1
|
Detka J, Płachtij N, Strzelec M, Manik A, Sałat K. p38α Mitogen-Activated Protein Kinase-An Emerging Drug Target for the Treatment of Alzheimer's Disease. Molecules 2024; 29:4354. [PMID: 39339348 PMCID: PMC11433989 DOI: 10.3390/molecules29184354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by the formation of amyloid β and tau protein aggregates in the brain, neuroinflammation, impaired cholinergic neurotransmission, and oxidative stress, resulting in the gradual loss of neurons and neuronal function, which leads to cognitive and memory deficits in AD patients. Chronic neuroinflammation plays a particularly important role in the progression of AD since the excessive release of proinflammatory cytokines from glial cells (microglia and astrocytes) induces neuronal damage, which subsequently causes microglial activation, thus facilitating further neurodegenerative changes. Mitogen-activated protein kinase (MAPK) p38α is one of the key enzymes involved in the control of innate immune response. The increased activation of the p38α MAPK pathway, observed in AD, has been for a long time associated not only with the maintenance of excessive inflammatory process but is also linked with pathophysiological hallmarks of this disease, and therefore is currently considered an attractive drug target for novel AD therapeutics. This review aims to summarize the current state of knowledge about the involvement of p38α MAPK in different aspects of AD pathophysiology and also provides insight into the possible therapeutic effects of novel p38α MAPK inhibitors, which are currently studied as potential drug candidates for AD treatment.
Collapse
Affiliation(s)
- Jan Detka
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Natalia Płachtij
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Martyna Strzelec
- Department of Transplantation, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, 265 Wielicka St., 30-663 Krakow, Poland;
| | - Aleksandra Manik
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| |
Collapse
|
2
|
Wang G, Tu Y, Hou P, Li P, Liu L. Regulatory role of the p38 MAPK/ATF2 signaling pathway in visual function and visual cortical plasticity in mice with monocular deprivation. Neurosci Lett 2023:137353. [PMID: 37393009 DOI: 10.1016/j.neulet.2023.137353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND This study aimed to examine the role of the p38 mitogen-activated protein kinase (MAPK)/ activating transcription factor 2 (ATF2) signaling in visual function impairment and visual cortical plasticity in mice with monocular deprivation (MD). METHODS Visual behavioral tests, including visual water task, visual cliff test, and flash visual evoked potential, were performed on each group. We studied the density of dendritic spines and the synaptic ultrastructure by Golgi staining and transmission electron microscope. We performed Western blot and immunohistochemistry and detected the expression of ATF2, PSD-95, p38 MAPK, and phosphor-p38 MAPK in the left visual cortex. RESULTS In the MD + SB group, the visual acuity in deprived eyes substantially improved, the impairment of visual depth perception was alleviated, and the P wave amplitude and C/I ratio increased. The density of dendritic spines and the numerical density of synapses increased significantly, the width of the synaptic cleft decreased significantly, and the length of the active synaptic zone and the thickness of post-synaptic density (PSD) increased substantially. The protein expression of phosphor-p38 MAPK decreased, whereas that of PSD-95 and ATF2 increased significantly. CONCLUSIONS Inhibiting the phosphorylation of p38 MAPK and negative feedback upregulated ATF2 expression, alleviated damage to visual function, and protected against synaptic plasticity in mice with MD.
Collapse
Affiliation(s)
- Guiqu Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China; Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, China
| | - Yanqiong Tu
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China
| | - Peixian Hou
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China
| | - Pinxiong Li
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Melchiorri D, Merlo S, Micallef B, Borg JJ, Dráfi F. Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol 2023; 14:1196413. [PMID: 37332353 PMCID: PMC10272781 DOI: 10.3389/fphar.2023.1196413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Despite extensive research, no disease-modifying therapeutic option, able to prevent, cure or halt the progression of Alzheimer's disease [AD], is currently available. AD, a devastating neurodegenerative pathology leading to dementia and death, is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of neurofibrillary tangles (NFTs) consisting of altered hyperphosphorylated tau protein. Both have been widely studied and pharmacologically targeted for many years, without significant therapeutic results. In 2022, positive data on two monoclonal antibodies targeting Aβ, donanemab and lecanemab, followed by the 2023 FDA accelerated approval of lecanemab and the publication of the final results of the phase III Clarity AD study, have strengthened the hypothesis of a causal role of Aβ in the pathogenesis of AD. However, the magnitude of the clinical effect elicited by the two drugs is limited, suggesting that additional pathological mechanisms may contribute to the disease. Cumulative studies have shown inflammation as one of the main contributors to the pathogenesis of AD, leading to the recognition of a specific role of neuroinflammation synergic with the Aβ and NFTs cascades. The present review provides an overview of the investigational drugs targeting neuroinflammation that are currently in clinical trials. Moreover, their mechanisms of action, their positioning in the pathological cascade of events that occur in the brain throughout AD disease and their potential benefit/limitation in the therapeutic strategy in AD are discussed and highlighted as well. In addition, the latest patent requests for inflammation-targeting therapeutics to be developed in AD will also be discussed.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - John-Joseph Borg
- Malta Medicines Authority, San Ġwann, Malta
- School of Pharmacy, Department of Biology, University of Tor Vergata, Rome, Italy
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS Bratislava, Bratislava, Slovakia
- State Institute for Drug Control, Bratislava, Slovakia
| |
Collapse
|
4
|
Activation of α7nAChR by PNU282987 improves cognitive impairment through inhibiting oxidative stress and neuroinflammation in D-galactose induced aging via regulating α7nAChR/Nrf2/HO-1 signaling pathway. Exp Gerontol 2023; 175:112139. [PMID: 36898594 DOI: 10.1016/j.exger.2023.112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Aging is an important risk factor for neurodegenerative diseases. The activation of α7 nicotinic acetylcholine receptor (α7nAChR) is involved in inflammation and cognition, but the specific role it plays in aging remains unknown. This study aimed to investigate the anti-aging effect of the activation of α7nAChR on aging rats and BV2 cells induced by D-galactose, as well as its potential mechanism. D-galactose induced an increase in the SA-β-Gal positive cells, expression of p16 and p21 in vivo and in vitro. α7nAChR selective agonist PNU282987 decreased levels of pro-inflammatory factors, MDA, and Aβ, enhanced SOD activity and levels of anti-inflammatory factor (IL10) in vivo. PNU282987 enhanced the expression of Arg1, decreased the expression of iNOS, IL1β and TNFα in vitro. PNU282987 upregulated the levels of α7nAChR, Nrf2 and HO-1 in vivo and in vitro. The results of Morris water maze and novel object recognition tests showed that PNU282987 improved cognitive impairment in aging rats. Furthermore, α7nAChR selective inhibitor methyllycaconitine (MLA) results were opposite with PNU282987. PNU282987 improves cognitive impairment through inhibiting oxidative stress and neuroinflammation in D-galactose induced aging via regulating the α7nAChR/Nrf2/HO-1 signaling pathway. Therefore, targeting the α7nAChR may be a viable therapeutic approach for anti-inflammaging and neurodegenerative diseases.
Collapse
|
5
|
Zhao J, Yu L, Xue X, Xu Y, Huang T, Xu D, Wang Z, Luo L, Wang H. Diminished α7 nicotinic acetylcholine receptor (α7nAChR) rescues amyloid-β induced atrial remodeling by oxi-CaMKII/MAPK/AP-1 axis-mediated mitochondrial oxidative stress. Redox Biol 2023; 59:102594. [PMID: 36603528 PMCID: PMC9813735 DOI: 10.1016/j.redox.2022.102594] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/15/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The potential coexistence of Alzheimer's disease (AD) and atrial fibrillation (AF) is increasingly common as aging-related diseases. However, little is known about mechanisms responsible for atrial remodeling in AD pathogenesis. α7 nicotinic acetylcholine receptors (α7nAChR) has been shown to have profound effects on mitochondrial oxidative stress in both organ diseases. Here, we investigate the role of α7nAChR in mediating the effects of amyloid-β (Aβ) in cultured mouse atrial cardiomyocytes (HL-1 cells) and AD model mice (APP/PS1). In vitro, apoptosis, oxidative stress and mitochondrial dysfunction induced by Aβ long-term (72h) in HL-1 cells were prevented by α-Bungarotoxin(α-BTX), an antagonist of α7nAChR. This cardioprotective effect was due to reinstating Ca2+ mishandling by decreasing the activation of CaMKII and MAPK signaling pathway, especially the oxidation of CaMKII (oxi-CaMKII). In vivo studies demonstrated that targeting knockdown of α7nAChR in cardiomyocytes could ameliorate AF progression in late-stage (12 months) APP/PS1 mice. Moreover, α7nAChR deficiency in cardiomyocytes attenuated APP/PS1-mutant induced atrial remodeling characterized by reducing fibrosis, atrial dilation, conduction dysfunction, and inflammatory mediator activities via suppressing oxi-CaMKII/MAPK/AP-1. Taken together, our findings suggest that diminished α7nAChR could rescue Aβ-induced atrial remodeling through oxi-CaMKII/MAPK/AP-1-mediated mitochondrial oxidative stress in atrial cells and AD mice.
Collapse
Affiliation(s)
- Jikai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Xiaodong Xue
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Yinli Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Tao Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Dengyue Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China,Postgraduate College, China Medical University, Shenyang, PR China
| | - Zhishang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China
| | - Linyu Luo
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China,Postgraduate College, Dalian Medical University, Dalian, PR China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, PR China.
| |
Collapse
|
6
|
Argueta N, Notari E, Szigeti K. Role of Pharmacogenomics in Individualizing Treatment for Alzheimer's Disease. CNS Drugs 2022; 36:365-376. [PMID: 35352296 DOI: 10.1007/s40263-022-00915-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
The development of Alzheimer's disease therapeutics has been challenging, with 99% of clinical trials failing to find a significant difference between drug and placebo. While the quest continues for more effective treatments, there is emerging evidence that pharmacogenetic considerations are important factors in regard to metabolism, efficacy, and toxicity of drugs. Currently, there are five US Food and Drug Administration-approved drugs for the treatment of Alzheimer's disease; three acetylcholinesterase inhibitors, memantine, and aducanumab. Introducing a limited genetic panel consisting of APOE4, CYP2D6*10, and BChE*K would optimize acetylcholinesterase inhibitor therapy, facilitate immunotherapy risk assessment, and inform an amyloid-related imaging abnormality surveillance schedule. In view of the genetic heterogeneity of Alzheimer's disease identified in genome-wide association studies, pharmacogenetics is expected to play an increasing role in mechanism-specific treatment strategies and personalized medicine.
Collapse
Affiliation(s)
- Natalie Argueta
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Emily Notari
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Kinga Szigeti
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA.
| |
Collapse
|
7
|
Samad N, Rao T, Rehman MHU, Bhatti SA, Imran I. Inhibitory Effects of Selenium on Arsenic-Induced Anxiety-/Depression-Like Behavior and Memory Impairment. Biol Trace Elem Res 2022; 200:689-698. [PMID: 33745108 DOI: 10.1007/s12011-021-02679-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Elevated arsenic (As) contamination in drinking water was detected in many areas of Pakistan. The intoxication of As causes various neurological diseases in humans, which can be inhibited by the administration of potent antioxidants. Trace elements are also found in drinking water such as selenium (Se), which possess antioxidant potential. The main purpose of the current study is to find out the protective effect of Se against As toxicity which can cause anxiety- and depression-like behaviors as well as memory impairment. Thirty-six male rats were divided into six groups: (1) distilled water (dw)+dw, (2) dw+Se (0.175 mg/ml/kg), (3) dw+Se (0.35mg/ml/kg), (4) dw+As (2.5mg/ml/kg), (5) As (2.5mg/ml/kg) + Se (0.175 mg/ml/kg), and (6) As (2.5mg/ml/kg) + Se (0.35 mg/ml/kg). Rats were treated with respective treatment for 4 weeks. Sub-chronic treatment of As reduced time spent in open arm (elevated plus maze), and lightbox (light-dark activity test) and increased immobility time in forced swim test indicate anxiety- and/or depression-like behavior, respectively. Conversely, rats treated with As+Se (at both doses) increased time spent in open arm (elevated plus maze), and lightbox (light-dark activity test) and decreased immobility time in forced swim test indicate the anxiolytic and anti-depressive effect of Se, respectively. Co-administration of Se (0.175 and 0.35) inhibited As instigated reduction of spatial memory performed in Morris water maze. The reversal in the reduced level of malondialdehyde and activity of acetylcholinesterase in the hippocampus by Se was observed in As-treated animals, while the activity of antioxidant enzymes in the hippocampus was increased in As+Se than dw+As-treated animals. Histopathological studies have shown the reversal of hippocampus deterioration by Se in As-treated rats. The results may imply to prevent the intoxication of As instigated impairment in behavioral and biochemical indices by Se supplementation and/or increased safer intake.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Tazeen Rao
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | | | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
8
|
Ma K, Xing S, Luan Y, Zhang C, Liu Y, Fei Y, Zhang Z, Liu Y, Chen X. Glypican 4 Regulates Aβ Internalization in Neural Stem Cells Partly via Low-Density Lipoprotein Receptor-Related Protein 1. Front Cell Neurosci 2021; 15:732429. [PMID: 34552470 PMCID: PMC8450433 DOI: 10.3389/fncel.2021.732429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Neural stem cell (NSC) damage has been reported in patients with Alzheimer’s disease. Intracellular Aβ plays a vital role in NSC damage. Heparan sulfate proteoglycans are potent mediators of Aβ enrichment in the brain. We hypothesized the heparan sulfate proteoglycan glypican 4 (Gpc4) regulates Aβ internalization by NSCs. We evaluated Gpc4 expression in NSCs from P0–P2 generations using immunofluorescence. Adenovirus and lentivirus were used to regulate Gpc4 expression in NSCs and APP/PS1 mice, respectively. Co-immunoprecipitation was used to determine the relationship between Gpc4, Aβ, and low-density lipoprotein receptor-related protein 1 (LRP1). Intracellular Aβ concentrations were detected using enzyme-linked immunosorbent assay and immunofluorescence. The role of Gpc4/LRP1 on toxic/physical Aβ-induced effects was evaluated using the JC-1 kit, terminal deoxynucleotidyl transferase dUPT nick end labeling, and western blotting. Gpc4 was stably expressed in NSCs, neurons, and astrocytes. Gpc4 was upregulated by Aβ in NSCs and regulated Aβ internalization. Gpc4 attenuation reduced Aβ uptake; Gpc4 overexpression increased Aβ uptake. Gpc4 regulated Aβ internalization through LRP1 and contributed to Aβ internalization and toxic/physical concentrations of Aβ-induced mitochondrial membrane potential and cell apoptosis, partly via LRP1. Therefore, Gpc4 is a key regulator of Aβ enrichment in NSCs. Inhibiting Gpc4 rescued the Aβ-induced toxic effect and attenuated the nontoxic Aβ enrichment into intracellular toxic concentrations. Gpc4 contributed to Aβ internalization and toxic/physical concentrations of Aβ-induced mitochondrial membrane potential damage and cell apoptosis, partly via LRP1. These findings suggest a potential role of Gpc4 in treating Alzheimer’s disease at an early stage, by targeting NSCs.
Collapse
Affiliation(s)
- Kaige Ma
- Institute of Neurobiology, Department of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shan Xing
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Yan Luan
- Institute of Neurobiology, Department of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenglin Zhang
- 2018 Grade, Zonglian College, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yingfei Liu
- Institute of Neurobiology, Department of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yulang Fei
- Medical College, Xijing University, Xi'an, China
| | - Zhichao Zhang
- Institute of Neurobiology, Department of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, Department of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, Department of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
9
|
Huang SH, Fang ST, Chen YC. Molecular Mechanism of Vitamin K2 Protection against Amyloid-β-Induced Cytotoxicity. Biomolecules 2021; 11:423. [PMID: 33805625 PMCID: PMC8000266 DOI: 10.3390/biom11030423] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
The pathological role of vitamin K2 in Alzheimer's disease (AD) involves a definite link between impaired cognitive functions and decreased serum vitamin K levels. Vitamin K2 supplementation may have a protective effect on AD. However, the mechanism underlying vitamin K2 protection has not been elucidated. With the amyloid-β (Aβ) cascade hypothesis, we constructed a clone containing the C-terminal fragment of amyloid precursor protein (β-CTF/APP), transfected in astroglioma C6 cells and used this cell model (β-CTF/C6) to study the protective effect of vitamin K2 against Aβ cytotoxicity. Both cellular and biochemical assays, including cell viability and reactive oxygen species (ROS), assays assay, and Western blot and caspase activity analyses, were used to characterize and unveil the protective role and mechanism of vitamin K2 protecting against Aβ-induced cytotoxicity. Vitamin K2 treatment dose-dependently decreased the death of neural cells. The protective effect of vitamin K2 could be abolished by adding warfarin, a vitamin K2 antagonist. The addition of vitamin K2 reduced the ROS formation and inhibited the caspase-3 mediated apoptosis induced by Aβ peptides, indicating that the mechanism underlying the vitamin K2 protection is likely against Aβ-mediated apoptosis. Inhibitor assay and Western blot analyses revealed that the possible mechanism of vitamin K2 protection against Aβ-mediated apoptosis might be via regulating phosphatidylinositol 3-kinase (PI3K) associated-signaling pathway and inhibiting caspase-3-mediated apoptosis. Our study demonstrates that vitamin K2 can protect neural cells against Aβ toxicity.
Collapse
Affiliation(s)
| | | | - Yi-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; (S.-H.H.); (S.-T.F.)
| |
Collapse
|
10
|
Wong KY, Roy J, Fung ML, Heng BC, Zhang C, Lim LW. Relationships between Mitochondrial Dysfunction and Neurotransmission Failure in Alzheimer's Disease. Aging Dis 2020; 11:1291-1316. [PMID: 33014538 PMCID: PMC7505271 DOI: 10.14336/ad.2019.1125] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Besides extracellular deposition of amyloid beta and formation of phosphorylated tau in the brains of patients with Alzheimer's disease (AD), the pathogenesis of AD is also thought to involve mitochondrial dysfunctions and altered neurotransmission systems. However, none of these components can describe the diverse cognitive, behavioural, and psychiatric symptoms of AD without the pathologies interacting with one another. The purpose of this review is to understand the relationships between mitochondrial and neurotransmission dysfunctions in terms of (1) how mitochondrial alterations affect cholinergic and monoaminergic systems via disruption of energy metabolism, oxidative stress, and apoptosis; and (2) how different neurotransmission systems drive mitochondrial dysfunction via increasing amyloid beta internalisation, oxidative stress, disruption of mitochondrial permeabilisation, and mitochondrial trafficking. All these interactions are separately discussed in terms of neurotransmission systems. The association of mitochondrial dysfunctions with alterations in dopamine, norepinephrine, and histamine is the prospective goal in this research field. By unfolding the complex interactions surrounding mitochondrial dysfunction in AD, we can better develop potential treatments to delay, prevent, or cure this devastating disease.
Collapse
Affiliation(s)
- Kan Yin Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, China.
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Semwal BC, Garabadu D. 5-N-ethyl Carboxamidoadenosine Stimulates Adenosine-2b Receptor-Mediated Mitogen-Activated Protein Kinase Pathway to Improve Brain Mitochondrial Function in Amyloid Beta-Induced Cognitive Deficit Mice. Neuromolecular Med 2020; 22:542-556. [PMID: 32926328 DOI: 10.1007/s12017-020-08615-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with loss in memory as one of the cardinal features. 5-N-ethyl carboxamidoadenosine (NECA), an agonist of adenosine-2b receptor, exerts neuroprotective activity against several experimental conditions. Further, NECA activates mitogen-activated protein kinase (MAPK) and also attenuates mitochondrial toxicity in mammalian tissues other than brain. Moreover, there is no report on the role of A2b/MAPK-mediated signaling pathway in Aβ-induced mitochondrial toxicity in the brain of the experimental animals. Therefore, the present study evaluated the neuroprotective activity of NECA with or without MAPK inhibitor against Aβ-induced cognitive deficit and mitochondrial toxicity in the experimental rodents. Further, the effect of NECA with or without MAPK inhibitor was evaluated on Aβ-induced mitochondrial toxicity in the memory-sensitive mice brain regions. Intracerebroventricular (ICV) injection of Aβ 1-42 was injected to healthy male mice through Hamilton syringe via polyethylene tube to induce AD-like behavioral manifestations. NECA attenuated Aβ-induced cognitive impairments in the rodents. In addition, NECA ameliorated Aβ-induced Aβ accumulation and cholinergic dysfunction in the selected memory-sensitive mouse HIP, PFC, and AMY. Further, NECA significantly attenuated Aβ-induced mitochondrial toxicity in terms of decrease in the mitochondrial function, integrity, and bioenergetics in the brain regions of these animals. However, MAPKI diminished the therapeutic effects of NECA on behavioral, biochemical, and molecular observations in AD-like animals. Therefore, it can be speculated that NECA exhibits neuroprotective activity perhaps through MAPK activation in AD-like rodents. Moreover, A2b-mediated MAPK activation could be a promising target in the management of AD.
Collapse
Affiliation(s)
- Bhupesh Chandra Semwal
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India.
| |
Collapse
|
12
|
Szigeti K, Ihnatovych I, Birkaya B, Chen Z, Ouf A, Indurthi DC, Bard JE, Kann J, Adams A, Chaves L, Sule N, Reisch JS, Pavlik V, Benedict RHB, Auerbach A, Wilding G. CHRFAM7A: A human specific fusion gene, accounts for the translational gap for cholinergic strategies in Alzheimer's disease. EBioMedicine 2020; 59:102892. [PMID: 32818803 PMCID: PMC7452451 DOI: 10.1016/j.ebiom.2020.102892] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023] Open
Abstract
Background Cholinergic neuronal loss is one of the hallmarks of AD related neurodegeneration; however, preclinical promise of α7 nAChR drugs failed to translate into humans. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of α7 nAChR and was unaccounted for in preclinical models. Methods Molecular methods: Function of CHRFAM7A alleles was studied in vitro in two disease relevant phenotypic readouts: electrophysiology and Aβ uptake. Genome edited human induced pluripotent stem cells (iPSC) were used as a model system with the human context. Double blind pharmacogenetic study: We performed double-blind pharmacogenetic analysis on the effect of AChEI therapy based on CHRFAM7A carrier status in two paradigms: response to drug initiation and DMT effect. Mini Mental Status Examination (MMSE) was used as outcome measure. Change in MMSE score from baseline was compared by 2-tailed T-test. Longitudinal analysis of clinical outcome (MMSE) was performed using a fitted general linear model, based on an assumed autoregressive covariance structure. Model independent variables included age, sex, and medication regimen at the time of the first utilized outcome measure (AChEI alone or AChEI plus memantine), APOE4 carrier status (0, 1 or 2 alleles as categorical variables) and CHRFAM7A genotype. Findings The direct and inverted alleles have distinct phenotypes. Functional CHRFAM7A allele classifies the population as 25% non-carriers and 75% carriers. Induced pluripotent stem cell (iPSC) models α7 nAChR mediated Aβ neurotoxicity. Pharmacological readout translates into both first exposure (p = 0.037) and disease modifying effect (p = 0.0048) in two double blind pharmacogenetic studies. Interpretation CHRFAM7A accounts for the translational gap in cholinergic strategies in AD. Clinical trials not accounting for this uniquely human genetic factor may have rejected drug candidates that would benefit 25% of AD. Reanalyses of the completed trials using this pharmacogenetic paradigm may identify effective therapy. Funding:
Collapse
Affiliation(s)
- Kinga Szigeti
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA.
| | - Ivanna Ihnatovych
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Barbara Birkaya
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Ziqiang Chen
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Aya Ouf
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Dinesh C Indurthi
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Jonathan E Bard
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Julien Kann
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Alexandrea Adams
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Lee Chaves
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Norbert Sule
- Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY 14203, USA
| | - Joan S Reisch
- UT Southwestern, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Valory Pavlik
- Baylor College of Medicine, 1 Baylor Plz, Houston, TX 77030, USA
| | - Ralph H B Benedict
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Anthony Auerbach
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| | - Gregory Wilding
- State University of New York at Buffalo, 875 Ellicott St., Buffalo, NY, 14203, USA
| |
Collapse
|
13
|
Samad N, Jabeen S, Imran I, Zulfiqar I, Bilal K. Protective effect of gallic acid against arsenic-induced anxiety-/depression- like behaviors and memory impairment in male rats. Metab Brain Dis 2019; 34:1091-1102. [PMID: 31119507 DOI: 10.1007/s11011-019-00432-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
The purpose of the present study is to determine the effects of gallic acid (GA) on sodium arsenite (iAS)-induced behavior deficits and memory alteration in male rats. Thirty six animals were divided in to 6 groups (six animals in each) (i) saline+saline; (ii) saline+GA (50 mg/kg); (iii) saline+ GA (100 mg/kg) (iv) iAS + saline; (v) iAS + GA(50 mg/kg); (vi) iAS + GA (100 mg/kg). Animals were treated with iAS (2.5 mg/kg/ml); GA (50 and 100 mg/kg/ml) and saline (0.9%; 1 ml/kg) for 4 weeks. Repeated administration of iAS increases immobility time in forced swim test and decreases time spent in open arm (elevated plus maze) and light box (light dark activity box test) suggests depression like and anxiety-like symptoms respectively. On the other hand, animals treated with iAS + GA decreases immobility time and increases time spent in open arm and light box than saline+iAS treated animals suggests anxiolytic and antidepressant-like behavior of GA. Repeated administration of iAS also involves in memory impairment as observed in the Morris water maze test that is reversed by co-administration of GA, indicates that GA also involves in the enhancement of memory. Brain malondialdehyde (MDA) levels, antioxidant enzymes and acetylcholinesterase (AChE) activities also observed in the present study. Results show that iAS produces oxidative stress by increasing lipid peroxidation and decreasing antioxidant enzyme activity. Conversely co-administration of GA produces antioxidant effects by normalization of oxidative stress induced by iAS. Alteration in iAS induced AChE activity is also reversed by GA. It is suggested that GA via its antioxidant potential, has protective effects on iAS induced behavioral deficits and memory alteration. The findings have a strong implication on iAS induced neurological diseases, such as depression, anxiety, Alzheimer's disease and dementia etc.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Sadia Jabeen
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Iqra Zulfiqar
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Kainat Bilal
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
14
|
Qiang L, Piermarini E, Baas PW. New hypothesis for the etiology of SPAST-based hereditary spastic paraplegia. Cytoskeleton (Hoboken) 2019; 76:289-297. [PMID: 31108029 DOI: 10.1002/cm.21528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/26/2023]
Abstract
Mutations of the SPAST gene are the chief cause of hereditary spastic paraplegia. Controversy exists in the medical community as to whether the etiology of the disease is haploinsufficiency or toxic gain-of-function properties of the mutant spastin proteins. In recognition of strong reasons that support each possible mechanism, here we present a novel perspective, based in part on new studies with mouse models and in part on the largest study to date on patients with the disease. We posit that haploinsufficiency does not cause the disease but makes the corticospinal tracts vulnerable to a second hit, which is usually the mutant spastin proteins but could also be proteins generated by mutations of other genes that may or may not cause the disease on their own.
Collapse
Affiliation(s)
- Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University, College of Medicine, Philadelphia, Pennsylvania
| | - Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel University, College of Medicine, Philadelphia, Pennsylvania
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University, College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Ma KG, Qian YH. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer's disease. Neuropeptides 2019; 73:96-106. [PMID: 30579679 DOI: 10.1016/j.npep.2018.12.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/26/2018] [Accepted: 12/16/2018] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is one of the major disabling and lethal diseases for aged individuals worldwide. To date, there are more than 10 hypotheses proposed for AD pathology. The beta-amyloid (Aβ) cascade hypothesis is the most widely accepted and proposes that the accumulation of Aβ in the brain is one potential mechanism for AD pathogenesis. Because some Aβ-overloaded patients do not have AD syndrome, this hypothesis is challenged from time to time. More recently, it has been shown that intracellular Aβ plays a key role in AD pathology. Aβ is internalized by receptors distributed on the cell membrane. Among these receptors, the alpha7 nicotinic acetylcholine receptor (α7 nAChR) has been shown to play an important role in AD. The α7 nAChR is a ligand-gated ion channel and is expressed in pivotal brain regions (e.g., the cerebral cortex and hippocampus) responsible for cognitive functions. The α7 nAChR is localized both presynaptically and postsynaptically, where it activates intracellular signaling cascades. Its agonist has been investigated in clinical studies to improve cognitive functions in AD. Although many studies have shown the importance of the α7 nAChR in AD, little is known regarding its role in AD pathology. Therefore, in the current review, we summarized the basic information regarding the structures and functions of the α7 nAChR, the distribution and expression of the α7 nAChR, and the role of the α7 nAChR in mediating Aβ internalization. We subsequently focused on introducing the comprehensive α7 nAChR related signaling pathways and how these signaling pathways are integrated with the α7 nAChR to play a role in AD. Finally, we stressed the AD therapy that targets the α7 nAChR.
Collapse
Affiliation(s)
- Kai-Ge Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, China; Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yi-Hua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, China.
| |
Collapse
|
16
|
Janas T, Sapoń K, Stowell MHB, Janas T. Selection of Membrane RNA Aptamers to Amyloid Beta Peptide: Implications for Exosome-Based Antioxidant Strategies. Int J Mol Sci 2019; 20:ijms20020299. [PMID: 30642129 PMCID: PMC6359565 DOI: 10.3390/ijms20020299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
The distribution of amyloid beta peptide 42 (Aβ42) between model exosomal membranes and a buffer solution was measured. The model membranes contained liquid-ordered regions or phosphatidylserine. Results demonstrated that up to ca. 20% of amyloid peptide, generated in the plasma (or intracellular) membrane as a result of proteolytic cleavage of amyloid precursor proteins by β- and γ-secretases, can stay within the membrane milieu. The selection of RNA aptamers that bind to Aβ42 incorporated into phosphatidylserine-containing liposomal membranes was performed using the selection-amplification (SELEX) method. After eight selection cycles, the pool of RNA aptamers was isolated and its binding to Aβ42-containing membranes was demonstrated using the gel filtration method. Since membranes can act as a catalytic surface for Aβ42 aggregation, these RNA aptamers may inhibit the formation of toxic amyloid aggregates that can permeabilize cellular membranes or disrupt membrane receptors. Strategies are proposed for using functional exosomes, loaded with RNA aptamers specific to membrane Aβ42, to reduce the oxidative stress in Alzheimer's disease and Down's syndrome.
Collapse
Affiliation(s)
- Teresa Janas
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
| | - Karolina Sapoń
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
| | - Michael H B Stowell
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA.
- Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Tadeusz Janas
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
17
|
Activation of α7 nicotinic acetylcholine receptor alleviates Aβ1-42-induced neurotoxicity via downregulation of p38 and JNK MAPK signaling pathways. Neurochem Int 2018; 120:238-250. [DOI: 10.1016/j.neuint.2018.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/23/2018] [Accepted: 09/09/2018] [Indexed: 01/08/2023]
|