1
|
Hoffe B, Mazurkiewicz A, Thomson H, Banton R, Piehler T, Petel OE, Holahan MR. Relating strain fields with microtubule changes in porcine cortical sulci following drop impact. J Biomech 2021; 128:110708. [PMID: 34492445 DOI: 10.1016/j.jbiomech.2021.110708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
The biomechanical response of brain tissue to strain and the immediate neural outcomes are of fundamental importance in understanding mild traumatic brain injury (mTBI). The sensitivity of neural tissue to dynamic strain events and the resulting strain-induced changes are considered to be a primary factor in injury. Rodent models have been used extensively to investigate impact-induced injury. However, the lissencephalic structure is inconsistent with the human brain, which is gyrencephalic (convoluted structure), and differs considerably in strain field localization effects. Porcine brains have a similar structure to the human brain, containing a similar ratio of white-grey matter and gyrification in the cortex. In this study, coronal brain slabs were extracted from female pig brains within 2hrs of sacrifice. Slabs were implanted with neutral density radiopaque markers, sealed inside an elastomeric encasement, and dropped from 0.9 m onto a steel anvil. Particle tracking revealed elevated tensile strains in the sulcus. One hour after impact, decreased microtubule associated protein 2 (MAP2) was found exclusively within the sulcus with no increase in cell death. These results suggest that elevated tensile strain in the sulcus may result in compromised cytoskeleton, possibly indicating a vulnerability to pathological outcomes under the right circumstances. The results demonstrated that the observed changes were unrelated to shear strain loading of the tissues but were more sensitive to tensile load.
Collapse
Affiliation(s)
- Brendan Hoffe
- Departement of Neuroscience, Carleton University, Ottawa Ontario K1S 5B6, Canada.
| | - Ashley Mazurkiewicz
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Hannah Thomson
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Rohan Banton
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, United States
| | - Thuvan Piehler
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, United States
| | - Oren E Petel
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Matthew R Holahan
- Departement of Neuroscience, Carleton University, Ottawa Ontario K1S 5B6, Canada
| |
Collapse
|
2
|
Cerniello FM, Silva MG, Carretero OA, Gironacci MM. Mas receptor is translocated to the nucleus upon agonist stimulation in brainstem neurons from spontaneously hypertensive rats but not normotensive rats. Cardiovasc Res 2021; 116:1995-2008. [PMID: 31825460 DOI: 10.1093/cvr/cvz332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/31/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
AIMS Activation of the angiotensin (Ang)-(1-7)/Mas receptor (R) axis protects from sympathetic overactivity. Endocytic trafficking is an essential process that regulates receptor (R) function and its ultimate cellular responses. We investigated whether the blunted responses to Ang-(1-7) in hypertensive rats are associated to an alteration in MasR trafficking. METHODS AND RESULTS Brainstem neurons from Wistar-Kyoto (WKY) or spontaneously hypertensive rats (SHRs) were investigated for (i) Ang-(1-7) levels and binding and MasR expression, (ii) Ang-(1-7) responses (arachidonic acid and nitric oxide release and Akt and ERK1/2 phosphorylation), and (iii) MasR trafficking. Ang-(1-7) was determined by radioimmunoassay. MasR expression and functionality were evaluated by western blot and binding assays. MasR trafficking was evaluated by immunofluorescence. Ang-(1-7) treatment induced an increase in nitric oxide and arachidonic acid release and ERK1/2 and Akt phosphorylation in WKY neurons but did not have an effect in SHR neurons. Although SHR neurons showed greater MasR expression, Ang-(1-7)-elicited responses were substantially diminished presumably due to decreased Ang-(1-7) endogenous levels concomitant with impaired binding to its receptor. Through immunocolocalization studies, we evidenced that upon Ang-(1-7) stimulation MasRs were internalized through clathrin-coated pits and caveolae into early endosomes and slowly recycled back to the plasma membrane. However, the fraction of internalized MasRs into early endosomes was larger and the fraction of MasRs recycled back to the plasma membrane was smaller in SHR than in WKY neurons. Surprisingly, in SHR neurons but not in WKY neurons, Ang-(1-7) induced MasR translocation to the nucleus. Nuclear MasR expression and Ang-(1-7) levels were significantly greater in the nuclei of Ang-(1-7)-stimulated SHR neurons, indicating that the MasR is translocated with its ligand bound to it. CONCLUSION MasRs display differential trafficking in brainstem neurons from SHRs, which may contribute to the impaired responses to Ang-(1-7).
Collapse
Affiliation(s)
- Flavia M Cerniello
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IQUIFIB (UBA-CONICET), Dpto. Química Biológica, Junín 956, 1113, Buenos Aires, Argentina
| | - Mauro G Silva
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IQUIFIB (UBA-CONICET), Dpto. Química Biológica, Junín 956, 1113, Buenos Aires, Argentina
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, USA
| | - Mariela M Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IQUIFIB (UBA-CONICET), Dpto. Química Biológica, Junín 956, 1113, Buenos Aires, Argentina
| |
Collapse
|
3
|
Qiao X, Sun M, Chen Y, Jin W, Zhao H, Zhang W, Lai J, Yan H. Ethanol-Induced Neuronal and Cognitive/Emotional Impairments are Accompanied by Down-Regulated NT3-TrkC-ERK in Hippocampus. Alcohol Alcohol 2021; 56:220-229. [PMID: 33103180 DOI: 10.1093/alcalc/agaa101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 11/14/2022] Open
Abstract
AIMS Ethanol ingestion affects cognition and emotion, which have been attributed to the dysfunction of specific brain structures. Studies of alcoholic patients and animal models consistently identify reduced hippocampal mass as a key ethanol-induced brain adaptation. This study evaluated how neuroadaptation in the hippocampus (Hip) produced by ethanol contributed to related behavioral deficits in male and female rats. METHODS Effects of acute, short-term and long-term ethanol exposure on the anxiety-like behavior and recognition memory on adult male and female Sprague-Dawley rats were assessed using elevated plus maze test and novel object recognition test, respectively. In addition, in order to investigate the direct effect of ethanol on hippocampal neurons, primary culture of hippocampal neurons was exposed to ethanol (10, 30 and 90 mM; 1, 24 and 48 h), and viability (CCK-8) and morphology (immunocytochemistry) were analyzed at structural levels. Western blot assays were used to assess protein levels of NT3-TrkC-ERK. RESULTS Acute and short-term ethanol exposure exerted anxiolytic effects, whereas long-term ethanol exposure induced anxiogenic responses in both sexes. Short-term ethanol exposure impaired spatial memory only in female rats, whereas long-term ethanol exposure impaired spatial and recognition memory in both sexes. These behavioral impairments and ethanol-induced loss of hippocampal neurons and decreased cell viability were accompanied by downregulated NT3-TrkC-ERK pathway. CONCLUSION These results indicate that NT3-TrkC-ERK signaling in the Hip may play an important role in ethanol-induced structural and behavioral impairments.
Collapse
Affiliation(s)
- Xiaomeng Qiao
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Mizhu Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Yuanyuan Chen
- Department of Forensic Biology, College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Wenyang Jin
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Huan Zhao
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Weiqi Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| | - Jianghua Lai
- Department of Forensic Biology, College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Hongtao Yan
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, No.100, Science Avenue, Zhengzhou, Henan, 450001, China
| |
Collapse
|
4
|
Soriano D, Vacotto M, Brusco A, Caltana L. Neuronal and synaptic morphological alterations in the hippocampus of cannabinoid receptor type 1 knockout mice. J Neurosci Res 2020; 98:2245-2262. [DOI: 10.1002/jnr.24694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/28/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Delia Soriano
- Universidad de Buenos Aires. Facultad de Medicina. 1° Unidad Académica del Departamento de Histología, Embriología, Biología Celular y Genética. Buenos Aires. Argentina. Buenos Aires Argentina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| | - Marina Vacotto
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| | - Alicia Brusco
- Universidad de Buenos Aires. Facultad de Medicina. 1° Unidad Académica del Departamento de Histología, Embriología, Biología Celular y Genética. Buenos Aires. Argentina. Buenos Aires Argentina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| | - Laura Caltana
- Universidad de Buenos Aires. Facultad de Medicina. 1° Unidad Académica del Departamento de Histología, Embriología, Biología Celular y Genética. Buenos Aires. Argentina. Buenos Aires Argentina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis (IBCN) CONICET‐Universidad de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
5
|
Jin W, Sun M, Yuan B, Wang R, Yan H, Qiao X. Neuroprotective Effects of Grape Seed Procyanidins on Ethanol-Induced Injury and Oxidative Stress in Rat Hippocampal Neurons. Alcohol Alcohol 2020; 55:357-366. [DOI: 10.1093/alcalc/agaa031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract
Aims
Ethanol is a small molecule capable of interacting with numerous targets in the brain, the mechanisms of which are complex and still poorly understood. Studies have revealed that ethanol-induced hippocampal neuronal injury is associated with oxidative stress. Grape seed procyanidin (GSP) is a new type of antioxidant that is believed to scavenge free radicals and be anti-inflammatory. This study evaluated the ability and mechanism by which the GSP improves ethanol-induced hippocampal neuronal injury.
Methods
Primary cultures of hippocampal neurons were exposed to ethanol (11, 33 and 66 mM, 1, 4, 8, 12 and 24 h) and the neuroprotective effects of GSP were assessed by evaluating the activity of superoxide dismutase (SOD), the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) and cell morphology.
Results
Our results indicated that GSP prevented ethanol-induced neuronal injury by reducing the levels of MDA and LDH, while increasing the activity of SOD. In addition, GSP increased the number of primary dendrites and total dendritic length per cell.
Conclusion
Together with previous findings, these results lend further support to the significance of developing GSP as a therapeutic tool for use in the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Wenyang Jin
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mizhu Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bingbing Yuan
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Runzhi Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongtao Yan
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Qiao
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Dimitrova-Shumkovska J, Krstanoski L, Veenman L. Diagnostic and Therapeutic Potential of TSPO Studies Regarding Neurodegenerative Diseases, Psychiatric Disorders, Alcohol Use Disorders, Traumatic Brain Injury, and Stroke: An Update. Cells 2020; 9:cells9040870. [PMID: 32252470 PMCID: PMC7226777 DOI: 10.3390/cells9040870] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation and cell death are among the common symptoms of many central nervous system diseases and injuries. Neuroinflammation and programmed cell death of the various cell types in the brain appear to be part of these disorders, and characteristic for each cell type, including neurons and glia cells. Concerning the effects of 18-kDa translocator protein (TSPO) on glial activation, as well as being associated with neuronal cell death, as a response mechanism to oxidative stress, the changes of its expression assayed with the aid of TSPO-specific positron emission tomography (PET) tracers' uptake could also offer evidence for following the pathogenesis of these disorders. This could potentially increase the number of diagnostic tests to accurately establish the stadium and development of the disease in question. Nonetheless, the differences in results regarding TSPO PET signals of first and second generations of tracers measured in patients with neurological disorders versus healthy controls indicate that we still have to understand more regarding TSPO characteristics. Expanding on investigations regarding the neuroprotective and healing effects of TSPO ligands could also contribute to a better understanding of the therapeutic potential of TSPO activity for brain damage due to brain injury and disease. Studies so far have directed attention to the effects on neurons and glia, and processes, such as death, inflammation, and regeneration. It is definitely worthwhile to drive such studies forward. From recent research it also appears that TSPO ligands, such as PK11195, Etifoxine, Emapunil, and 2-Cl-MGV-1, demonstrate the potential of targeting TSPO for treatments of brain diseases and disorders.
Collapse
Affiliation(s)
- Jasmina Dimitrova-Shumkovska
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 3, P.O. Box 162, 1000 Skopje, Republic of North Macedonia;
- Correspondence: (J.D.-S.); (L.V.)
| | - Ljupcho Krstanoski
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 3, P.O. Box 162, 1000 Skopje, Republic of North Macedonia;
| | - Leo Veenman
- Technion-Israel Institute of Technology, Faculty of Medicine, Rappaport Institute of Medical Research, 1 Efron Street, P.O. Box 9697, Haifa 31096, Israel
- Correspondence: (J.D.-S.); (L.V.)
| |
Collapse
|
7
|
Physical Exercise Attenuates Oxidative Stress and Morphofunctional Cerebellar Damages Induced by the Ethanol Binge Drinking Paradigm from Adolescence to Adulthood in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6802424. [PMID: 30911348 PMCID: PMC6398010 DOI: 10.1155/2019/6802424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
Ethanol (EtOH) binge drinking is characterized by high EtOH intake during few hours followed by withdrawal. Protection strategies against the damages generated by this binge are poorly explored. Thus, this study is aimed at investigating the protective role of treadmill physical exercise (PE) on the damage caused after repeated cycles of binge-like EtOH exposure in the oxidative biochemistry, morphology, and cerebellar function of rats from adolescence to adulthood. For this, animals were divided into four groups: control group (sedentary animals with doses of distilled water), exercised group (exercised animals with doses of distilled water), EtOH group (sedentary animals with doses of 3 g/kg/day of EtOH, 20% w/v), and exercised+EtOH group (exercised animals with previous mentioned doses of EtOH). The PE occurred on a running treadmill for 5 days a week for 4 weeks, and all doses of EtOH were administered through intragastric gavage in four repeated cycles of EtOH in a binge-like manner. After the EtOH protocol and PE, animals were submitted to open field and beam walking tests. In sequence, the cerebellums were collected for the biochemical and morphological analyses. Biochemical changes were analyzed by measurement of Trolox equivalent antioxidant capacity (TEAC), reduced glutathione content measurements (GSH), and measurement of nitrite and lipid peroxidation (LPO). In morphological analyses, Purkinje cell density evaluation and immunohistochemistry evaluation were measured by antimyelin basic protein (MBP) and antisynaptophysin (SYP). The present findings demonstrate that the binge drinking protocol induced oxidative biochemistry misbalance, from the decrease of TEAC levels and higher LPO related to tissue damage and motor impairment. In addition, we have shown for the first time that treadmill physical exercise reduced tissue and functional alterations displayed by EtOH exposure.
Collapse
|
8
|
Wang D, Enck J, Howell BW, Olson EC. Ethanol Exposure Transiently Elevates but Persistently Inhibits Tyrosine Kinase Activity and Impairs the Growth of the Nascent Apical Dendrite. Mol Neurobiol 2019; 56:5749-5762. [PMID: 30674037 DOI: 10.1007/s12035-019-1473-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022]
Abstract
Dendritogenesis can be impaired by exposure to alcohol, and aspects of this impairment share phenotypic similarities to dendritic defects observed after blockade of the Reelin-Dab1 tyrosine kinase signaling pathway. In this study, we find that 10 min of alcohol exposure (400 mg/dL ethanol) by itself causes an unexpected increase in tyrosine phosphorylation of many proteins including Src and Dab1 that are essential downstream effectors of Reelin signaling. This increase in phosphotyrosine is dose-dependent and blockable by selective inhibitors of Src Family Kinases (SFKs). However, the response is transient, and phosphotyrosine levels return to baseline after 30 min of continuous ethanol exposure, both in vitro and in vivo. During this latter period, Src is inactivated and Reelin application cannot stimulate Dab1 phosphorylation. This suggests that ethanol initially activates but then silences the Reelin-Dab1 signaling pathway by brief activation and then sustained inactivation of SFKs. Time-lapse analyses of dendritic growth dynamics show an overall decrease in growth and branching compared to controls after ethanol-exposure that is similar to that observed with Reelin-deficiency. However, unlike Reelin-signaling disruptions, the dendritic filopodial speeds are decreased after ethanol exposure, and this decrease is associated with sustained dephosphorylation and activation of cofilin, an F-actin severing protein. These findings suggest that persistent Src inactivation coupled to cofilin activation may contribute to the dendritic disruptions observed with fetal alcohol exposure.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Ave, Syracuse, NY, 13210, USA.,Developmental Exposure to Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, 13902, USA
| | - Joshua Enck
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Ave, Syracuse, NY, 13210, USA.,Developmental Exposure to Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, 13902, USA
| | - Brian W Howell
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Ave, Syracuse, NY, 13210, USA
| | - Eric C Olson
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Ave, Syracuse, NY, 13210, USA. .,Developmental Exposure to Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
9
|
Spataru A, Le Duc D, Zagrean L, Zagrean AM. Ethanol exposed maturing rat cerebellar granule cells show impaired energy metabolism and increased cell death after oxygen-glucose deprivation. Neural Regen Res 2019; 14:485-490. [PMID: 30539817 PMCID: PMC6334607 DOI: 10.4103/1673-5374.245474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alcohol, a widely abused drug, has deleterious effects on the immature nervous system. This study investigates the effect of chronic in vitro ethanol exposure on the metabolism of immature rat cerebellar granular cells (CGCs) and on their response to oxygen-glucose deprivation (OGD). Primary CGC cultures were exposed to ethanol (100 mM in culture medium) or to control ethanol-free medium starting day one in vitro (DIV1). At DIV8, the expression of ATP synthase gene ATP5g3 was quantified using real-time PCR, then cultures were exposed to 3 hours of OGD or normoxic conditions. Subsequently, cellular metabolism was assessed by a resazurin assay and by ATP level measurement. ATP5g3 expression was reduced by 12-fold (P = 0.03) and resazurin metabolism and ATP level were decreased to 74.4 ± 4.6% and 55.5 ± 6.9%, respectively after chronic ethanol treatment compared to control values (P < 0.01). Additionally, after OGD exposure of ethanol-treated cultures, resazurin metabolism and ATP level were decreased to 12.7 ± 1.0% and 9.0 ± 2.0% from control values (P < 0.01). These results suggest that chronic ethanol exposure reduces the cellular ATP level, possibly through a gene expression down-regulation mechanism, and increases the vulnerability to oxygen-glucose deprivation. Thus, interventions which improve metabolic function and sustain ATP-levels could attenuate ethanol-induced neuronal dysfunction and should be addressed in future studies.
Collapse
Affiliation(s)
- Ana Spataru
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; King's College Hospital, London, UK
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
10
|
Getachew B, Hudson T, Heinbockel T, Csoka AB, Tizabi Y. Protective Effects of Donepezil Against Alcohol-Induced Toxicity in Cell Culture: Role of Caspase-3. Neurotox Res 2018; 34:757-762. [PMID: 29804239 DOI: 10.1007/s12640-018-9913-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/29/2018] [Accepted: 05/17/2018] [Indexed: 01/12/2023]
Abstract
Ethanol (EtOH) is one of the most frequently abused drugs with heavy health, economic, and societal burdens. Although moderate to low EtOH may have some neuroprotective effects, heavy EtOH consumption associated with high blood alcohol level (BAL) can be quite detrimental. The brain is particularly vulnerable to the damaging effects of high BAL, leading to neuronal loss, cognitive, and behavioral deficits. Although the exact causes of these detriments are not fully elucidated, it is believed that damage to the cholinergic system is at least partially responsible for the cognitive impairment. Thus, high BAL may result in selective apoptotic damage to the cholinergic neurons. Donepezil (DON), a centrally acting, reversible and non-competitive acetylcholinesterase (AChE) inhibitor, approved for use in Alzheimer's disease (AD), may also attenuate EtOH-induced cognitive impairment. Cognitive effects of DON might be due to an anti-apoptotic activity as some AChE inhibitors have been shown to have this property. The aim of this study was to determine whether DON might protect against EtOH-induced toxicity and whether such protection might be apoptotically mediated. We exposed the human neuroblastoma-derived, SH-SY5Y cells to a relatively high concentration of EtOH (500 mM) for 24 h and evaluated the effects of two concentrations of DON (0.1 and 1.0 μM) on alcohol-induced toxicity and caspase-3, an apoptotic marker. We found a dose-dependent protection of DON against EtOH-induced toxicity as well as dose-dependent attenuation of EtOH-induced increases in caspase-3 levels. Thus, DON may inhibit apoptosis as well as alcohol-induced toxicity.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Tamaro Hudson
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC, 20059, USA
| | - Thomas Heinbockel
- Department of Anatomy, Howard University College Medicine, Washington, DC, 20059, USA
| | - Antonei B Csoka
- Department of Anatomy, Howard University College Medicine, Washington, DC, 20059, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College Medicine, 520 W Street NW, Washington, DC, 20059, USA.
| |
Collapse
|
11
|
Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:306-352. [PMID: 29485663 DOI: 10.14573/altex.1712081] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
Abstract
Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (EC JRC), Ispra (VA), Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Crofton
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Rex E FitzGerald
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine & Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuula Heinonen
- Finnish Centre for Alternative Methods (FICAM), University of Tampere, Tampere, Finland
| | | | - Stefanie Klima
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aldert H Piersma
- RIVM, National Institute for Public Health and the Environment, Bilthoven, and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Timothy J Shafer
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | | | - Florianne Monnet-Tschudi
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Tanja Waldmann
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin F Wilks
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Hilda Witters
- VITO, Flemish Institute for Technological Research, Unit Environmental Risk and Health, Mol, Belgium
| | - Marie-Gabrielle Zurich
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Marcel Leist
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany.,In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Tapia-Rojas C, Mira RG, Torres AK, Jara C, Pérez MJ, Vergara EH, Cerpa W, Quintanilla RA. Alcohol consumption during adolescence: A link between mitochondrial damage and ethanol brain intoxication. Birth Defects Res 2017; 109:1623-1639. [DOI: 10.1002/bdr2.1172] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Cheril Tapia-Rojas
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - Rodrigo G. Mira
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago 8331150 Chile
| | - Angie K. Torres
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - Claudia Jara
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - María José Pérez
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - Erick H. Vergara
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| | - Waldo Cerpa
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago 8331150 Chile
| | - Rodrigo A. Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA); Santiago Chile
- Laboratory of Neurodegenerative Diseases; Universidad Autónoma de Chile; Chile
| |
Collapse
|
13
|
Study of acetylcholinesterase activity and apoptosis in SH-SY5Y cells and mice exposed to ethanol. Toxicology 2017; 384:33-39. [PMID: 28427893 DOI: 10.1016/j.tox.2017.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/14/2017] [Accepted: 04/16/2017] [Indexed: 02/06/2023]
Abstract
Ethanol is one of the most commonly abused psychotropic substances with deleterious effects on the central nervous system. Ethanol exposure during development results in the loss of neurons in brain regions and when exposed to ethanol cultured cells undergo apoptosis. To date no information is available on whether abnormally high AChE activity is characteristic of apoptosis in animals exposed to ethanol. The aims of the present study were to determine whether induction of AChE activity is associated with ethanol-induced apoptosis and to explore the mechanism of enhanced AChE activity induced by ethanol. For this purpose, in vitro and in vivo experiments were performed. AChE activity was quantified by spectrophotometry and apoptosis by flow cytometer in SH-SY5Y cells exposed to ethanol. The results showed that cells treated with 500mM ethanol for 24h had a 9-fold increase in apoptotic cells and a 6-fold increase in AChE activity compared with controls. Mice exposed acutely to 200μl of 20% ethanol daily on days 1-4 had elevated AChE activity in plasma on days 3-7. On day 4, plasma AChE activity was 2.4-fold higher than pretreatment activity. More apoptotic cells were found in the brains of treated mice compared to controls. Cells in brain sections that were positive in the TUNEL assay stained for AChE activity. In conclusion, AChE activity and apoptosis were induced in SH-SY5Y cells and mice treated with ethanol, which may indicate that increased AChE may related to apoptosis induced by ethanol. Unusually high AChE activity may be an effect marker of exposure to ethanol. The relationship between AChE and apoptosis might represent a novel mechanism of ethanol-associated neuronal injury.
Collapse
|