocampal PGC-1α/FNDC5/BDNF Pathway. Neuroscience 2024; 549:145-155. [PMID: 38759912 DOI: 10.1016/j.neuroscience.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
The purpose of this study was to assess, from a behavioral, biochemical, and molecular standpoint, how exercise training affected fibromyalgia (FM) symptoms in a reserpine-induced FM model and to look into the potential involvement of the hippocampal PGC-1α/FNDC5/BDNF pathway in this process. Reserpine (1 mg kg-1) was subcutaneously injected once daily for three consecutive days and then the rats were exercised for 21 days. Mechanical allodynia was evaluated 1, 11, and 21 days after the last injection. At the end of the exercise training protocol forced swim, open field and Morris water maze tests were performed to assess depression, locomotion and cognition, respectively. Additionally, biochemical and molecular markers related to the pathogenesis of the FM and cognitive functions were measured. Reserpine exposure was associated with a decrease in locomotion, an increase in depression, an increase in mechanical allodynia, and a decrease in spatial learning and memory (p < 0.05). These behavioral abnormalities were found to be correlated with elevated blood cytokine levels, reduced serotonin levels in the prefrontal cortex, and altered PGC-1α/FNDC5/BDNF pathway in the hippocampus (p < 0.05). Interestingly, exercise training attenuated all the neuropathological changes mentioned above (p < 0.05). These results imply that exercise training restored behavioral, biochemical, and molecular changes against reserpine-induced FM-like symptoms in rats, hence mitigating the behavioral abnormalities linked to pain, depression, and cognitive functioning.
Collapse
Affiliation(s)
- Muaz Belviranlı
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey.
| | - Nilsel Okudan
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey
| | - Tuğba Sezer
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey
| |
Collapse
|
3
|
Zhang Y, Bai Z, Zhang Z, Yuan P, Xu Y, Wang Z, Sutton D, Ren J, Delahunt E, Wang D. Effect of moxibustion on knee joint stiffness characteristics in recreational athletes pre- and post-fatigue. Asia Pac J Sports Med Arthrosc Rehabil Technol 2023; 34:20-27. [PMID: 37800098 PMCID: PMC10550517 DOI: 10.1016/j.asmart.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/27/2023] [Accepted: 08/14/2023] [Indexed: 10/07/2023] Open
Abstract
Objective Joint stiffness results from the coupling of the nervous system and joint mechanics, and thus stiffness is a comprehensive representation of joint stability. It has been reported that moxibustion can alleviate general weakness and fatigue symptoms and subsequently may influence joint stiffness. This study investigated whether moxibustion could enhance knee joint stiffness in recreational athletes pre- and post-fatigue. Methods Eighteen participants were randomized into intervention (5 males: 20.6 ± 1.5 yr; 4 females: 20.8 ± 1.5 yr) and control groups (5 males: 19.4 ± 0.9 yr; 4 females: 20.5 ± 0.6 yr). The intervention group received indirect moxibustion applied to acupoints ST36 (bilateral) and CV4 for 30 min every other day for 4 consecutive weeks. The control group maintained regular exercise without moxibustion. Peak torque (PT) of right knee extensor, relaxed and contracted muscle stiffness (MS) of vastus lateralis, and knee extensor musculoarticular stiffness (MAS) was assessed with an isokinetic dynamometer (IsoMed 2000), myometer, and free oscillation technique, respectively. Measurements were taken at three time points: pre-intervention, post-intervention/pre-fatigue, and post-fatigue. Results MAS (P = 0.006) and PT (P = 0.007) in the intervention group increased more from pre-to post-intervention compared with the control group. Post-fatigue MAS (P = 0.016) and PT (P = 0.031) increased more in the intervention group than in the control group. Conclusion Moxibustion enhanced PT and knee MAS, suggesting that this intervention could be used in injury prevention and benefit fatigue resistance in young recreational athletes.
Collapse
Affiliation(s)
- Yufeng Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Zirong Bai
- College of Acumox and Tuina, Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Zhiye Zhang
- College of Acumox and Tuina, Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Peng Yuan
- School of Elite Sport, Shanghai University of Sport, Shanghai, 200438, China
| | - Yilin Xu
- Sports Biomechanics Laboratory, Jiangsu Research Institute of Sports Science, Nanjing, 320113, China
| | - Zun Wang
- College of Acumox and Tuina, Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - David Sutton
- Shanghai Elite Sport Training Center, Shanghai, 202150, China
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Eamonn Delahunt
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, D04 V1W8, Ireland
- Institute for Sport and Health, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Dan Wang
- School of Elite Sport, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
4
|
Domingues TE, Diniz E Magalhães CO, Szawka RE, Reis AM, Henriques PC, da Costa Silva KS, Costa SP, Silva SB, Ferreira da Fonseca S, Rodrigues CM, Dias Peixoto MF, Coimbra CC, Mendonça VA, Scheidet PHF, Sampaio KH, Lacerda ACR. Prior aerobic physical training modulates neuropeptide expression and central thermoregulation after ovariectomy in the rat. Mol Cell Endocrinol 2022; 558:111756. [PMID: 36084853 DOI: 10.1016/j.mce.2022.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022]
Abstract
This study compared the effects of aerobic physical training and estradiol (E2) replacement on central pathways involved with thermoregulation in ovariectomized rats. Rats were assigned to untrained ovariectomized treated with placebo (UN-OVX), untrained ovariectomized treated with E2 (E2-OVX), and trained ovariectomized (TR-OVX) groups. Tail skin temperature (TST), internal temperature (Tint), and basal oxygen consumption (VO2) were recorded. Neuronal activity, brain expression of Kiss1, NKB and Prodyn, and central norepinephrine (NE) levels were measured. UN-OVX had the highest TST. Compared to UN-OVX rats, TR-OVX and E2-OVX had lower Fos expression in the paraventricular and arcuate (ARC) nuclei, and lower double labeling for Tyrosine Hydroxylase and Fos in the brainstem. Compared to UN-OVX, only TR-OVX group exhibited lower kisspeptin (Kiss1), neurokinin B (NKB), and prodynorphin expression in the ARC and higher central NE levels. Aerobic physical training before menopause may prevent the heat dissipation imbalance induced by reduction of E2, through central NE release, modulation of Kiss1, NKB and prodynorphin expression in neurons from ARC nucleus.
Collapse
Affiliation(s)
- Talita Emanuela Domingues
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Caíque Olegário Diniz E Magalhães
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Laboratório Experimental de Treinamento Físico - LETFis - Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Raphael Escorsim Szawka
- Laboratório de Endocrinologia e Metabolismo, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Adelina Martha Reis
- Laboratório de Endocrinologia e Metabolismo, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia Costa Henriques
- Laboratório de Endocrinologia e Metabolismo, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Kaoma Stephani da Costa Silva
- Laboratório de Endocrinologia e Metabolismo, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Sabrina Paula Costa
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Programa de Pós-Grduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Sara Barros Silva
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Programa de Pós-Grduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Sueli Ferreira da Fonseca
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Cíntia Maria Rodrigues
- Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marco Fabrício Dias Peixoto
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Cândido Celso Coimbra
- Laboratório de Endocrinologia e Metabolismo, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Programa de Pós-Grduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Pedro Henrique Figueiredo Scheidet
- Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Programa de Pós-Grduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Kinulpe Honorato Sampaio
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Diamantina, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Laboratório de Fisiologia do Exercício - LAFIEX - CIPq Saúde. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; Programa de Pós-Grduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Andrade MT, Goulart KNO, Barbosa NHS, Soares DD, Andrade AGP, Gonçalves DAP, Mendes TT, Coimbra CC, Wanner SP. Core body temperatures of rats subjected to treadmill exercise to fatigue or exhaustion: The journal Temperature toolbox. Temperature (Austin) 2022; 10:287-312. [PMID: 37554383 PMCID: PMC10405761 DOI: 10.1080/23328940.2022.2115274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022] Open
Abstract
This study systematically reviewed the literature reporting the changes in rats' core body temperature (TCORE) induced by either incremental- or constant-speed running to fatigue or exhaustion. In addition, multiple linear regression analyses were used to determine the factors contributing to the TCORE values attained when exercise was interrupted. Four databases (EMBASE, PubMed, SPORTDiscus, and Web of Science) were searched in October 2021, and this search was updated in August 2022. Seventy-two studies (n = 1,538 rats) were included in the systematic review. These studies described heterogeneous experimental conditions; for example, the ambient temperature ranged from 5 to 40°C. The rats quit exercising with TCORE values varying more than 8°C among studies, with the lowest and highest values corresponding to 34.9°C and 43.4°C, respectively. Multiple linear regression analyses indicated that the ambient temperature (p < 0.001), initial TCORE (p < 0.001), distance traveled (p < 0.001; only incremental exercises), and running speed and duration (p < 0.001; only constant exercises) contributed significantly to explaining the variance in the TCORE at the end of the exercise. In conclusion, rats subjected to treadmill running exhibit heterogeneous TCORE when fatigued or exhausted. Moreover, it is not possible to determine a narrow range of TCORE associated with exercise cessation in hyperthermic rats. Ambient temperature, initial TCORE, and physical performance-related variables are the best predictors of TCORE at fatigue or exhaustion. From a broader perspective, this systematic review provides relevant information for selecting appropriate methods in future studies designed to investigate exercise thermoregulation in rats.
Collapse
Affiliation(s)
- Marcelo T. Andrade
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karine N. O. Goulart
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nicolas H. S. Barbosa
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danusa D. Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André G. P. Andrade
- Biomechanics Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dawit A. P. Gonçalves
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago T. Mendes
- Department of Physical Education, Faculty of Education, Universidade Federal da Bahia, Salvador, Brazil
| | - Cândido C. Coimbra
- Laboratory of Endocrinology and Metabolism, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samuel P. Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Reliability of physical performance and thermoregulatory parameters in rats subjected to incremental treadmill running. J Therm Biol 2022; 108:103270. [DOI: 10.1016/j.jtherbio.2022.103270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/02/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
|
7
|
Franco B, Mota DS, Daubian-Nosé P, Rodrigues NDA, Simino LADP, de Fante T, Bezerra RMN, Manchado Gobatto FDB, Manconi M, Torsoni AS, Esteves AM. Iron deficiency in pregnancy: Influence on sleep, behavior, and molecular markers of adult male offspring. J Neurosci Res 2021; 99:3325-3338. [PMID: 34651324 DOI: 10.1002/jnr.24968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Iron restriction during pregnancy can lead to iron deficiency and changes in the dopaminergic system in the adulthood of offspring, and restless legs syndrome (RLS) is closely related to these changes. Objectives: Analyze whether iron restriction during pregnancy would cause changes in the behavior, sleep, and dopaminergic system of the male offspring. In addition, we aimed to assess whether exercise would be able to modulate these variables. The pregnant rats (Wistar) were divided into four groups with different concentrations of iron in the diet: standard (St), supplementation (Su), restriction since weaning (R1), and restriction only during pregnancy (R2). After birth, the offspring were assigned to their respective groups according to the dams diet (St, Su, R1, and R2) and distributed into sedentary (SD) and exercised (EX) (for 8 weeks of training), reaching eight groups of offspring (O): OSt SD, OSt EX, OSu SD, OSu EX, OR1 SD, OR1 EX, OR2 SD, and OR2 EX. Sleep, behavior, and analysis of key genes of dopaminergic system (D2, DAT) were performed after 8 weeks. The results for trained offspring that the mother received supplementation diet were the most expressive, with increased freezing and the OR1 SD group showed an increase in DAT protein content. These changes may have been due to the association between the dams diet during pregnancy and the practice of exercise by the offspring. The different concentrations of iron during pregnancy caused changes in the offspring, however, they were not associated with fetal programming in the context of RLS.
Collapse
Affiliation(s)
- Beatriz Franco
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Diego Silva Mota
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, Brazil
| | - Paulo Daubian-Nosé
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, Brazil
| | | | | | - Thaís de Fante
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, Brazil
| | | | - Fúlvia de Barros Manchado Gobatto
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Campinas, Brazil.,Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, Brazil
| | - Mauro Manconi
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Lugano, Switzerland
| | | | - Andrea Maculano Esteves
- Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Campinas, Brazil.,Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, Brazil
| |
Collapse
|
8
|
Ferrarini EG, Gonçalves ECD, Ferrareis Menegasso J, Rabelo BD, Felipetti FA, Dutra RC. Exercise Reduces Pain and Deleterious Histological Effects in Fibromyalgia-like Model. Neuroscience 2021; 465:46-59. [PMID: 33945796 DOI: 10.1016/j.neuroscience.2021.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Fibromyalgia (FM) is characterized by chronic pain and associated comorbidities such as fatigue, anxiety, depression, and sleep disorders. There is a large amount of evidence regarding the benefits of physical exercise in controlling chronic pain. However, there is no consensus on which exercise modality is most suitable and the real benefits of this intervention to treat FM symptoms. The present study investigated the analgesic and antidepressant effects and morphophysiological responses induced by different physical exercise (aerobic and strength protocols) during the experimental model of FM. Spontaneous pain, mechanical hyperalgesia, thermal allodynia, depression-related behavior, and locomotor activity were evaluated weekly, as well as the morphological evaluation of the spinal cord and dorsal root ganglion. Aerobic and strength training protocols consistently abolished nociceptive behaviors, reducing spontaneous pain scores, cold allodynia, and frequency of response to mechanical hyperalgesia. The strength exercise modulated the depressive-like behavior. Finally, our data demonstrated that physical exercise performed for two weeks increased the number of glial cells in the dorsal root horn. However, it was not sufficient to control the other deleterious effects of the reserpine model on the spinal cord and the dorsal root. Together, these results demonstrated that different physical exercise modalities, when performed regularly in mice, proved to be effective and safe non-pharmacological alternatives for the treatment of FM. However, some gaps have yet to be studied regarding the neuroadaptive effects of physical exercise.
Collapse
Affiliation(s)
- Eduarda Gomes Ferrarini
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Elaine Cristina Dalazen Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Jaíne Ferrareis Menegasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil
| | - Bruna Daniel Rabelo
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil
| | - Francielly Andressa Felipetti
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Science, Campus Florianópolis, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil.
| |
Collapse
|
9
|
Ramis MR, Sarubbo F, Moranta D, Tejada S, Lladó J, Miralles A, Esteban S. Neurochemical and Cognitive Beneficial Effects of Moderate Physical Activity and Catechin in Aged Rats. Antioxidants (Basel) 2021; 10:antiox10040621. [PMID: 33921628 PMCID: PMC8072822 DOI: 10.3390/antiox10040621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
A healthy aging process is a requirement for good life quality. A relationship between physical activity, the consumption of antioxidants and brain health has been stablished via the activation of pathways that reduce the harmful effects of oxidative stress, by inducing enzymes such as SIRT1, which is a protector of brain function. We analyzed the cognitive and neurochemical effects of applying physical exercise in elderly rats, alone or in combination with the antioxidant catechin. Several tests of spatial and episodic memory and motor coordination were evaluated. In addition, brain monoaminergic neurotransmitters and SIRT1 protein levels were assessed in the brains of the same rats. The results show that physical activity by itself improved age-related memory and learning deficits, correlating with the restoration of brain monoaminergic neurotransmitters and SIRT1 protein levels in the hippocampus. The administration of the antioxidant catechin along with the exercise program enhanced further the monoaminergic pathways, but not the other parameters studied. These results agree with previous reports revealing a neuroprotective effect of physical activity, probably based on its ability to improve the redox status of the brain, demonstrating that exercise at an advanced age, combined with the consumption of antioxidants, could produce favorable effects in terms of brain health.
Collapse
Affiliation(s)
- Margarita R. Ramis
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
| | - Fiorella Sarubbo
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Research Unit, University Hospital Son Llàtzer, Crta. Manacor Km 4, 07198 Palma, Spain
| | - David Moranta
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- CIBERON (Physiopathology of Obesity and Nutrition), 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Jerònia Lladó
- Department of Biology and University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, 07122 Palma, Spain;
| | - Antoni Miralles
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Susana Esteban
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Correspondence: ; Tel.: +34-971-173-145
| |
Collapse
|
10
|
Toval A, Garrigos D, Kutsenko Y, Popović M, Do-Couto BR, Morales-Delgado N, Tseng KY, Ferran JL. Dopaminergic Modulation of Forced Running Performance in Adolescent Rats: Role of Striatal D1 and Extra-striatal D2 Dopamine Receptors. Mol Neurobiol 2021; 58:1782-1791. [PMID: 33394335 PMCID: PMC7932989 DOI: 10.1007/s12035-020-02252-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
Improving exercise capacity during adolescence impacts positively on cognitive and motor functions. However, the neural mechanisms contributing to enhance physical performance during this sensitive period remain poorly understood. Such knowledge could help to optimize exercise programs and promote a healthy physical and cognitive development in youth athletes. The central dopamine system is of great interest because of its role in regulating motor behavior through the activation of D1 and D2 receptors. Thus, the aim of the present study is to determine whether D1 or D2 receptor signaling contributes to modulate the exercise capacity during adolescence and if this modulation takes place through the striatum. To test this, we used a rodent model of forced running wheel that we implemented recently to assess the exercise capacity. Briefly, rats were exposed to an 8-day period of habituation in the running wheel before assessing their locomotor performance in response to an incremental exercise test, in which the speed was gradually increased until exhaustion. We found that systemic administration of D1-like (SCH23390) and/or D2-like (raclopride) receptor antagonists prior to the incremental test reduced the duration of forced running in a dose-dependent manner. Similarly, locomotor activity in the open field was decreased by the dopamine antagonists. Interestingly, this was not the case following intrastriatal infusion of an effective dose of SCH23390, which decreased motor performance during the incremental test without disrupting the behavioral response in the open field. Surprisingly, intrastriatal delivery of raclopride failed to impact the duration of forced running. Altogether, these results indicate that the level of locomotor response to incremental loads of forced running in adolescent rats is dopamine dependent and mechanistically linked to the activation of striatal D1 and extra-striatal D2 receptors.
Collapse
Affiliation(s)
- Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miroljub Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do-Couto
- Department of Human Anatomy and Psychobiology, Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Nicanor Morales-Delgado
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Department of Histology and Anatomy, Faculty of Medicine, University Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.
- Institute of Biomedical Research of Murcia - IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.
| |
Collapse
|
11
|
Kitazawa H, Hasegawa K, Aruga D, Tanaka M. Potential Genetic Contributions of the Central Nervous System to a Predisposition to Elite Athletic Traits: State-of-the-Art and Future Perspectives. Genes (Basel) 2021; 12:genes12030371. [PMID: 33807752 PMCID: PMC8000928 DOI: 10.3390/genes12030371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Recent remarkable advances in genetic technologies have allowed for the identification of genetic factors potentially related to a predisposition to elite athletic performance. Most of these genetic variants seem to be implicated in musculoskeletal and cardiopulmonary functions. Conversely, it remains unclear whether functions of the central nervous system (CNS) genetically contribute to elite athletic traits, although the CNS plays critical roles in exercise performance. Accumulating evidence has highlighted the emerging implications of CNS-related genes in the modulation of brain activities, including mental performance and motor-related traits, thereby potentially contributing to high levels of exercise performance. In this review, recent advances are summarized, and future research directions are discussed in regard to CNS-related genes with potential roles in a predisposition to elite athletic traits.
Collapse
Affiliation(s)
- Hiroya Kitazawa
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko-machi, Minamitsuru-gun, Yamanashi 401-0380, Japan; (H.K.); (D.A.)
| | - Kazuya Hasegawa
- Faculty of Nutritional Sciences, Morioka University, 808 Sunakomi, Takizawa City, Iwate 020-0694, Japan;
| | - Daichi Aruga
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko-machi, Minamitsuru-gun, Yamanashi 401-0380, Japan; (H.K.); (D.A.)
| | - Masashi Tanaka
- Department of Physical Therapy, Health Science University, 7187 Kodachi, Fujikawaguchiko-machi, Minamitsuru-gun, Yamanashi 401-0380, Japan; (H.K.); (D.A.)
- Correspondence: ; Tel.: +81-555-83-5200
| |
Collapse
|
12
|
Ribeiro Hudson AS, Nascimento Soares AD, Coelho Horta NA, Fuscaldi LL, Machado-Moreira CA, Soares DD, Coimbra CC, de Oliveira Poletini M, Cardoso VN, Wanner SP. The magnitude of physical exercise-induced hyperthermia is associated with changes in the intestinal permeability and expression of tight junction genes in rats. J Therm Biol 2020; 91:102610. [PMID: 32716860 DOI: 10.1016/j.jtherbio.2020.102610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/01/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
We investigated whether the magnitude of exercise-induced hyperthermia influences intestinal permeability and tight junction gene expression. Twenty-nine male Wistar rats were divided into four groups: rest at 24 °C and exercise at 13 °C, 24 °C or 31 °C. The exercise consisted of a 90-min treadmill run at 15 m/min, and different ambient temperatures were used to produce distinct levels of exercise-induced hyperthermia. Before the experimental trials, the rats were treated by gavage with diethylenetriaminepentaacetic acid labeled with technetium-99 metastable as a radioactive probe. The rats' core body temperature (TCORE) was measured by telemetry. Immediately after the trials, the rats were euthanized, and the intestinal permeability was assessed by measuring the radioactivity of blood samples. The mRNA levels of occludin and zonula occludens-1 (ZO-1) genes were determined in duodenum samples. Exercise at 24 °C increased TCORE to values close to 39 °C, without changing permeability compared with the resting trial at the same environment. Meanwhile, rats' TCORE exceeded 40 °C during exercise at 31 °C, leading to greater permeability relative to those observed after exercise in the other ambient temperatures (e.g., 0.0037%/g at 31 °C vs. 0.0005%/g at 13 °C; data expressed as medians; p < 0.05). Likewise, the rats exercised at 31 °C exhibited higher mRNA levels of ZO-1 and occludin genes than the rats exercised at 24 °C or 13 °C. The changes in permeability and gene expression were positively and significantly associated with the magnitude of hyperthermia. We conclude that marked hyperthermia caused by exercise in the warmer environment increases intestinal permeability and mRNA levels of tight junction genes.
Collapse
Affiliation(s)
- Alexandre Sérvulo Ribeiro Hudson
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anne Danieli Nascimento Soares
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nayara Abreu Coelho Horta
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo Lima Fuscaldi
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Christiano Antônio Machado-Moreira
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danusa Dias Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cândido Celso Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maristela de Oliveira Poletini
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Pitzer EM, Sugimoto C, Gudelsky GA, Huff Adams CL, Williams MT, Vorhees CV. Deltamethrin Exposure Daily From Postnatal Day 3-20 in Sprague-Dawley Rats Causes Long-term Cognitive and Behavioral Deficits. Toxicol Sci 2019; 169:511-523. [PMID: 30850843 PMCID: PMC6542333 DOI: 10.1093/toxsci/kfz067] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pyrethroids are synthetic insecticides that act acutely on voltage gated sodium channels to prolong channel opening and depolarization. Epidemiological studies find that exposure to pyrethroids are associated with neurological and developmental abnormalities in children. The long-term effects of type II pyrethroids, such as deltamethrin (DLM), on development have received little attention. We exposed Sprague-Dawley rats to DLM by gavage at doses of 0, 0.25, 0.5, and 1.0 mg/kg/day from postnatal day (P) 3-20 in a split-litter design. Following behavioral testing as adults, monoamine levels, release, and mRNA were assessed via high performance liquid chromatography, microdialysis, and qPCR, respectively. Long-term potentiation (LTP) was assessed at P25-35. Developmental DLM exposure resulted in deficits in allocentric and egocentric learning and memory, increased startle reactivity, reduced conditioned contextual freezing, and attenuated MK-801 induced hyperactivity compared with controls. Startle and egocentric learning were preferentially affected in males. Deltamethrin-treated rats exhibited increased CA1 hippocampal LTP, decreased extracellular dopamine release by microdialysis, reduced dopamine D1 receptor mRNA expression in neostriatum, and decreased norepinephrine levels in the hippocampus. The data indicate that neonatal DLM exposure has adverse long-term effects on learning, memory, startle, glutamatergic function, LTP, and norepinephrine.
Collapse
Affiliation(s)
- Emily M Pitzer
- *Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
- Division of Neurology (MLC 7044), Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229
| | - Chiho Sugimoto
- *Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
- Division of Neurology (MLC 7044), Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229
| | - Gary A Gudelsky
- College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267
| | | | - Michael T Williams
- *Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
- Division of Neurology (MLC 7044), Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229
| | - Charles V Vorhees
- *Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
- Division of Neurology (MLC 7044), Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229
| |
Collapse
|
14
|
Rabelo PCR, Cordeiro LMS, Aquino NSS, Fonseca BBB, Coimbra CC, Wanner SP, Szawka RE, Soares DD. Rats with higher intrinsic exercise capacities exhibit greater preoptic dopamine levels and greater mechanical and thermoregulatory efficiencies while running. J Appl Physiol (1985) 2019; 126:393-402. [DOI: 10.1152/japplphysiol.00092.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated whether intrinsic exercise capacity affects the changes in thermoregulation, metabolism and central dopamine (DA) induced by treadmill running. Male Wistar rats were subjected to three incremental exercises and ranked as low-performance (LP), standard-performance (SP), and high-performance (HP) rats. In the first experiment, abdominal (TABD) and tail (TTAIL) temperatures were registered in these rats during submaximal exercise (SE) at 60% of maximal speed. Immediately after SE, rats were decapitated and concentrations of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were determined in the preoptic area (POA). In the second experiment, oxygen consumption was measured and mechanical efficiency (ME) was calculated in these rats during an incremental exercise. HP rats ran for longer periods and were fatigued with higher TABD values, with no difference in TTAIL. Nevertheless, thermoregulatory efficiency was higher in HP rats, compared with other groups. DA and DOPAC concentrations in the POA were increased by SE, with higher levels in HP compared with LP and SP rats. V̇o2 also differed between groups, with HP rats displaying a lower consumption throughout the incremental exercise but a higher V̇o2 at fatigue. ME, in turn, was consistently higher in HP than in LP and SP rats. Thus, our results show that HP rats have greater TABD values at fatigue, which seem to be related to a higher dopaminergic activity in the POA. Moreover, HP rats exhibited a greater thermoregulatory efficiency during exercise, which can be attributed to a lower V̇o2, but not to changes in tail heat loss mechanisms. NEW & NOTEWORTHY Our findings reveal that rats with higher intrinsic exercise capacities have greater thermoregulatory efficiencies and increased dopaminergic activity in the preoptic area, a key brain area in thermoregulatory control, while exercising. Moreover, higher intrinsic exercise capacities are associated with decreased oxygen consumption for a given exercise intensity, which indicates greater mechanical efficiencies. Collectively, these findings help to advance our knowledge of why some rats of a given strain can exercise for longer periods than others.
Collapse
Affiliation(s)
- Patrícia C. R. Rabelo
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia M. S. Cordeiro
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Imunometabolismo, Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nayara S. S. Aquino
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno B. B. Fonseca
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cândido C. Coimbra
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel P. Wanner
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raphael E. Szawka
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danusa D. Soares
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
15
|
Bailey RA, Gutierrez A, Kyser TL, Hemmerle AM, Hufgard JR, Seroogy KB, Vorhees CV, Williams MT. Effects of Preweaning Manganese in Combination with Adult Striatal Dopamine Lesions on Monoamines, BDNF, TrkB, and Cognitive Function in Sprague-Dawley Rats. Neurotox Res 2019; 35:606-620. [PMID: 30612279 DOI: 10.1007/s12640-018-9992-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/19/2018] [Accepted: 12/18/2018] [Indexed: 01/25/2023]
Abstract
Manganese (Mn) is an essential nutrient especially during development, but Mn overexposure (MnOE) produces long-term cognitive deficits. Evidence of long-term changes in dopamine in the neostriatum was found in rats from developmental MnOE previously. To examine the relationship between MnOE and dopamine, we tested whether the effects of developmental MnOE would be exaggerated by dopamine reductions induced by 6-hydroxydopamine (6-OHDA) neostriatal infusion when the rats were adults. The experiment consisted of four groups of females and males: Vehicle/Sham, MnOE/Sham, Vehicle/6-OHDA, and MnOE/6-OHDA. Both MnOE/Sham and Vehicle/6-OHDA groups displayed egocentric and allocentric memory deficits, whereas MnOE+6-OHDA had additive effects on spatial memory in the Morris water maze and egocentric learning in the Cincinnati water maze. 6-OHDA reduced dopamine in the neostriatum and nucleus accumbens, reduced norepinephrine in the hippocampus, reduced TH+ cells and TrkB and TH expression in the substantia nigra pars compacta (SNpc), but increased TrkB in the neostriatum. MnOE alone had no effect on monoamines or TrkB in the neostriatum or hippocampus but reduced BDNF in the hippocampus. A number of sex differences were noted; however, only a few significant interactions were found for MnOE and/or 6-OHDA exposure. These data further implicate dopamine and BDNF in the cognitive deficits arising from developmental MnOE.
Collapse
Affiliation(s)
- Rebecca A Bailey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Arnold Gutierrez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Tara L Kyser
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ann M Hemmerle
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jillian R Hufgard
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Kim B Seroogy
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
16
|
Franco B, Daubian-Nosé P, De-Mello MT, Esteves AM. Exercise as a favorable non-pharmacologic treatment to Sleep-Related Movement Disorders: a review. ACTA ACUST UNITED AC 2019; 12:116-121. [PMID: 31879545 PMCID: PMC6922544 DOI: 10.5935/1984-0063.20190064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Non-pharmacologic treatments of Sleep-Related Movement Disorders (SRMD) are already well described in the literature. The physical activity has been presented as a factor to improve quality of life and in several aspects related to sleep disorders. Thus, the purpose of this review was to analyze the benefits of physical exercise and your indication to improve to SRMD. In the research, 19 studies were found that evaluate the efficacy of physical exercise on SRMD in both human and animal models. The results demonstrate that both acute and chronic physical exercises are effective in reducing symptoms of SRMD. However, most studies were performed with aerobic exercise. Three studies evaluated the efficacy of combined exercise, and no studies have investigated the relationship of resistance exercise. Regarding the mechanisms involved, a study discusses the relationship between the release of beta-endorphin and the exercise practice, and two studies with animal models show the changes of the dopaminergic system after physical exercise. From this evidences, we suggested that physical exercise is a favorable non-pharmacological treatment for SRMD. However, more studies should be available for a better understanding of the molecular mechanisms involved, as well of the type, duration and better time of the day to practice.
Collapse
Affiliation(s)
- Beatriz Franco
- Universidade Estadual de Campinas, Faculdade de Educação Física - Campinas - São Paulo - Brazil
| | - Paulo Daubian-Nosé
- Universidade Estadual de Campinas, Faculdade de Ciências Aplicadas - Limeira - São Paulo - Brazil
| | - Marco Túlio De-Mello
- Universidade Federal de Minas Gerais, Professor Associado II do Departamento de Esportes, da Escola de Educação Física, Fisioterapia e Terapia Ocupacional - Belo Horizonte - Minas Gerais - Brazil
| | - Andrea Maculano Esteves
- Universidade Estadual de Campinas, Faculdade de Ciências Aplicadas - Limeira - São Paulo - Brazil
| |
Collapse
|
17
|
Pietrelli A, Matković L, Vacotto M, Lopez-Costa JJ, Basso N, Brusco A. Aerobic exercise upregulates the BDNF-Serotonin systems and improves the cognitive function in rats. Neurobiol Learn Mem 2018; 155:528-542. [PMID: 29800645 DOI: 10.1016/j.nlm.2018.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 01/10/2023]
Abstract
Aerobic exercise (AE) benefits brain health and behavior. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are known to mediate and shape cognitive processes. Both systems share some actions: BDNF is involved in the maturation and function of 5-HT neurons. In turn, 5-HT is involved in neuroplasticity phenomena mediated by BDNF and stimulated by exercise. The aim of this work was to study the long-term effects of AE on BDNF- 5-HT systems and cognitive function in rats at different ages. A lifelong moderate-intensity aerobic training program was designed, in which aerobically exercised (E) and sedentary control (C) rats were studied at middle (8 months) and old age (18 months) by means of biochemical, immunohistochemical and behavioral assays. The levels and expression of BDNF, 5-HT, serotonin transporter (SERT) and 5-HT1A receptor were determined in selected brain areas involved in memory and learning. Immunopositive cells to neuronal nuclear protein (NeuN) in the hippocampus CA1 area were also quantified. The cognitive function was evaluated by the object recognition test (ORT). Results indicate that AE enhanced spatial and non-spatial memory systems, modulated by age. This outcome temporarily correlated with a significant upregulation of cortical, hippocampal and striatal BDNF levels in parallel with an increase in the number of hippocampal CA1-mature neurons. AE also increased brain and raphe 5-HT levels, as well as the expression of SERT and 5-HT1A receptor in the cortex and hippocampus. Old AE rats showed a highly conserved response, indicating a remarkable protective effect of exercise on both systems. In summary, lifelong AE positively affects BDNF-5-HT systems, improves cognitive function and protects the brain against the deleterious effects of sedentary life and aging.
Collapse
Affiliation(s)
- A Pietrelli
- Universidad de Ciencias Empresariales y Sociales (UCES), Departamento de Investigación en Ciencia Básica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia (IBCN), Buenos Aires, Argentina.
| | - L Matković
- Universidad de Ciencias Empresariales y Sociales (UCES), Departamento de Investigación en Ciencia Básica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina
| | - M Vacotto
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia (IBCN), Buenos Aires, Argentina
| | - J J Lopez-Costa
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Buenos Aires, Argentina
| | - N Basso
- CONICET-Universidad de Buenos Aires, Instituto de Fisiopatología Cardiovascular (INFICA), Buenos Aires, Argentina
| | - A Brusco
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia (IBCN), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Buenos Aires, Argentina
| |
Collapse
|
18
|
Moraes MM, Rabelo PCR, Pinto VA, Pires W, Wanner SP, Szawka RE, Soares DD. Auditory stimulation by exposure to melodic music increases dopamine and serotonin activities in rat forebrain areas linked to reward and motor control. Neurosci Lett 2018; 673:73-78. [PMID: 29499311 DOI: 10.1016/j.neulet.2018.02.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/12/2023]
Abstract
Listening to melodic music is regarded as a non-pharmacological intervention that ameliorates various disease symptoms, likely by changing the activity of brain monoaminergic systems. Here, we investigated the effects of exposure to melodic music on the concentrations of dopamine (DA), serotonin (5-HT) and their respective metabolites in the caudate-putamen (CPu) and nucleus accumbens (NAcc), areas linked to reward and motor control. Male adult Wistar rats were randomly assigned to a control group or a group exposed to music. The music group was submitted to 8 music sessions [Mozart's sonata for two pianos (K. 488) at an average sound pressure of 65 dB]. The control rats were handled in the same way but were not exposed to music. Immediately after the last exposure or control session, the rats were euthanized, and their brains were quickly removed to analyze the concentrations of 5-HT, DA, 5-hydroxyindoleacetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the CPu and NAcc. Auditory stimuli affected the monoaminergic system in these two brain structures. In the CPu, auditory stimuli increased the concentrations of DA and 5-HIAA but did not change the DOPAC or 5-HT levels. In the NAcc, music markedly increased the DOPAC/DA ratio, suggesting an increase in DA turnover. Our data indicate that auditory stimuli, such as exposure to melodic music, increase DA levels and the release of 5-HT in the CPu as well as DA turnover in the NAcc, suggesting that the music had a direct impact on monoamine activity in these brain areas.
Collapse
Affiliation(s)
- Michele M Moraes
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Patrícia C R Rabelo
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valéria A Pinto
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Washington Pires
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Physical Education, Institute of Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | - Samuel P Wanner
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danusa D Soares
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
19
|
Cordeiro LMS, Rabelo PCR, Moraes MM, Teixeira-Coelho F, Coimbra CC, Wanner SP, Soares DD. Physical exercise-induced fatigue: the role of serotonergic and dopaminergic systems. ACTA ACUST UNITED AC 2017; 50:e6432. [PMID: 29069229 PMCID: PMC5649871 DOI: 10.1590/1414-431x20176432] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022]
Abstract
Brain serotonin and dopamine are neurotransmitters related to fatigue, a feeling that leads to reduced intensity or interruption of physical exercises, thereby regulating performance. The present review aims to present advances on the understanding of fatigue, which has recently been proposed as a defense mechanism instead of a “physiological failure” in the context of prolonged (aerobic) exercises. We also present recent advances on the association between serotonin, dopamine and fatigue. Experiments with rodents, which allow direct manipulation of brain serotonin and dopamine during exercise, clearly indicate that increased serotoninergic activity reduces performance, while increased dopaminergic activity is associated with increased performance. Nevertheless, experiments with humans, particularly those involving nutritional supplementation or pharmacological manipulations, have yielded conflicting results on the relationship between serotonin, dopamine and fatigue. The only clear and reproducible effect observed in humans is increased performance in hot environments after treatment with inhibitors of dopamine reuptake. Because the serotonergic and dopaminergic systems interact with each other, the serotonin-to-dopamine ratio seems to be more relevant for determining fatigue than analyzing or manipulating only one of the two transmitters. Finally, physical training protocols induce neuroplasticity, thus modulating the action of these neurotransmitters in order to improve physical performance.
Collapse
Affiliation(s)
- L M S Cordeiro
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - P C R Rabelo
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - M M Moraes
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - F Teixeira-Coelho
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.,Centro de Formação de Professores, Universidade Federal do Recôncavo da Bahia, Amargosa, BA, Brasil
| | - C C Coimbra
- Laboratório de Endocrinologia e Metabolismo, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - S P Wanner
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - D D Soares
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
20
|
Rabelo PCR, Horta NAC, Cordeiro LMS, Poletini MO, Coimbra CC, Szawka RE, Soares DD. Intrinsic exercise capacity in rats influences dopamine neuroplasticity induced by physical training. J Appl Physiol (1985) 2017; 123:1721-1729. [PMID: 28883047 DOI: 10.1152/japplphysiol.00506.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The study evaluates whether the intrinsic capacity for physical exercise influences dopamine neuroplasticity induced by physical training. Male rats were submitted to three progressive tests until fatigue. Based on the maximal time of exercise (TE), rats were considered as low performance (LP), standard performance (SP) or high performance (HP) to exercise. Eight animals from each group (LP, SP, and HP) were randomly subdivided in sedentary (SED) or trained (TR). Physical training was performed for 6 wk. After that, concentrations of dopamine (DA), serotonin (5-HT), and their metabolites and mRNA levels of D1 receptor ( Drd1), D2 receptor ( Drd2), dopamine transporter ( Dat), tyrosine hydroxylase ( Th), glia cell line neurotrophic factor ( Gdnf), and brain-derived neurotrophic factor ( Bdnf) were determined in the caudate-putamen (CPu). TE was increased with training in all performance groups. However, the relative increase was markedly higher in LP rats, and this was associated with a training-induced increase in dopaminergic activity in the CPu, which was determined by the 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratio. An opposite monoamine response was found in HP-TR rats, in which physical training decreased the DOPAC/DA ratio in the CPu. Moreover, LP-SED rats displayed higher levels of Drd2 in the CPu compared with the other SED groups, and this higher expression was decreased by physical training. Physical training also decreased Dat and increased Gdnf in the CPu of LP rats. Physical training decreased Bdnf in the CPu only in HP rats. Thus, we provide evidence that the intrinsic capacity to exercise affects the neuroplasticity of the dopaminergic system in response to physical training. NEW & NOTEWORTHY The findings reported reveal that dopaminergic neuroplasticity in caudate-putamen induced by physical training is influenced by the intrinsic capacity to exercise in rats. To evaluate the dopaminergic neuroplasticity, we analyzed mRNA levels of D1 receptor, D2 receptor, dopamine transporter, tyrosine hydroxylase, glia cell line neurotrophic factor, and brain-derived neurotrophic factor as well as concentrations of dopamine, serotonin, and their metabolites. These results expand our knowledge about the interrelationship between genetic background, physical training, and dopaminergic neuroplasticity.
Collapse
Affiliation(s)
- Patrícia C R Rabelo
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Nayara A C Horta
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Letícia M S Cordeiro
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil.,Laboratório de Imunometabolismo, Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Maristela O Poletini
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Cândido C Coimbra
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Danusa D Soares
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| |
Collapse
|
21
|
Teixeira-Coelho F, Fonseca CG, Barbosa NHS, Vaz FF, Cordeiro LMDS, Coimbra CC, Pires W, Soares DD, Wanner SP. Effects of manipulating the duration and intensity of aerobic training sessions on the physical performance of rats. PLoS One 2017; 12:e0183763. [PMID: 28841706 PMCID: PMC5571967 DOI: 10.1371/journal.pone.0183763] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/10/2017] [Indexed: 11/18/2022] Open
Abstract
This study investigated the effects of manipulating the load components of aerobic training sessions on the physical performance of rats. To achieve this purpose, adult male Wistar rats were divided into four groups: an untrained control (CON) group and training groups with a predominant overload in intensity (INT) or duration (DUR) or alternating and similar overloads in intensity and duration (ID). Prior to, during, and after 8 weeks of the control or training protocols, the performance of the rats (evaluated by their workload) was determined during fatiguing, incremental-speed treadmill running. Two additional incremental running tests were performed prior to and at the end of the protocols to measure the peak rate of oxygen consumption (VO2peak). As expected, the rats in the trained groups exhibited increased performance, whereas the untrained rats showed stable performance throughout the 8 weeks. Notably, the performance gain exhibited by the DUR rats reached a plateau after the 4th week. This plateau was not present in the INT or ID rats, which exhibited increased performance at the end of training protocol compared with the DUR rats. None of the training protocols changed the VO2peak values; however, these values were attained at faster speeds, which indicated increased running economy. In conclusion, our findings demonstrate that the training protocols improved the physical performance of rats, likely resulting from enhanced running economy. Furthermore, compared with overload in duration, overload in the intensity of training sessions was more effective at inducing performance improvements across the 8 weeks of the study.
Collapse
Affiliation(s)
- Francisco Teixeira-Coelho
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
- Teacher Formation Center; Universidade Federal do Recôncavo da Bahia, Amargosa (BA), Brazil
| | - Cletiana Gonçalves Fonseca
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Nicolas Henrique Santos Barbosa
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Filipe Ferreira Vaz
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Letícia Maria de Souza Cordeiro
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Cândido Celso Coimbra
- Laboratory of Endocrinology and Metabolism, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Washington Pires
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
- Department of Physical Education, Institute of Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares (MG), Brazil
| | - Danusa Dias Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| | - Samuel Penna Wanner
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| |
Collapse
|
22
|
Effects of Moderate Exercise on Cortical Resilience: A Transcranial Magnetic Stimulation Study Targeting the Dorsolateral Prefrontal Cortex. Psychosom Med 2017; 79:143-152. [PMID: 27359179 DOI: 10.1097/psy.0000000000000361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The beneficial effects of exercise on the brain regions that support cognitive control and memory are well documented. However, examination of the capacity of acute exercise to promote cortical resilience-the ability to recover from temporary pertubation-has been largely unexplored. The present study sought to determine whether single session of moderate-intensity aerobic exercise can accelerate recovery of inhibitory control centers in the dorsolateral prefrontal cortex after transient perturbation via continuous theta burst stimulation (cTBS). METHODS In a within-participants experimental design, 28 female participants aged 18 to 26 years (mean [standard deviation] = 20.32 [1.79] years) completed a session each of moderate-intensity and very light-intensity exercise, in a randomized order. Before each exercise session, participants received active cTBS to the left dorsolateral prefrontal cortex. A Stroop task was used to quantify both the initial perturbation and subsequent recovery effects on inhibitory control. RESULTS Results revealed a significant exercise condition (moderate-intensity exercise, very light-intensity exercise) by time (prestimulation, poststimulation, postexercise) interaction (F(2,52) = 5.93, p = .005, d = 0.38). Specifically, the proportion of the cTBS-induced decrement in inhibition restored at 40 minutes postexercise was significantly higher after a bout of moderate-intensity exercise (101.26%) compared with very light-intensity exercise (18.36%; t(27) = -2.17, p = .039, d = -.57, 95% confidence interval = -161.40 to -4.40). CONCLUSION These findings support the hypothesis that exercise promotes cortical resilience, specifically in relation to the brain regions that support inhibitory control. The resilience-promoting effects of exercise have empirical and theoretical implications for how we conceptualize the neuroprotective effects of exercise.
Collapse
|
23
|
Reduced Vesicular Acetylcholine Transporter favors antidepressant behaviors and modulates serotonin and dopamine in female mouse brain. Behav Brain Res 2017; 330:127-132. [DOI: 10.1016/j.bbr.2017.04.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/07/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022]
|
24
|
Aquino NSS, Araujo-Lopes R, Henriques PC, Lopes FEF, Gusmao DO, Coimbra CC, Franci CR, Reis AM, Szawka RE. α-Estrogen and Progesterone Receptors Modulate Kisspeptin Effects on Prolactin: Role in Estradiol-Induced Prolactin Surge in Female Rats. Endocrinology 2017; 158:1812-1826. [PMID: 28387824 DOI: 10.1210/en.2016-1855] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/31/2017] [Indexed: 11/19/2022]
Abstract
Kisspeptin (Kp) regulates prolactin (PRL) in an estradiol-dependent manner. We investigated the interaction between ovarian steroid receptors and Kp in the control of PRL secretion. Intracerebroventricular injections of Kp-10 or Kp-234 were performed in ovariectomized (OVX) rats under different hormonal treatments. Kp-10 increased PRL release and decreased 3,4-dihydroxyphenylacetic acid levels in the median eminence (ME) of OVX rats treated with estradiol (OVX+E), which was prevented by tamoxifen. Whereas these effects of Kp-10 were absent in OVX rats, they were replicated in OVX rats treated with selective agonist of estrogen receptor (ER)α, propylpyrazole triol, but not of ERβ, diarylpropionitrile. Furthermore, the Kp-10-induced increase in PRL was two times higher in OVX+E rats also treated with progesterone (OVX+EP), which was associated with a reduced expression of both tyrosine hydroxylase (TH) and Ser40-phosphorylated TH in the ME. Kp-10 also reduced dopamine levels in the ME of OVX+EP rats, an effect blocked by the progesterone receptor (PR) antagonist RU486. We also determined the effect of Kp antagonism with Kp-234 on the estradiol-induced surges of PRL and luteinizing hormone (LH), using tail-tip blood sampling combined with ultrasensitive enzyme-linked immunosorbent assay. Kp-234 impaired the early phase of the PRL surge and prevented the LH surge in OVX+E rats. Thus, we provide evidence that Kp stimulation of PRL release requires ERα and is potentiated by progesterone via PR activation. Moreover, alongside its essential role in the LH surge, Kp seems to play a role in the peak phase of the estradiol-induced PRL surge.
Collapse
Affiliation(s)
- Nayara S S Aquino
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Roberta Araujo-Lopes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Patricia C Henriques
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Felipe E F Lopes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Daniela O Gusmao
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Candido C Coimbra
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Celso R Franci
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Adelina M Reis
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
25
|
Hudson ASR, Kunstetter AC, Damasceno WC, Wanner SP. Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses. ACTA ACUST UNITED AC 2016; 49:e5183. [PMID: 27191606 PMCID: PMC4869825 DOI: 10.1590/1414-431x20165183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/24/2016] [Indexed: 12/11/2022]
Abstract
Physical exercise triggers coordinated physiological responses to meet the augmented
metabolic demand of contracting muscles. To provide adequate responses, the brain
must receive sensory information about the physiological status of peripheral tissues
and organs, such as changes in osmolality, temperature and pH. Most of the receptors
involved in these afferent pathways express ion channels, including transient
receptor potential (TRP) channels, which are usually activated by more than one type
of stimulus and are therefore considered polymodal receptors. Among these TRP
channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or
capsaicin receptor) has well-documented functions in the modulation of pain sensation
and thermoregulatory responses. However, the TRPV1 channel is also expressed in
non-neural tissues, suggesting that this channel may perform a broad range of
functions. In this review, we first present a brief overview of the available tools
for studying the physiological roles of the TRPV1 channel. Then, we present the
relationship between the TRPV1 channel and spontaneous locomotor activity, physical
performance, and modulation of several physiological responses, including water and
electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular,
gastrointestinal, and inflammatory responses. Altogether, the data presented herein
indicate that the TPRV1 channel modulates many physiological functions other than
nociception and thermoregulation. In addition, these data open new possibilities for
investigating the role of this channel in the acute effects induced by a single bout
of physical exercise and in the chronic effects induced by physical training.
Collapse
Affiliation(s)
- A S R Hudson
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - A C Kunstetter
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - W C Damasceno
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - S P Wanner
- Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Laboratório de Fisiologia do Exercício, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
26
|
Zhu M, Zhu H, Tan N, Wang H, Chu H, Zhang C. Central anti-fatigue activity of verbascoside. Neurosci Lett 2016; 616:75-9. [DOI: 10.1016/j.neulet.2016.01.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 10/22/2022]
|
27
|
|