1
|
Yao M, Liu Y, Meng D, Zhou X, Chang D, Li L, Wang N, Huang Q. Hydroxysafflor yellow A attenuates the inflammatory response in cerebral ischemia-reperfusion injured mice by regulating microglia polarization per SIRT1-mediated HMGB1/NF-κB signaling pathway. Int Immunopharmacol 2025; 147:114040. [PMID: 39798476 DOI: 10.1016/j.intimp.2025.114040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Hydroxysafflor yellow A (HSYA), an active component isolated from Carthamus tinctorius L., has demonstrated potent protective effects against cerebral ischaemia/reperfusion (I/R) injury. Microglial polarisation plays a crucial role in I/R. However, the mechanism by which HSYA regulates microglial polarisation remains unclear. OBJECTIVE To explore the mechanism of action of HSYA on the phenotypic polarisation of microglia stimulated by lipopolysaccharide (LPS) in a mouse model of I/R injury. METHODS BV2 cells injured by LPS and a modified middle cerebral artery occlusion/reperfusion (MCAO/R) model were used to mimic I/R in vitro and in vivo, respectively. BV2 cell morphology was assessed by optical microscopy, and cell viability was evaluated using the CCK-8 assay. The effect of HSYA on MCAO/R mice was assessed using the Longa assay, brain index, triphenyl tetrazolium chloride, and haematoxylin and eosin staining. LDH, NO, IL-6, TNF-α, and IL-10 levels were measured using corresponding ELISA kits following the manufacturers' protocols. M1 and M2 type microglia markers, including CD86, CD16/32, iNOS, YM1/2, TGF-β, and Arg, were detected by western blotting. M1 and M2 cell surface markers (CD86 and CD206) were detected using immunofluorescence. Molecular docking, DARTS, and CETSA were applied to investigate the interactions between HSYA and SIRT1. The role of HSYA in regulating the binding of HMGB1 to SIRT1 was tested using co-immunoprecipitation. Proteins related to the HMGB1/NF-κB pathway were also analysed by western blotting. RESULTS HSYA promoted microglial polarisation from M1 to M2 type in LPS-induced BV2 cells and MCAO/R mice. HSYA significantly reduced M1 polarisation markers, including IL-6, TNF-α, CD86, CD16/32, while increasing the expression of IL-10, Arg, YM1/2, TGF-β. Furthermore, compared to the MCAO/R group, HSYA significantly improved neurological scores, brain index, and infarct volume and normalised nucleolar arrangement. Molecular docking assessment showed that HSYA exhibited strong binding SIRT1 and significantly improved the interactions between SIRT1 and HMGB1. HSYA also decreased the expression of cytoplasm-HMGB1 and reduced the P-P65/P65 ratio. CONCLUSIONS HSYA attenuates LPS-induced and MCAO/R-induced inflammatory responses by modulating microglia polarisation. This effect is associated with the SIRT1-mediated HMGB1/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Min Yao
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Liu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dongdong Meng
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xian Zhou
- National Institute of Complementary Medicine, Western Sydney University, Westmead, NSW, Australia
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Westmead, NSW, Australia
| | - Lili Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| | - Ning Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei,China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, China.
| | - Qi Huang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Bozhou 236000, China.
| |
Collapse
|
2
|
Ruan J, Wang L, Wang N, Huang P, Chang D, Zhou X, Seto S, Li D, Hou J. Hydroxysafflor Yellow A promotes angiogenesis of brain microvascular endothelial cells from ischemia/reperfusion injury via glycolysis pathway in vitro. J Stroke Cerebrovasc Dis 2025; 34:108107. [PMID: 39515547 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Angiogenesis of brain microvascular endothelial cells (BMECs) after cerebral ischemia was conducive to improving the blood supply of ischemia tissues, which was upregulated by glycolysis. Hydroxysafflor Yellow A (HSYA) mends damaged tissues through increasing angiogenesis. METHODS HSYA treated proliferation, migration and angiogenesis of BMECs in vitro in vitro during OGD/R. HSYA regulated the key enzymes of glycolysis, such as hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), glucose uptake and products (pyruvate, ATP and lactate) were detected by western blot and kits, respectively. Scratch wound assay, transwell, tube formation and spheroid sprouting were used to explore the pathway that HSYA recovered migration and angiogenesis of BMECs. We evaluated the potential target of HSYA promoting glycolysis via molecular docking, drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA). RESULTS HSYA promoted the proliferation, migration, tube formation and spheroid sprouting of BMECs during OGD/R, and stimulated the expression of tip phenotype marker protein (CD34), and the receptor (Notch-1) that regulated the differentiation of endothelial cells into tip/stalk phenotype. In glycolysis, PFKFB3 expression was upregulated by HSYA; HSYA also improved ATP and pyruvate levels, as well as lactate release after OGD/R. Finally, upregulating VEGFA and p-VEGFR2 of HSYA was weakened because of suppressing glycolysis; the HSYA's improvement of BMECs migration and angiogenesis was attenuated under the inhibition of glycolysis, which confirmed that HSYA were upregulating angiogenesis and expression of VEGFA/VEGFR2 by glycolysis pathway. The result about molecular docking, DARTS and CETSA suggested that PFKFB3 was the possible target of HSYA. CONCLUSION HSYA promotes angiogenesis of BMECs in vitro through the glycolysis mediated VEGFA/VEGFR2 pathway, and PFKFB3 is the potential target of HSYA to heighten glycolysis.
Collapse
Affiliation(s)
- Juxuan Ruan
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Lei Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| | - Ping Huang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
| | - Saiwang Seto
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Dan Li
- Shineway Pharmaceutical Group Co. Ltd. Shijiahzuang 51430, China
| | - Jincai Hou
- Shineway Pharmaceutical Group Co. Ltd. Shijiahzuang 51430, China
| |
Collapse
|
3
|
Wu B, Zhou D, Mei Z. Targeting the neurovascular unit: Therapeutic potential of traditional Chinese medicine for the treatment of stroke. Heliyon 2024; 10:e38200. [PMID: 39386825 PMCID: PMC11462356 DOI: 10.1016/j.heliyon.2024.e38200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Stroke poses a significant global health challenge due to its elevated disability and mortality rates, particularly affecting developing nations like China. The neurovascular unit (NVU), a new concept encompassing neurons, brain microvascular endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix, has gained prominence in recent years. Traditional Chinese medicine (TCM), deeply rooted in Chinese history, employs a combination of acupuncture and herbal treatments, demonstrating significant efficacy across all stages of stroke, notably during recovery. The holistic approach of TCM aligns with the NVU's comprehensive view of treating stroke by addressing neurons, surrounding cells, and blood vessels collectively. This review examines the role of NVU in stroke and endeavors to elucidate the mechanisms through which traditional Chinese medicine exerts its anti-stroke effects within the NVU framework. The NVU contributes to neuroinflammation, immune infiltration, blood-brain barrier permeability, oxidative stress, and Ca2+ overload during stroke occurs. Additionally, TCM targeting the NVU facilitates nerve repair post-stroke through various pathways and approaches. Specific herbs, including panax notoginseng, ginseng, and borneol, alleviate brain injury by enhancing brain-derived neurotrophic factor expression and targeting astrocytes and microglia to yield anti-inflammatory and antioxidant effects. Acupuncture, another facet of TCM, promotes brain injury repair by augmenting cerebral blood flow and improving circulation. This exploration aims to assess the viability of stroke treatment by directing TCM interventions toward the NVU, thus paving the way for its broader clinical application.
Collapse
Affiliation(s)
- Bingxin Wu
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Dabiao Zhou
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
4
|
He Q, Wang Y, Fang C, Feng Z, Yin M, Huang J, Ma Y, Mo Z. Advancing stroke therapy: A deep dive into early phase of ischemic stroke and recanalization. CNS Neurosci Ther 2024; 30:e14634. [PMID: 38379112 PMCID: PMC10879038 DOI: 10.1111/cns.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Ischemic stroke, accounting for the majority of stroke events, significantly contributes to global morbidity and mortality. Vascular recanalization therapies, namely intravenous thrombolysis and mechanical thrombectomy, have emerged as critical interventions, yet their success hinges on timely application and patient-specific factors. This review focuses on the early phase pathophysiological mechanisms of ischemic stroke and the nuances of recanalization. It highlights the dual role of neutrophils in tissue damage and repair, and the critical involvement of the blood-brain barrier (BBB) in stroke outcomes. Special emphasis is placed on ischemia-reperfusion injury, characterized by oxidative stress, inflammation, and endothelial dysfunction, which paradoxically exacerbates cerebral damage post-revascularization. The review also explores the potential of targeting molecular pathways involved in BBB integrity and inflammation to enhance the efficacy of recanalization therapies. By synthesizing current research, this paper aims to provide insights into optimizing treatment protocols and developing adjuvant neuroprotective strategies, thereby advancing stroke therapy and improving patient outcomes.
Collapse
Affiliation(s)
- Qianyan He
- Department of Neurology, Stroke CenterThe First Hospital of Jilin UniversityJilinChina
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Yueqing Wang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Cheng Fang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Ziying Feng
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Meifang Yin
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Juyang Huang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yinzhong Ma
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Zhizhun Mo
- Emergency Department, Shenzhen Traditional Chinese Medicine HospitalThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenGuangdongChina
| |
Collapse
|
5
|
Cao L, Yin G, Du J, Jia R, Gao J, Shao N, Li Q, Zhu H, Zheng Y, Nie Z, Ding W, Xu G. Salvianolic Acid B Regulates Oxidative Stress, Autophagy and Apoptosis against Cyclophosphamide-Induced Hepatic Injury in Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2023; 13:ani13030341. [PMID: 36766230 PMCID: PMC9913662 DOI: 10.3390/ani13030341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Salvianolic acid B (Sal B), as one of the main water-soluble components of Salvia miltiorrhizae, has significant pharmacological activities, including antioxidant, free radical elimination and biofilm protection actions. However, the protective effect of Sal B on Nile tilapia and the underlying mechanism are rarely reported. Therefore, the aim of this study was to evaluate the effects of Sal B on antioxidant stress, apoptosis and autophagy in Nile tilapia liver. In this experiment, Nile tilapia were fed diets containing sal B (0.25, 0.50 and 0.75 g·kg-1) for 60 days, and then the oxidative hepatic injury of the tilapia was induced via intrapleural injection of 50 g·kg-1 cyclophosphamide (CTX) three times. After the final exposure to CTX, the Nile tilapia were weighed and blood and liver samples were collected for the detection of growth and biochemical indicators, pathological observations and TUNEL detection, as well as the determination of mRNA expression levels. The results showed that after the CTX treatment, the liver was severely damaged, the antioxidant capacity of the Nile tilapia was significantly decreased and the hepatocyte autophagy and apoptosis levels were significantly increased. Meanwhile, dietary Sal B can not only significantly improve the growth performance of tilapia and effectively reduce CTX-induced liver morphological lesions, but can also alleviate CTX-induced hepatocyte autophagy and apoptosis. In addition, Sal B also significantly regulated the expression of genes related to antioxidative stress, autophagy and apoptosis pathways. This suggested that the hepatoprotective effect of Sal B may be achieved through various pathways, including scavenging free radicals and inhibiting hepatocyte apoptosis and autophagy.
Collapse
|
6
|
Yu L, Jin Z, Li M, Liu H, Tao J, Xu C, Wang L, Zhang Q. Protective potential of hydroxysafflor yellow A in cerebral ischemia and reperfusion injury: An overview of evidence from experimental studies. Front Pharmacol 2022; 13:1063035. [PMID: 36588739 PMCID: PMC9797593 DOI: 10.3389/fphar.2022.1063035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Ischemic stroke, mostly caused by thromboembolic or thrombotic arterial occlusions, is a primary leading cause of death worldwide with high morbidity and disability. Unfortunately, no specific medicine is available for the treatment of cerebral I/R injury due to its limitation of therapeutic window. Hydroxysafflor yellow A, a natural product extracted from Carthamus tinctorius, has been extensively investigated on its pharmacological properties in cerebrovascular diseases. However, review focusing on the beneficial role of HSYA against cerebral I/R injury is still lacking. In this paper, we reviewed the neuroprotective effect of HSYA in preclinical studies and the underlying mechanisms involved, as well as clinical data that support the pharmacological activities. Additionally, the sources, physicochemical properties, biosynthesis, safety and limitations of HSYA were also reviewed. As a result, HSYA possesses a wide range of beneficial effects against cerebral I/R injury, and its action mechanisms include anti-excitotoxicity, anti-oxidant stress, anti-apoptosis, anti-inflammation, attenuating BBB leakage and regulating autophagy. Collectively, HSYA might be applied as one of the promising alternatives in ischemic stroke treatment.
Collapse
Affiliation(s)
- Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Lu Yu, ; Qiujuan Zhang, ; Liwei Wang,
| | - Zhe Jin
- Department of Neurology, Renji Hospital Baoshan Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mincheng Li
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huifang Liu
- Department of Neurology, Shanghai Jinshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jie Tao
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuan Xu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liwei Wang
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Lu Yu, ; Qiujuan Zhang, ; Liwei Wang,
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Lu Yu, ; Qiujuan Zhang, ; Liwei Wang,
| |
Collapse
|
7
|
Chen M, Zhang H, Chu YH, Tang Y, Pang XW, Qin C, Tian DS. Microglial autophagy in cerebrovascular diseases. Front Aging Neurosci 2022; 14:1023679. [PMID: 36275005 PMCID: PMC9582432 DOI: 10.3389/fnagi.2022.1023679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Microglia are considered core regulators for monitoring homeostasis in the brain and primary responders to central nervous system (CNS) injuries. Autophagy affects the innate immune functions of microglia. Recently some evidence suggests that microglial autophagy is closely associated with brain function in both ischemic stroke and hemorrhagic stroke. Herein, we will discuss the interaction between autophagy and other biological processes in microglia under physiological and pathological conditions and highlight the interaction between microglial metabolism and autophagy. In the end, we focus on the effect of microglial autophagy in cerebrovascular diseases.
Collapse
|
8
|
Crosstalk between Glycogen-Selective Autophagy, Autophagy and Apoptosis as a Road towards Modifier Gene Discovery and New Therapeutic Strategies for Glycogen Storage Diseases. Life (Basel) 2022; 12:life12091396. [PMID: 36143432 PMCID: PMC9504455 DOI: 10.3390/life12091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Glycogen storage diseases (GSDs) are rare metabolic monogenic disorders characterized by an excessive accumulation of glycogen in the cell. However, monogenic disorders are not simple regarding genotype–phenotype correlation. Genes outside the major disease-causing locus could have modulatory effect on GSDs, and thus explain the genotype–phenotype inconsistencies observed in these patients. Nowadays, when the sequencing of all clinically relevant genes, whole human exomes, and even whole human genomes is fast, easily available and affordable, we have a scientific obligation to holistically analyze data and draw smarter connections between genotype and phenotype. Recently, the importance of glycogen-selective autophagy for the pathophysiology of disorders of glycogen metabolism have been described. Therefore, in this manuscript, we review the potential role of genes involved in glycogen-selective autophagy as modifiers of GSDs. Given the small number of genes associated with glycogen-selective autophagy, we also include genes, transcription factors, and non-coding RNAs involved in autophagy. A cross-link with apoptosis is addressed. All these genes could be analyzed in GSD patients with unusual discrepancies between genotype and phenotype in order to discover genetic variants potentially modifying their phenotype. The discovery of modifier genes related to glycogen-selective autophagy and autophagy will start a new chapter in understanding of GSDs and enable the usage of autophagy-inducing drugs for the treatment of this group of rare-disease patients.
Collapse
|
9
|
Comprehensive review of two groups of flavonoids in Carthamus tinctorius L. Biomed Pharmacother 2022; 153:113462. [DOI: 10.1016/j.biopha.2022.113462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
|
10
|
Fu J, Yang Y, Zhu L, Chen Y, Liu B. Unraveling the Roles of Protein Kinases in Autophagy: An Update on Small-Molecule Compounds for Targeted Therapy. J Med Chem 2022; 65:5870-5885. [PMID: 35390258 DOI: 10.1021/acs.jmedchem.1c02053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases, which catalyze the phosphorylation of proteins, are involved in several important cellular processes, such as autophagy. Of note, autophagy, originally described as a mechanism for intracellular waste disposal and recovery, has been becoming a crucial biological process closely related to many types of human diseases. More recently, the roles of protein kinases in autophagy have been gradually elucidated, and the design of small-molecule compounds to modulate targets to positively or negatively interfere with the cytoprotective autophagy or autophagy-associated cell death may provide a new clue on the current targeted therapy. Thus, in this Perspective, we focus on summarizing the different roles of protein kinases, including positive, negative, and bidirectional regulations of autophagy. Moreover, we discuss several small-molecule compounds targeting these protein kinases in human diseases, highlighting their pivotal roles in autophagy for targeted therapeutic purposes.
Collapse
Affiliation(s)
- Jiahui Fu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Kalra P, Khan H, Kaur A, Singh TG. Mechanistic Insight on Autophagy Modulated Molecular Pathways in Cerebral Ischemic Injury: From Preclinical to Clinical Perspective. Neurochem Res 2022; 47:825-843. [PMID: 34993703 DOI: 10.1007/s11064-021-03500-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Cerebral ischemia is one of the most devastating brain injuries and a primary cause of acquired and persistent disability worldwide. Despite ongoing therapeutic interventions at both the experimental and clinical levels, options for stroke-related brain injury are still limited. Several evidence suggests that autophagy is triggered in response to cerebral ischemia, therefore targeting autophagy-related signaling pathways can provide a new direction for the therapeutic implications in the ischemic injury. Autophagy is a highly conserved lysosomal-dependent pathway that degrades and recycles damaged or non-essential cellular components to maintain neuronal homeostasis. But, whether autophagy activation promotes cell survival against ischemic injury or, on the contrary, causes neuronal death is still under debate. We performed an extensive literature search from PubMed, Bentham and Elsevier for various aspects related to molecular mechanisms and pathobiology involved in autophagy and several pre-clinical studies justifiable further in the clinical trials. Autophagy modulates various downstream molecular cascades, i.e., mTOR, NF-κB, HIF-1, PPAR-γ, MAPK, UPR, and ROS pathways in cerebral ischemic injury. In this review, the various approaches and their implementation in the translational research in ischemic injury into practices has been covered. It will assist researchers in finding a way to cross the unbridgeable chasm between the pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
12
|
XU D, GUI C, ZHAO H, LIU F. Cryptotanshinone protects hippocampal neurons against oxygen-glucose deprivation-induced injury through the activation of Nrf2/HO-1 signaling pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.46521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dong XU
- Northwest University for Nationalities, China
| | | | - Haiyan ZHAO
- Northwest University for Nationalities, China
| | | |
Collapse
|
13
|
WANG L, LIU G, SHAO Z, ZHANG Q, YIN L, XU E, LI B, CUI X, TENG H. MicroR-146 protects against rat ischemia-reperfusion injury by targeting NF-κB-mediated PI3K/AKT/mTOR signaling pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.36820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Leyuan WANG
- The People's Hospital of Changle County, China
| | - Guofang LIU
- The People's Hospital of Laoling City, China
| | - Zetao SHAO
- The People's Hospital of Changle County, China
| | | | - Lili YIN
- The People's Hospital of Changle County, China
| | - Enbo XU
- The People's Hospital of Changle County, China
| | - Biao LI
- The People's Hospital of Changle County, China
| | | | - Hongtao TENG
- The Fourth People's Hospital of Jinan City, China
| |
Collapse
|
14
|
Pharmacological Actions, Molecular Mechanisms, Pharmacokinetic Progressions, and Clinical Applications of Hydroxysafflor Yellow A in Antidiabetic Research. J Immunol Res 2021; 2021:4560012. [PMID: 34938814 PMCID: PMC8687819 DOI: 10.1155/2021/4560012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA), a nutraceutical compound derived from safflower (Carthamus tinctorius), has been shown as an effective therapeutic agent in cardiovascular diseases, cancer, and diabetes. Our previous study showed that the effect of HSYA on high-glucose-induced podocyte injury is related to its anti-inflammatory activities via macrophage polarization. Based on the information provided on PubMed, Scopus and Wanfang database, we currently aim to provide an updated overview of the role of HSYA in antidiabetic research from the following points: pharmacological actions, molecular mechanisms, pharmacokinetic progressions, and clinical applications. The pharmacokinetic research of HSYA has laid foundations for the clinical applications of HSYA injection in diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy. The application of HSYA as an antidiabetic oral medicament has been investigated based on its recent oral delivery system research. In vivo and in vitro pharmacological research indicated that the antidiabetic activities of HSYA were based mainly on its antioxidant and anti-inflammatory mechanisms via JNK/c-jun pathway, NOX4 pathway, and macrophage differentiation. Further anti-inflammatory exploration related to NF-κB signaling, MAPK pathway, and PI3K/Akt/mTOR pathway might deserve attention in the future. The anti-inflammatory activities of HSYA related to diabetes and diabetic complications will be a highlight in our following research.
Collapse
|
15
|
Sun Y, Yanming G, Jinxin L, Lamei X, Fan M, Qian H, Li Y, Wang L. Hydroxysafflor Yellow A - An Important Natural Pigment for Treating Metabolic Diseases. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yujie Sun
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Guan Yanming
- China National Research Institute of Food and Fermentation Industries Co. Ltd, Beijing, China
| | - Liu Jinxin
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xue Lamei
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingcong Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Wang K, Lei L, Cao J, Qiao Y, Liang R, Duan J, Feng Z, Ding Y, Ma Y, Yang Z, Zhang E. Network pharmacology-based prediction of the active compounds and mechanism of Buyang Huanwu Decoction for ischemic stroke. Exp Ther Med 2021; 22:1050. [PMID: 34434264 PMCID: PMC8353622 DOI: 10.3892/etm.2021.10484] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Buyang Huanwu Decoction (BYHWD) is used to promote blood circulation and is widely used in Chinese clinical practice for the treatment and prevention of ischemic cerebral vascular diseases. However, the mechanism and active compounds of BYHWD used to treat ischemic stroke are not well understood. The current study aimed to identify the potential active components of BYHWD and explore its mechanism using network pharmacology and bioinformatics analyses. The compounds of BYHWD were obtained from public databases. Oral bioavailability and drug-likeness were screened using the absorption, distribution, metabolism and excretion (ADME) criteria. Components of BYHWD, alongside the candidate targets of each component and the known therapeutic targets of ischemic stroke were collected. A network of target gene compounds and cerebral ischemia compounds was established using network pharmacology data sources. The enrichment of key targets and pathways was analyzed using STRING and DAVID databases. Moreover, three of key targets [IL6, VEGFA and hypoxia-inducible-factor-1α (HIF-1α)] were verified using western blot analysis. Network analysis determined 102 compounds in seven herbal medicines that were subjected to ADME screening. A total of 42 compounds as well as 79 genes formed the principal pathways associated with ischemic stroke. The 16 key compounds identified were baicalein, beta-carotene, baicalin, kaempferol, luteolin, quercetin, hydroxysafflor yellow A, isorhamnetin, bifendate, formononetin, calycosin, astragaloside IV, stigmasterol, sitosterol, Z-ligustilide, and dihydrocapsaicin. The core genes in this network were IL6, TNF, VEGFA, HIF-1α, MAPK1, MAPK3, JUN, STAT3, IL1B and IL10. Furthermore, the TNF, IL17, apoptosis, PI3K-Akt, toll-like receptor, MAPK, NF-κB and HIF-1 signaling pathways were identified to be associated with ischemic stroke. Compared with the control group (no treatment), BYHWD significantly inhibited the expression of IL6 and increase the expression of HIF-1α and VEGFA. Network pharmacology analyses can help to reveal close interactions between multi-components and multi-targets and enhance understanding of the potential effects of BYHWD on ischemic stroke.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Lu Lei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jinyi Cao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Qiao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Ruimin Liang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhijun Feng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Enhu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| |
Collapse
|
17
|
Xue X, Deng Y, Wang J, Zhou M, Liao L, Wang C, Peng C, Li Y. Hydroxysafflor yellow A, a natural compound from Carthamus tinctorius L with good effect of alleviating atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153694. [PMID: 34403879 DOI: 10.1016/j.phymed.2021.153694] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Atherosclerosis is a chronic vascular inflammatory disease with complex pathogenesis. Its serious consequence is insufficient blood supply to heart and brain, which eventually leads to myocardial ischemia, infarction and stroke. Hydroxysafflor yellow A (HSYA), a single chalcone glycoside compound with a variety of pharmacological effects, which has shown a potential biological activity for prevention and treatment of atherosclerosis. PURPOSE The main purpose of this review is to comprehensively elucidate the mechanism of HSYA on atherosclerosis and its risk factors (hyperlipidemia, hypertension and diabetes mellitus). METHOD The literatures on HSYA in the treatment of atherosclerosis and its risk factors were searched in PubMed, Google Scholar, China National Knowledge Infrastructure, including in vitro (cell), in vivo (animal) and clinical (human) studies, and summarized reasonably. RESULTS HSYA is a promising natural product for treating atherosclerosis. It can suppress foam cell formation, vascular endothelial cell dysfunction, vascular smooth muscle cell proliferation and migration, and platelet activation. The mechanisms are achieved by regulating the reverse cholesterol transport process, fatty acid synthesis, oxidative stress, PI3K/Akt/mTOR, NLRP3 inflammasome, TNFR1/NF-κB, NO-cGMP, Bax/Bcl-2, MAPKs, CDK/CyclinD and TLR4/Rac1/Akt signaling pathways. Besides, HSYA is devoted to lowering blood lipids, regulating ion channels, reducing vascular inflammation, and protecting pancreatic beta cells, which is conducive to reducing the harm of independent risk factors of atherosclerosis. CONCLUSIONS HSYA exhibits the preventive and therapeutic effects on atherosclerosis and its risk factors in vivo and in vitro, which is relevant to multiple mechanisms. The clinical trials of HSYA need to be further investigated to provide a solid foundation for its clinical application.
Collapse
Affiliation(s)
- Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
18
|
Peng Z, Ji D, Qiao L, Chen Y, Huang H. Autophagy Inhibition by ATG3 Knockdown Remits Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury and Inflammation in Brain Microvascular Endothelial Cells. Neurochem Res 2021; 46:3200-3212. [PMID: 34379294 DOI: 10.1007/s11064-021-03423-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/18/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023]
Abstract
Autophagy participates in the development of cerebral ischemia stroke. Autophagy-related 3 (ATG3), an important autophagy regulator, was reported to be upregulated in a rat model of cerebral ischemia/reperfusion (CI/R) injury and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model. However, the detailed role of ATG3 in CI/R injury remains elusive. An in vitro cellular model was established to mimic CI/R injury by exposing hBMECs and bEnd.3 cells to OGD/R. OGD/R-induced injury were evaluated by cell counting kit-8 (CCK-8), LDH release assay, caspase-3 activity assay and TUNEL assay. Inflammation was assessed by detecting mRNA expression and concentrations of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) using qRT-PCR and ELISA, respectively. The protein levels of ATG3, light chain 3 (LC3)-I, LC3-II, p62, protein kinase B (Akt), and phosphorylated Akt (p-Akt) were determined by western blot analysis. We successfully established an in vitro OGD/R injury model using hBMECs and bEnd.3 cells. ATG3 was time-dependently upregulated and ATG3 knockdown inhibited autophagy in OGD/R-challenged brain microvascular endothelial cells. Moreover, autophagy inhibition by ATG3 interference attenuated OGD/R-induced viability inhibition and increase of LDH release, caspase-3 activity, programmed cell death, and production of IL-1β, IL-6 and TNF-α. Inhibition of autophagy by ATG3 silencing activated the phosphoinositide 3-kinase (PI3K)/Akt pathway in OGD/R-challenged brain microvascular endothelial cells. Furthermore, inhibition of the PI3K/Akt pathway reversed the protective effects of ATG3 silencing on OGD/R-induced injury and inflammation. In conclusion, autophagy inhibition by ATG3 knockdown remitted OGD/R-induced injury and inflammation in brain microvascular endothelial cells via activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Zhaolong Peng
- Department of Severe Encephalopathy, Nanshi Hospital, Nanyang, 473065, China
| | - Daofei Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Lukuan Qiao
- Department of Severe Encephalopathy, Nanshi Hospital, Nanyang, 473065, China
| | - Yuedong Chen
- Department of Severe Encephalopathy, Nanshi Hospital, Nanyang, 473065, China
| | - Hongjuan Huang
- Department of Neurology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, 62 South Huaihai Road, Huai'an, 223300, China.
| |
Collapse
|
19
|
Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, Farzaei MH, Xiao J. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. PHYTOMEDICINE 2021; 91:153664. [PMID: 34391082 DOI: 10.1016/j.phymed.2021.153664] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND As common, progressive, and chronic causes of disability and death, neurodegenerative diseases (NDDs) significantly threaten human health, while no effective treatment is available. Given the engagement of multiple dysregulated pathways in neurodegeneration, there is an imperative need to target the axis and provide effective/multi-target agents to tackle neurodegeneration. Recent studies have revealed the role of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) in some diseases and natural products with therapeutic potentials. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating various neuronal disorders via the PI3K/Akt/mTOR signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was done based on the PubMed, Scopus, Web of Science, and Cochrane electronic databases. Two independent investigators followed the PRISMA guidelines and included papers on PI3K/Akt/mTOR and interconnected pathways/mediators targeted by phytochemicals in NDDs. RESULTS Natural products are multi-target agents with diverse pharmacological and biological activities and rich sources for discovering and developing novel therapeutic agents. Accordingly, recent studies have shown increasing phytochemicals in combating Alzheimer's disease, aging, Parkinson's disease, brain/spinal cord damages, depression, and other neuronal-associated dysfunctions. Amongst the emerging targets in neurodegeneration, PI3K/Akt/mTOR is of great importance. Therefore, attenuation of these mediators would be a great step towards neuroprotection in such NDDs. CONCLUSION The application of plant-derived secondary metabolites in managing and/or treating various neuronal disorders through the PI3K/Akt/mTOR signaling pathway is a promising strategy towards neuroprotection.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Ranjbari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA.
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China.
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
20
|
Autophagy in vascular dementia and natural products with autophagy regulating activity. Pharmacol Res 2021; 170:105756. [PMID: 34237440 DOI: 10.1016/j.phrs.2021.105756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/29/2023]
Abstract
Chronic Cerebral Hypoperfusion(CCH)-induced vascular dementia(VD) is a common neurodegenerative disease which seriously affects the patient's quality of life. Therefore, it is critical to find an effective treatment of VD. Autophagy is a natural regulated mechanism that can remove dysfunctional proteins and organelles, however, over-activation or under-activation can of autophagy can induce the apoptosis of cells. Although autophagy plays a role in the central nervous system is unquestionable, the effects of autophagy in the ischemic brain are still controversial. Some autophagy regulators have been tested, suggesting that both activation and inhibition of autophagy can improve the cognitive function. This article reviews the role of autophagy in CCH-induced VD to discuss whether autophagy has the potential to become a target for drug development and provides several potential compounds for treating vascular dementia.
Collapse
|
21
|
Impaired Autophagy Induced by oxLDL/ β2GPI/anti- β2GPI Complex through PI3K/AKT/mTOR and eNOS Signaling Pathways Contributes to Endothelial Cell Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6662225. [PMID: 34221236 PMCID: PMC8219424 DOI: 10.1155/2021/6662225] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/22/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022]
Abstract
Endothelial cell dysfunction plays a fundamental role in the pathogenesis of atherosclerosis (AS), and endothelial autophagy has protective effects on the development of AS. Our previous study had shown that oxidized low-density lipoprotein/β2-glycoprotein I/anti-β2-glycoprotein I antibody (oxLDL/β2GPI/anti-β2GPI) complex could promote the expressions of inflammatory cytokines and enhance the adhesion of leukocytes to endothelial cells. In the present study, we aimed to assess the effects of oxLDL/β2GPI/anti-β2GPI complex on endothelial autophagy and explore the associated potential mechanisms. Human umbilical vein endothelial cells (HUVECs) and mouse brain endothelial cell line (bEnd.3) were used as models of the vascular endothelial cells. Autophagy was evaluated by examining the expressions of autophagic proteins using western blotting analysis, autophagosome accumulation using transmission electron microscopy, and RFP-GFP-LC3 adenoviral transfection and autophagic flux using lysosome inhibitor chloroquine. The expressions of phospho-PI3K, phospho-AKT, phospho-mTOR, and phospho-eNOS were determined by western blotting analysis. 3-Methyladenine (3-MA) and rapamycin were used to determine the role of autophagy in oxLDL/β2GPI/anti-β2GPI complex-induced endothelial cell dysfunction. We showed that oxLDL/β2GPI/anti-β2GPI complex suppressed the autophagy, evidenced by an increase in p62 protein, a decrease in LC3-II and Beclin1, and a reduction of autophagosome generation in endothelial cells. Moreover, inhibition of autophagy was associated with PI3K/AKT/mTOR and eNOS signaling pathways. Rapamycin attenuated oxLDL/β2GPI/anti-β2GPI complex-induced endothelial inflammation, oxidative stress, and apoptosis, whereas 3-MA alone induced the endothelial injury. Our results suggested that oxLDL/β2GPI/anti-β2GPI complex inhibited endothelial autophagy via PI3K/AKT/mTOR and eNOS signaling pathways and further contributed to endothelial cell dysfunction. Collectively, our findings provided a novel mechanism for vascular endothelial injury in AS patients with an antiphospholipid syndrome (APS) background.
Collapse
|
22
|
Huang P, Wu SP, Wang N, Seto S, Chang D. Hydroxysafflor yellow A alleviates cerebral ischemia reperfusion injury by suppressing apoptosis via mitochondrial permeability transition pore. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153532. [PMID: 33735723 DOI: 10.1016/j.phymed.2021.153532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Mitochondria are key cellular organelles that are essential for cell fate decisions. Hydroxysafflor yellow A (HSYA) has displayed an impressively essential role in protection of cerebral ischemia/reperfusion (I/R). However, the mitochondrial effect of HSYA on Brain Microvascular Endothelial Cells (BMECs) under I/R remains to be largely unclear. PURPOSE To evaluate the protective effects of HSYA-mediated mitochondrial permeability transition pore (mPTP) on cerebral I/R injury and its mechanism. METHODS Cerebral I/R injury was established by the model of Middle cerebral artery occlusion (MCAO) in rats. Furthermore, to further clarify the relevant mechanism of HSYA's effects on mPTP, inhibition of extracellular regulated protein kinases (ERK) with U0126 and transfect with Cyclophilin D (CypD) SiRNA to reversely verified whether the protective effects of HSYA were exerted by regulating the Mitogen-activated protein kinase kinase (MEK)/ERK/CypD pathway. RESULTS HSYA treatment significantly increased BMECs viability, decreased the generation of ROS, opening of mPTP and translocation of cytochrome c after OGD/R. In addition to inhibited CypD, HSYA potentiated MEK and increased phosphorylation of ERK expression in BMECs, inhibited apoptosis mediated by mitochondrial. Notably, HSYA also significantly ameliorated neurological deficits and decreased the infarct volume in rats. CONCLUSION HSYA reduced the CytC export from mitochondrial by inhibited the open of mPTP via MEK/ERK/CypD pathway, contributing to the protection of I/R. Thus, our study not only revealed novel mechanisms of HSYA for its anti-I/R function, but also provided a template for the design of novel mPTP inhibitor for the treatment of various mPTP-related diseases.
Collapse
Affiliation(s)
- Ping Huang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Si-Peng Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Saiwang Seto
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University; Penrith, NSW 2751, Australia
| |
Collapse
|
23
|
Tang D, Huang T, Tian Q, Wang J. MYC/NBS1-Mediated DNA Damage Response is Involved in the Inhibitory Effect of Hydroxysafflor Yellow A on Glioma Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1749-1763. [PMID: 33953544 PMCID: PMC8089107 DOI: 10.2147/dddt.s288841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/30/2021] [Indexed: 02/02/2023]
Abstract
Background The role of Hydroxysafflor Yellow A (HSYA) in glioma is less studied, this research determined the effect of HSYA on glioma cells. Methods The expressions of MYC and NBS1 in glioma tissues were detected by bioinformatics analysis and verified by RT-qPCR. The target relationship between MYC and NBS1 was predicted by bioinformatics. After treating the cells with HSYA, silenced MYC, or overexpressed NBS1, the viability, apoptosis, proliferation, invasion, migration, and DNA damage of the glioma cells were detected by MTT, flow cytometry, colony formation, transwell, wound healing, and γH2AX immunofluorescence assays, respectively. IC50 of HSYA in glioma cells was analyzed by Probit regression analysis. The expressions of MYC, NBS1, factors related to migration, invasion, apoptosis, and DNA damage of the glioma cells were determined by Western blot or RT-qPCR. Results MYC and NBS1 were high-expressed in glioma, and NBS1 was targeted by MYC. HSYA and siRNA targeting MYC inhibited the cell viability, proliferation, invasion, migration, and induced the cell apoptosis of glioma cells. HSYA upregulated the expressions of MYC, γH2AX, E-Cadherin, Bax, and Cleaved-PARP1, stimulated the activation of NBS1, MRE11, RAD50, and ATM, and downregulated the expressions of N-Cadherin and Bcl2 in glioma cells. SiMYC decreased the IC50 of HSYA in the glioma cells, enhanced the sensitivity of glioma cells to HSYA, and inhibited the activation of NBS1 and ATM. NBS1 overexpression reversed the effect of siRNA targeting MYC on glioma cells. Conclusion MYC silencing inhibited the DNA damage response via regulation of NBS1, leading to DNA repair deficiency, and subsequently enhanced the sensitivity of glioma cells to HSYA.
Collapse
Affiliation(s)
- Dongfang Tang
- Department of Neurosurgery, Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Tao Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an City, People's Republic of China
| | - Qilong Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an City, People's Republic of China
| | - Julei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an City, People's Republic of China
| |
Collapse
|
24
|
Wang Y, Cai X, Wu Z, Tang L, Lu L, Xu Y, Bao X. Tetrandrine attenuates ischemia/reperfusion‑induced neuronal damage in the subacute phase. Mol Med Rep 2021; 23:297. [PMID: 33649825 PMCID: PMC7930946 DOI: 10.3892/mmr.2021.11936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/27/2020] [Indexed: 11/06/2022] Open
Abstract
Ischemic stroke, the third leading cause of disability globally, imposes a notable economic burden. Tetrandrine (Tet), which has been widely used clinically, exhibits potential protective effects against stroke. However, there has been little pre‑clinical research to evaluate the therapeutic effects of Tet on stroke. The present study investigated the beneficial effect of Tet on ischemia‑reperfusion (I/R) injury and its underlying mechanism in rats. Rats were subjected to occlusion of the middle cerebral artery, then treated with Tet (30 mg/kg/day, intraperitoneal) in the subacute phase for 7 days. In order to detect the effects of Tet on the behavior of rats, modified neurological severity score and longa behavior, grasping capability and inclined plane tests were conducted on days 1, 3 and 7 following cerebral ischemia. In addition, neuronal apoptosis in the cortex and hippocampus following ischemia was assessed by Nissl staining and TUNEL assay. Finally, oxidative stress was evaluated by measurement of free radicals and immunofluorescence staining of LC3 was used to assess autophagy. Tet improved neurological function and decreased infarct volume in I/R injury rats. Tet also prevented neuronal apoptosis in the cortex and hippocampus region. In addition, Tet protected against oxidative damage following ischemia, which was reflected by decreased levels of nitric oxide and malondialdehyde and increased levels of glutathione (GSH) and GSH peroxidase. In addition, the expression levels of the autophagy marker LC3 decreased in the Tet treatment group. In conclusion, Tet attenuated I/R‑induced neuronal damage in the subacute phase by decreasing oxidative stress, apoptosis and autophagy.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Xinjun Cai
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhiheng Wu
- School of Clinical Medicine, Wannan Medicial College, Wuhu, Anhui 241002, P.R. China
| | - Leilei Tang
- Department of Pharmacy, Xiaoshan Hospital, Hangzhou, Zhejiang 311200, P.R. China
| | - Lingqun Lu
- Laboratory Animal Center, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Yinyin Xu
- Department of Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
25
|
Yang X, Li Y, Chen L, Xu M, Wu J, Zhang P, Nel D, Sun B. Protective effect of hydroxysafflor yellow A on dopaminergic neurons against 6-hydroxydopamine, activating anti-apoptotic and anti-neuroinflammatory pathways. PHARMACEUTICAL BIOLOGY 2020; 58:686-694. [PMID: 32658590 PMCID: PMC7470140 DOI: 10.1080/13880209.2020.1784237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Hydroxysafflor yellow A (HSYA) has been shown to have neuroprotective effects in cerebral infarction. However, its underlying roles in apoptosis and inflammation in Parkinson's disease (PD) are unknown. OBJECTIVE The present study investigates the effects and underlying mechanisms of HSYA on dopaminergic (DA) neurodegeneration, inflammation, and apoptosis. MATERIALS AND METHODS The PD model was established by 2 μL of 6-hyroxydopamine (6-OHDA) (3 μg/μL) striatal injection in C57BL/6J mice with different doses of HSYA (2, 4, or 8 mg/kg). In vitro, after being treated with HSYA for 1 h, SH-SY5Y cells were exposed to 6-OHDA for 24 h before analysis. Expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and corpus striatum (STR) was evaluated by immunohistochemistry (IHC) and western blot. In addition, apoptosis-related and inflammatory proteins were examined by western blot. RESULTS Administration of HSYA significantly reduced the Apomorphine (APO)-induced rotation, decreased from 122.5 ± 15.1 (6-OHDA group) to 47.2 ± 14.3 (8 mg/kg HSYA group). HSYA partially restored a deficit in the SN and STR of PD mice brains in TH. Furthermore, western blot analysis revealed that HSYA reduced inflammatory proteins, including iNOS, COX-2 and NF-κB and attenuated the elevation of DA neuronal apoptosis observed in PD. In vitro assays showed that HSYA reduced the levels of p-p38 and p-JNK and increased that of p-ERK in 6-OHDA-leisoned SH-SY5Y cells. CONCLUSIONS These findings indicate that HSYA protects against 6-OHDA induced DA neurodegeneration partly by regulating the MAPK inflammatory signalling pathway and apoptosis which highlight its therapeutic potential in the treatment of PD.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| | - Yun Li
- Department of Traditional Chinese Medicine, Dezhou People’s Hospital, Dezhou, P.R. China
| | - Lin Chen
- Department of Pharmacology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Mingguo Xu
- Department of Pediatric Cardiology, Shenzhen Children’s Hospital, Shenzhen, P.R. China
| | - Jianbo Wu
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| | - Peng Zhang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| | - Deon Nel
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| | - Baozhu Sun
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Jinan, P.R. China
| |
Collapse
|
26
|
Liu J, Guo ZN, Yan XL, Huang S, Ren JX, Luo Y, Yang Y. Crosstalk Between Autophagy and Ferroptosis and Its Putative Role in Ischemic Stroke. Front Cell Neurosci 2020; 14:577403. [PMID: 33132849 PMCID: PMC7566169 DOI: 10.3389/fncel.2020.577403] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a conserved process to maintains homeostasis via the degradation of toxic cell contents, which can either promote cell survival or accelerate cellular demise. Ferroptosis is a recently discovered iron-dependent cell death pathway associated with the accumulation of lethal reactive lipid species. In the past few years, an increasing number of studies have suggested the crosstalk between autophagy and ferroptosis. Ischemic stroke is a complex brain disease regulated by several cell death pathways, including autophagy and ferroptosis. However, the potential links between autophagy and ferroptosis in ischemic stroke have not yet been explored. In this review, we briefly overview the mechanisms of ferroptosis and autophagy, as well as their possible connections in ischemic stroke. The elucidation of crosstalk between different cell death pathways may provide insight into new future ischemic stroke therapies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Jia-Xin Ren
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
| | - Yun Luo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
27
|
Bai X, Wang WX, Fu RJ, Yue SJ, Gao H, Chen YY, Tang YP. Therapeutic Potential of Hydroxysafflor Yellow A on Cardio-Cerebrovascular Diseases. Front Pharmacol 2020; 11:01265. [PMID: 33117148 PMCID: PMC7550755 DOI: 10.3389/fphar.2020.01265] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The incidence rate of cardio-cerebrovascular diseases (CCVDs) is increasing worldwide, causing an increasingly serious public health burden. The pursuit of new promising treatment options is thus becoming a pressing issue. Hydroxysafflor yellow A (HSYA) is one of the main active quinochalcone C-glycosides in the florets of Carthamus tinctorius L., a medical and edible dual-purpose plant. HSYA has attracted much interest for its pharmacological actions in treating and/or managing CCVDs, such as myocardial and cerebral ischemia, hypertension, atherosclerosis, vascular dementia, and traumatic brain injury, in massive preclinical studies. In this review, we briefly summarized the mode and mechanism of action of HSYA on CCVDs based on these preclinical studies. The therapeutic effects of HSYA against CCVDs were presumed to reside mostly in its antioxidant, anti-inflammatory, and neuroprotective roles by acting on complex signaling pathways.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Huan Gao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
28
|
Yan K, Wang X, Zhu H, Pan H, Wang L, Yang H, Liu M, Jin M, Zang B, Gong F. Safflower yellow improves insulin sensitivity in high-fat diet-induced obese mice by promoting peroxisome proliferator-activated receptor-γ2 expression in subcutaneous adipose tissue. J Diabetes Investig 2020; 11:1457-1469. [PMID: 32356607 PMCID: PMC7610129 DOI: 10.1111/jdi.13285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Aims/Introduction Safflower yellow (SY) and its main component, hydroxysafflor yellow A, have been demonstrated to show anti‐obesity effects. Peroxisome proliferator‐activated receptor‐γ2 (PPARγ2) is a critical transcription factor in adipose tissue metabolism. The aim of the present study was to explore the effects of SY in high‐fat diet‐induced obese mice, and further investigate the mechanism involving PPARγ2. Methods High‐fat diet‐induced obese mice were given 120 mg/kg/day SY for 8 weeks. Glucose and insulin tolerance tests were carried out. Fat mass and serum levels of glucose and insulin were measured. The expression of insulin signaling pathway‐related genes and PPARγ2 in the adipose tissue was measured. In vitro, the effects of SY (0–500 mg/L) and hydroxysafflor yellow A (0–100 mg/L) on PPARγ2 promoter activities and PPARγ2 messenger ribonucleic acid (mRNA) levels in 3T3‐L1 preadipocytes or adipocytes were also detected. Results Safflower yellow reduced fat mass, decreased glucose levels and improved insulin sensitivity in obese mice. SY also increased the mRNA levels of insulin signaling pathway‐related genes, and increased PPARγ2 mRNA levels by 39.1% in subcutaneous adipose tissue (P < 0.05). In vitro, SY and hydroxysafflor yellow A significantly enhanced PPARγ2 promoter activities by 1.3–2.1‐fold, and increased PPARγ2 mRNA levels by 1.2–1.6‐fold in 3T3‐L1 preadipocytes or adipocytes (P < 0.05). Conclusions SY could reduce fat mass, decrease glucose levels and improve insulin sensitivity in high‐fat diet‐induced obese mice. The probable mechanism is to increase PPARγ2 expression by stimulating PPARγ2 promoter activities, further increasing the expression of insulin signaling pathway‐related genes in subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Kemin Yan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiangqing Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meijuan Liu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ming Jin
- Department of Pharmacology, China-Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Baoxia Zang
- Department of Pharmacology, China-Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Wang HY, Zhou HF, He Y, Yu L, Li C, Yang JH, Wan HT. Protective Effect of Naoxintong Capsule () Combined with Guhong Injection () on Rat Brain Microvascular Endothelial Cells during Cerebral Ischemia-Reperfusion Injury. Chin J Integr Med 2020; 27:744-751. [PMID: 32248514 DOI: 10.1007/s11655-020-3215-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the synergistic effect of Naoxintong Capsule (NXTC, ) and Guhong Injection (GHI, ) on cerebral ischemia-reperfusion (I/R) injury. METHODS Forty-eight Sprague-Dawley rats were divided into 6 groups: control group, oxygen and glucose deprivation (OGD) group, nimodipine group (9.375 mg/kg), NXTC group (0.5 g/kg), GHI group (5 mL/kg) and NXTC+GHI group (0.5 g/kg NXTC+5 mL/kg GHI), after the onset of reperfusion and once per day for the following 7 days. Blood was collected 1 h after final administration, and the sera were collected. Cultured primary rat brain microvascular endothelial cells (rBMECs) were subjected to OGD to establish a cell injury model. Untreated rBMECs were used as blank control. The cell counting kit-8 assay was used to assess cell viability using the sera. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were assessed using an enzyme-linked immunosorbent assay. Apoptosis was evaluated after Hoechst33342 staining using fluorescence microscopy and flow cytometry. JC-1 staining was performed to assess changes in mitochondrial membrane potential. RESULTS Statistical analysis indicated that more than 95% of the cells were rBMECs. Compared with the OGD group, the cellular morphology of the all drug delivery groups improved. In particular, the combined drug group had the most significant effect. Compared with the OGD group, all drug intervention groups induced a decrease in the apoptotic rate of rBMECs, increased the SOD levels, and decreased the MDA levels (all P<0.01). Compared with the mono-therapy groups, the NXTC+GHI group exhibited a significant improvement in the number of apoptotic rBMECs (P<0.01). All drug intervention groups showed different degrees of increase in membrane potential, and the NXTC+GHI group was higher than the NXTC or GHI group (P<0.01). CONCLUSION The combinationa application of NXTC and GHI on cerebral I/R injury clearly resulted in protective benefits.
Collapse
Affiliation(s)
- Hai-Yan Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hui-Fen Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu He
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Li Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chang Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie-Hong Yang
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hai-Tong Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
30
|
Germacrone protects against oxygen-glucose deprivation/reperfusion injury by inhibiting autophagy processes in PC12 cells. BMC Complement Med Ther 2020; 20:77. [PMID: 32145743 PMCID: PMC7076837 DOI: 10.1186/s12906-020-2865-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/24/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Germacrone is an anti-inflammatory ingredient in the Chinese medicine zedoary turmeric. The purpose of this study was to explore the protective mechanism of germacrone against PC12 cells injury caused by oxygen-glucose deprivation/reperfusion (OGD/R). METHODS OGD/R injury model of PC12 cells was established by using OGD/R (2 h/24 h). The cell viability was assessed by MTT assay and LDH release. The ultrastructure of cells was observed by transmission electron microscopy (TEM). The expression of autophagy related proteins in cells was determined by Western Blot. RESULTS The results of ultrastructural observation showed that PC12 cells damaged by OGD/R showed typical autophagy characteristics. In addition, OGD/R observably up-regulated the expression of autophagy related proteins: the class III type phosphoinositide 3-kinase (PI3K III), light chain 3(LC3), and Beclin-1 in PC12 cells, and inhibited the expression of the class I type phosphoinositide 3-kinase (PI3K I), Protein kinase B (Akt), the mammalian target of rapamycin (mTOR), and B-cell lymphoma 2(Bcl-2) proteins. Furthermore, germacrone increased the cell viability of OGD/R-damaged PC12 cells by down-regulating the expression of LC3 protein in cells in a concentration-dependent manner. More importantly, germacrone significantly inhibited the expression of PI3K III, LC3, and Beclin-1 in OGD/R-injured PC12 cells, and up-regulated the expressionof PI3K I, Akt, mTOR, and Bcl-2 proteins in cells, and this inhibited or up-regulated effect was reversed by PI3K I inhibitor (ZSTK474). CONCLUSION The above results indicated that germacrone could inhibit the autophagy effect in OGD/R injury model of PC12 cells, the mechanism of inhibition was regulated by PI3K III/Beclin-1/Bcl-2 and PI3K I/Akt/mTOR pathways, thereby improving the cell viability of PC12 cells and playing a neuroprotective role, which provided a new drug for the treatment of OGD/R.
Collapse
|
31
|
Hou Y, Qieni X, Li N, Bai J, Li R, Gongbao D, Liang Y, Fan F, Wencheng D, Wang Z, Nima C, Meng X, Zhang Y, Wang X. Longzhibu disease and its therapeutic effects by traditional Tibetan medicine: Ershi-wei Chenxiang pills. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112426. [PMID: 31775011 DOI: 10.1016/j.jep.2019.112426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/14/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ershi-wei Chenxiang pills (ECP) or Aga Nixiu wan (ཨ་གར་ཉི་ཤུ།), composed of 20 Tibetan medicines, has the effect of promoting blood circulation to remove blood stasis. As a common and frequent prescription used by traditional Tibetan medicine in clinical treatment of Longzhibu disease (cerebral ischemia sequelae), it has a significant effect. However, its anti-cerebral ischemia mechanism is still unclear. MATERIALS AND METHODS The chemical components of ECP were determined by high-performance liquid chromatography and gas chromatography-mass spectrometry. SD rats were randomly divided into Sham, MCAO, Nim (20.00 mg/kg), and ECP (1.33 and 2.00 g/kg) groups, with 13 animals in each group. After 14 days of oral administration, we established a model of cerebral ischemia reperfusion injury by blocking the middle cerebral artery of rats. After 24 h of reperfusion injury, we evaluated the protective effect of ECP on ischemic brain by neural function score, TTC, H&E and Nissl staining. TUNEL fluorescence, western blot and immunohistochemistry were used to detect the phenomenon of apoptosis and the expression of apoptosis-related proteins Bax, Bcl-2, Cyto-c and activated Caspase-3. Furthermore, western blot, qRT-PCR and immunohistochemistry were employed to detect CaMKⅡ, ATF4 and c-Jun gene and protein expression. RESULTS ECP contains agarotetrol, eugenol, oleanolic acid, ursolic acid, dehydrodiisoeugenol, hydroxysafflor yellow A, kaempferide, gallic acid, alantolactone, isoalantolactone, costunolide, dehydrocostus lactone, brucine, strychnine, echinacoside, bilirubin and cholic acid. Compared with MCAO group, ECP can significantly ameliorate the neurological deficit of cerebral ischemia in rats and reduce the volume of cerebral infarction. Pathological and Nissl staining results showed that ECP sharply inhibited the inflammatory infiltration injury of neurons and increased the activity of neurons in comparation with the MCAO group. TUNEL fluorescence apoptosis results confirmed that ECP obviously inhibited the apoptosis of neurons. Meanwhile, the results of immunohistochemistry and western blot demonstrated that EPC can dramatically inhibit the expression of pro-apoptotic proteins Bax, Cyto-c and activated Caspase-3, while increase the level of anti-apoptotic protein Bcl-2. In addition, compared with MCAO group, CaMK Ⅱ gene and protein expression were improved significantly by ECP administration. while, the expression of ATF4 and c-Jun genes and proteins were decreased. CONCLUSIONS In conclusion, this study preliminarily demonstrated that the protective effect of ECP on ischemic brain is related to the improvement of neurological deficit, reducing the size of cerebral infarction, improving the activity of neurons, inhibiting the mitochondrial apoptosis pathway by regulating the protein expression of CaMKⅡ, ATF4 and c-Jun. However, further in vivo and in vitro investigations are still needed to clarify the underlying mechanism of ECP in treating cerebral ischemia sequelae.
Collapse
Affiliation(s)
- Ya Hou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiangmao Qieni
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ning Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinrong Bai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dongzhi Gongbao
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yusheng Liang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fangfang Fan
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dangzhi Wencheng
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhang Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ciren Nima
- Tibetan Traditional Medical College, Lhasa, 850000, China
| | - Xianli Meng
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaobo Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
32
|
Abstract
Appropriate autophagy has protective effects on ischemic nerve tissue, while excessive autophagy may cause cell death. The inflammatory response plays an important role in the survival of nerve cells and the recovery of neural tissue after ischemia. Many studies have found an interaction between autophagy and inflammation in the pathogenesis of ischemic stroke. This study outlines recent advances regarding the role of autophagy in the post-stroke inflammatory response as follows. (1) Autophagy inhibits inflammatory responses caused by ischemic stimulation through mTOR, the AMPK pathway, and inhibition of inflammasome activation. (2) Activation of inflammation triggers the formation of autophagosomes, and the upregulation of autophagy levels is marked by a significant increase in the autophagy-forming markers LC3-II and Beclin-1. Lipopolysaccharide stimulates microglia and inhibits ULK1 activity by direct phosphorylation of p38 MAPK, reducing the flux and autophagy level, thereby inducing inflammatory activity. (3) By blocking the activation of autophagy, the activation of inflammasomes can alleviate cerebral ischemic injury. Autophagy can also regulate the phenotypic alternation of microglia through the nuclear factor-κB pathway, which is beneficial to the recovery of neural tissue after ischemia. Studies have shown that some drugs such as resveratrol can exert neuroprotective effects by regulating the autophagy-inflammatory pathway. These studies suggest that the autophagy-inflammatory pathway may provide a new direction for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yun Mo
- Department of Neurology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yin-Yi Sun
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang-Yong Liu
- Department of Neurology, Shanghai university of medicine & health Sciences Affiliated Zhoupu hospital, Shanghai, China
| |
Collapse
|
33
|
Propofol weakens hypoxia-aroused apoptosis and autophagy via elevating microRNA-137 in neurocytes. Exp Mol Pathol 2019; 112:104327. [PMID: 31678238 DOI: 10.1016/j.yexmp.2019.104327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hypoxia was proven to cause brain cell apoptosis and autophagy. Herein, we tested the influences of propofol, a commonly used intravenous sedative hypnotic drug, on apoptosis and autophagy aroused by hypoxia stimulation in PC-12 and HT-22 cells. METHODS Followed by hypoxia and/or propofol treatment, cell viability of PC-12 and HT-22 cells, apoptosis and autophagy, along with microRNA-137 (miR-137) expression were measured, respectively. Then, miR-137 inhibitor was transfected to silence miR-137. Whether miR-137 took part in the impacts of propofol on hypoxia-exposed cells was explored. Finally, the activities of PI3K/AKT/mTOR and ERK pathways were measured. RESULTS Hypoxia stimulation aroused cell apoptosis and elevated cell autophagy in PC-12 and HT-22 cells. Propofol weakened the apoptosis and autophagy of PC-12 and HT-22 cells aroused by hypoxia. Moreover, propofol elevated the miR-137 level in PC-12 and HT-22 cells. Silencing miR-137 declined the influences of propofol on hypoxia-induced injuries. Besides, propofol promoted PI3K/AKT/mTOR and ERK pathways activation in hypoxia-exposed cells through raising miR-137. CONCLUSION Propofol weakened hypoxia-aroused apoptosis and autophagy of PC-12 and HT-22 cells might be through raising miR-137 level and thereby promoting PI3K/AKT/mTOR and ERK pathways activation.
Collapse
|
34
|
Yang S, Wang H, Yang Y, Wang R, Wang Y, Wu C, Du G. Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage. Biomed Pharmacother 2019; 117:109102. [PMID: 31228802 DOI: 10.1016/j.biopha.2019.109102] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 01/08/2023] Open
Abstract
Ischemic stroke is a cerebrovascular disease with high morbidity, high mortality, and high disability, representing a serious threat to human life and health. Clinically, the extensive injury caused by ischemic stroke results from ischemia-reperfusion (I/R) injury thrombolytic treatment. However, there are few reports on the use of medications in the subacute stage of cerebral I/R. Baicalein (5,6,7-trihydroxyflavone) is a biologically active ingredient extracted from the root of Scutellaria baicalensis Georgi. In the present study, we investigated the therapeutic effect of baicalein administered in the subacute phase of cerebral I/R injury in a rat model of ischemia induced by occlusion of the middle cerebral artery (MCA). Rats were treated daily with baicalein (200 mg/kg, i.g.) in the subacute phase (24 h after reperfusion) for 7 days. The results showed that baicalein significantly reduced neurobehavioral deficits and decreased brain infarct volume from 18.99% to 7.41%. Immunofluorescence analysis of the ischemic penumbra showed that baicalein significantly reduced expression of the M1 marker, cluster of differentiation (CD) 16 and CD86, and increased expression of the M2 marker, CD 163 and CD206, indicating that baicalein inhibited M1 transformation and promoted M2 transformation of microglia/macrophage to inhibit neuroinflammation. Moreover, baicalein suppressed NF-κB signaling by reducing IκBα phosphorylation and nuclear translocation of NF-κB/p65, which decreased the release of the pro-inflammatory factors IL-6, IL-18, and TNF-α. In addition, baicalein reduced phosphorylation of JNK, ERK and p38, which are involved modulation of microglia/macrophage M1/M2 polarization. Western blot analysis of apoptosis- and autophagy-related proteins showed that baicalein increased the Bcl-2/Bax ratio and reduced caspase-3 expression to decrease neuronal apoptosis and ameliorate neuronal loss. Baicalein also decreased the LC3-II/LC3-I ratio and promoted phosphorylation of the PI3K/Akt/mTOR signaling pathway which implied inhibition of autophagy. These observations suggest that baicalein exerts neuroprotective effects by reducing neuroinflammation, apoptosis and autophagy, and protects against cerebral I/R injury in the subacute phase in vivo.
Collapse
Affiliation(s)
- Shilun Yang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2 Nanwei Road, Beijing, 100050, China
| | - Haigang Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2 Nanwei Road, Beijing, 100050, China
| | - Yinglin Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2 Nanwei Road, Beijing, 100050, China
| | - Rui Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, No.280, Waihuan East Road, Guangzhou, 510006, China
| | - Yuehua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2 Nanwei Road, Beijing, 100050, China
| | - Chunfu Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| | - Guanhua Du
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, NO.2 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
35
|
Meng N, Gong Y, Mu X, Wang YH, Su L, Jiang CS, Zhang H. Novel Role of Heterogeneous Nuclear Ribonucleoprotein E1 in Regulation of Apoptosis and Autophagy by a Triazole Derivative in Vascular Endothelial Cells. Int J Biol Sci 2019; 15:1299-1309. [PMID: 31223288 PMCID: PMC6567801 DOI: 10.7150/ijbs.32677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/04/2019] [Indexed: 11/08/2022] Open
Abstract
Vascular endothelial cell (VEC) apoptosis and autophagy play an important role in the maintenance of vascular homeostasis. However, the association of molecular mechanisms between vascular endothelial cell apoptosis and autophagy has not been clarified. Here, we identified a novel triazole derivative, JL014, which could inhibit human umbilical vein vascular endothelial cell (HUVEC) apoptosis induced by deprivation of serum and fibroblast growth factor 2 and maintain HUVEC survival by promoting autophagy. Importantly, JL014 increased the mRNA and protein level of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) in HUVECs. In addition, knockdown of hnRNP E1 by RNA interference inhibited the effects of JL014 on VEC apoptosis and autophagy. Furthermore, we investigated the effect of JL014 on the expression of HMBOX1, a key VEC apoptosis inhibitor and autophagy inducer by inhibiting mTOR signaling and the level of cleaved caspase-3. Our results demonstrated that JL014 enhanced mRNA transcription and increased protein synthesis of HMBOX1. JL014 also inhibited mTOR signaling and the cleaved caspase-3 level. Mechanistic studies revealed that hnRNP E1 could bind to the promoter and 5'UTR of HMBOX1 and active HMBOX1 expression. Therefore, our results firmly establish hnRNP E1 as a new regulator of VEC apoptosis and autophagy through mediating HMBOX1 expression, and opened the door to a novel therapeutic drug for related vascular diseases.
Collapse
Affiliation(s)
- Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yan Gong
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xin Mu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yan Hong Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Cheng Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
36
|
Ligustilide Ameliorates the Permeability of the Blood–Brain Barrier Model In Vitro During Oxygen–Glucose Deprivation Injury Through HIF/VEGF Pathway. J Cardiovasc Pharmacol 2019; 73:316-325. [DOI: 10.1097/fjc.0000000000000664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Huang WY, Jiang C, Ye HB, Jiao JT, Cheng C, Huang J, Liu J, Zhang R, Shao JF. miR-124 upregulates astrocytic glutamate transporter-1 via the Akt and mTOR signaling pathway post ischemic stroke. Brain Res Bull 2019; 149:231-239. [PMID: 31004734 DOI: 10.1016/j.brainresbull.2019.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
Abstract
High-concentration glutamic acid (Glu) induced by ischemic stroke can be inhibited by glutamate transporter-1 (GLT-1), which is the main mechanism for preventing excessive extracellular glutamate accumulation in the central nervous system. Upregulation of miR-124 could reduce the infarct area and promote the recovery of neurological function after ischemic stroke. A previous study investigated whether miR-124 could regulate GLT-1 expression in normal culture conditions. However, the role of miR-124 in the regulation of GLT-1 expression and further mechanisms after ischemic stroke remain unclear. In this study, the effects of miR-124 on GLT-1 expression in astrocytes after ischemic stroke were explored using an in vitro model of ischemic stroke (oxygen-glucose deprivation/reperfusion, OGD/reperfusion). The expression of GLT-1 was significantly decreased with lower expression of miR-124 in astrocytes injured by OGD/reperfusion. When miR-124 expression was improved, the expression of GLT-1 was notably increased in astrocytes injured by OGD/reperfusion. The results revealed that GLT-1 expression in astrocytes had a relationship with miR-124 after OGD/reperfusion. However, a direct interaction could not be confirmed with a luciferase reporter assay. Further results demonstrated that an inhibitor of Akt could decrease the increased protein expression of GLT-1 induced by miR-124 mimics, and an inhibitor of mTOR could increase the reduced protein expression of GLT-1 caused by a miR-124 inhibitor in astrocytes injured by different OGD/reperfusion conditions. These results indicated that miR-124 could regulate GLT-1 expression in astrocytes after OGD/reperfusion through the Akt and mTOR pathway.
Collapse
Affiliation(s)
- Wei-Yi Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Chen Jiang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Han-Bin Ye
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jian-Tong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jin Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jin Liu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Rui Zhang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China
| | - Jun-Fei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, People's Republic of China.
| |
Collapse
|
38
|
Wang G, Guo H, Wang X. Platycodin D protects cortical neurons against oxygen-glucose deprivation/reperfusion in neonatal hypoxic-ischemic encephalopathy. J Cell Biochem 2019; 120:14028-14034. [PMID: 30945345 DOI: 10.1002/jcb.28677] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/29/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy is one of the leading causes of death in infants. Increasing evidence indicates that oxidative stress and apoptosis are major contributors to hypoxic-ischemic injury and can be used as particularly promising therapeutic targets. Platycodin D (PLD) is a triterpenoid saponin that exhibits antioxidant properties. The aim of this study was to evaluate the effects of PLD on hypoxic-ischemic injury in primary cortical neurons. We found that oxygen-glucose deprivation/reperfusion (OGD/R) induced inhibition of cell viability and cytotoxicity, which were attenuated by PLD treatment. PLD treatment inhibited oxidative stress induced by OGD/R, which was evidenced by the reduced level of reactive oxygen species and increased activities of catalase, superoxide dismutase, and glutathione peroxidase. Histone-DNA enzyme-linked immunosorbent assay revealed that apoptosis was significantly decreased after PLD treatment in OGD/R-treated cortical neurons. The increased bax expression and decreased bcl-2 expression induced by OGD/R were reversed by PLD treatment. Furthermore, PLD treatment caused the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in OGD/R-stimulated cortical neurons. Suppression of this pathway blocked the protective effects of PLD on OGD/R-induced cell injury. These findings suggested that PLD executes its protective effects on OGD/R-induced cell injury via regulating the PI3K/Akt/mTOR pathway in cortical neurons.
Collapse
Affiliation(s)
- Guifang Wang
- Department of Pediatrics, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Hongxiang Guo
- Department of Neonatal Pediatrics, The First Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaofang Wang
- Department of Pediatrics, Xinxiang Central Hospital, Xinxiang, Henan, China
| |
Collapse
|
39
|
Xu H, Liu T, Wang W, Su N, Yang L, Yang Z, Dou F, Cui J, Fei F, Ma J, Wen A, Ding Y. Proteomic Analysis of Hydroxysafflor Yellow A Against Cerebral Ischemia/Reperfusion Injury in Rats. Rejuvenation Res 2019; 22:503-512. [PMID: 30712471 DOI: 10.1089/rej.2018.2145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA), an active component from Chinese medicinal herb, has been applied to the prevention and treatment of cerebral ischemia/reperfusion injury (CIRI). To clarify the comprehensive mechanisms HSYA for stroke, we used label-free quantitative proteomic analysis to investigate the modulated proteins of rats subjected to CIRI and their alteration by HSYA. Neurological examination, infarct assessment, and biochemical assay were performed to validate the effects of HSYA, and the results indicated that HSYA played a significant role in brain protection. A total of 13 proteins were identified as overlapped proteins by label-free quantitative proteomic analysis. Gene Ontology and pathway analysis showed that these differentially expressed proteins were mainly enriched in the hypoxia-inducible factor 1 (HIF-1) signaling pathway. Furthermore, networks were constructed with respect to protein function interactions. The results suggested that seven proteins were identified as hub proteins between model and sham groups, while 25 proteins were identified as hub proteins between HSYA and model groups. In addition, the expressions of three overlapping proteins were validated by Western blot, and their levels were consistent with the results of label-free analysis. In conclusion, Eftud2, mTOR, Rab11, Ppp2r5e, and HIF-1 signaling pathways have been detected as key hub proteins and pathways in HSYA against CIRI through proteomic analysis. Our research has provided convincing explanations for the mechanism of HSYA against CIRI and the identified key proteins and pathways might provide novel therapeutics for CIRI.
Collapse
Affiliation(s)
- Hang Xu
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Tianlong Liu
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Wenjun Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ning Su
- Department of Radiation Oncology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Liudi Yang
- Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Fang Dou
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Jia Cui
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Jing Ma
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
40
|
Sun M, Shinoda Y, Fukunaga K. KY-226 Protects Blood-brain Barrier Function Through the Akt/FoxO1 Signaling Pathway in Brain Ischemia. Neuroscience 2018; 399:89-102. [PMID: 30579831 DOI: 10.1016/j.neuroscience.2018.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 01/05/2023]
Abstract
KY-226 is a protein tyrosine phosphatase 1B (PTP1B) inhibitor that protects neurons from cerebral ischemic injury. KY-226 restores Akt (protein kinase B) phosphorylation and extracellular signal-regulated kinase (ERK) reduction in transient middle cerebral artery occlusion (tMCAO) damage. However, the mechanisms underlying the neuroprotective effects of KY-226 are unclear. To address this, the effects of KY-226 on blood-brain barrier (BBB) dysfunction were examined in tMCAO mice. KY-226 (10 mg/kg, i.p.) was administered to ICR mice 30 min after 2 h of tMCAO. To assess Akt or ERK involvement, wortmannin (i.c.v.) or U0126 (i.v.), selective inhibitors of PI3K and ERK, respectively, were administered to mice 30 min before ischemia. BBB integrity was assessed by Evans blue leakage 24 h post-reperfusion. The levels of tight junction (TJ) proteins, ZO-1 and occludin, were measured by western blotting; ZO-1 mRNA level was measured by RT-PCR. Compared to vehicle, KY-226 treatment prevented BBB breakdown and reduction in TJ protein levels. KY-226 treatment restored ZO-1 mRNA levels post-reperfusion. Pre-administration of wortmannin or U0126 blocked the protective effects of KY-226 on ZO-1 protein and mRNA reduction in tMCAO mice. In bEnd.3 cells, lipopolysaccharide treatment reduced mRNA and protein levels of ZO-1, an effect rescued by KY-226 treatment. Further, KY-226 treatment restored phosphorylation of pAkt (T308) and its downstream target forkhead box protein O1 (FoxO1) (S256) in bEnd.3 cells. Collectively, we demonstrate that KY-226 protects BBB integrity by restoration of TJ proteins, an effect partly mediated by Akt/FoxO1 pathway activation. Thus, protection of BBB integrity likely underlies KY-226-induced neuroprotection in tMCAO mice.
Collapse
Affiliation(s)
- Meiling Sun
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan.
| |
Collapse
|
41
|
Lin J, Lin R, Li S, Wu H, Ding J, Xiang G, Li S, Wang Y, Lin D, Gao W, Kong J, Xu H, Zhou K. Salvianolic Acid B Promotes the Survival of Random-Pattern Skin Flaps in Rats by Inducing Autophagy. Front Pharmacol 2018; 9:1178. [PMID: 30405410 PMCID: PMC6206168 DOI: 10.3389/fphar.2018.01178] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/28/2018] [Indexed: 01/06/2023] Open
Abstract
Random-pattern skin flap transplantation is frequently applied in plastic and reconstructive surgery. However, the distal part of the flap often suffers necrosis due to ischemia. In this study, the effects of salvianolic acid B (Sal B) on flap survival were evaluated, and the underlying mechanisms were investigated. Sal B improved the survival area, reduced tissue edema, and increased the number of microvessels in skin flaps after 7 days, whereas an autophagy inhibitor (3-methyladenine) reversed the Sal B-induced increase in flap viability. In addition, Sal B stimulated angiogenesis, inhibited apoptosis, reduced oxidative stress, and upregulated autophagy in areas of ischemia. Moreover, the effects of Sal B on angiogenesis, apoptosis, and oxidative stress were reversed by autophagy inhibition. Overall, our findings suggest that Sal B has pro-angiogenesis, anti-apoptosis, and anti-oxidative stress effects by stimulating autophagy, which enhances the survival of random-pattern skin flaps.
Collapse
Affiliation(s)
- Jinti Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Renjin Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Shihen Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Hongqiang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Guangheng Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Shi Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yiru Wang
- Department of Neurology, Wenzhou Traditional Chinese Medicine Hospital, Wenzhou, China
| | - Dingsheng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jianzhong Kong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Shi S, Tang M, Li H, Ding H, Lu Y, Gao L, Wu Q, Zhou L, Fu Y, Xiao B, Zhang M. X‐box binding protein l splicing attenuates brain microvascular endothelial cell damage induced by oxygen‐glucose deprivation through the activation of phosphoinositide 3‐kinase/protein kinase B, extracellular signal‐regulated kinases, and hypoxia‐inducible factor‐1α/vascular endothelial growth factor signaling pathways. J Cell Physiol 2018; 234:9316-9327. [PMID: 30317635 DOI: 10.1002/jcp.27614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Shupeng Shi
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Mimi Tang
- Department of Pharmacy Xiangya Hospital, Central South University Changsha China
- Institute of Hospital Pharmacy, Xiangya Hospital, Central South University Changsha China
| | - Honglei Li
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Hui Ding
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Yangfan Lu
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Lijuan Gao
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Qian Wu
- Department of Neurology First Affiliated Hospital, Kunming Medical University Kunming China
| | - Luo Zhou
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Yujiao Fu
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Bo Xiao
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| | - Mengqi Zhang
- Department of Neurology Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
43
|
Yang J, Xu J, Han X, Wang H, Zhang Y, Dong J, Deng Y, Wang J. Lysophosphatidic Acid Is Associated With Cardiac Dysfunction and Hypertrophy by Suppressing Autophagy via the LPA3/AKT/mTOR Pathway. Front Physiol 2018; 9:1315. [PMID: 30283359 PMCID: PMC6157396 DOI: 10.3389/fphys.2018.01315] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Lysophosphatidic acid (LPA), as a phospholipid signal molecule, participates in the regulation of various biological functions. Our previous study demonstrated that LPA induces cardiomyocyte hypertrophy in vitro; however, the functional role of LPA in the post-infarct heart remains unknown. Growing evidence has demonstrated that autophagy is involved in regulation of cardiac hypertrophy. The aim of the current work was to investigate the effects of LPA on cardiac function and hypertrophy during myocardial infarction (MI) and determine the regulatory role of autophagy in LPA-induced cardiomyocyte hypertrophy. Methods:In vivo experiments were conducted in Sprague-Dawley rats subjected to MI surgery or a sham operation, and rats with MI were assigned to receive an intraperitoneal injection of LPA (1 mg/kg) or vehicle for 5 weeks. The in vitro experiments were conducted in H9C2 cardiomyoblasts. Results: LPA treatment aggravated cardiac dysfunction, increased cardiac hypertrophy, and reduced autophagy after MI in vivo. LPA suppressed autophagy activation, as indicated by a decreased LC3II-to-LC3I ratio, increased p62 expression, and reduced autophagosome formation in vitro. Rapamycin, an autophagy enhancer, attenuated LPA-induced autophagy inhibition and H9C2 cardiomyoblast hypertrophy, while autophagy inhibition with Beclin1 siRNA did not further enhance the hypertrophic response in LPA-treated cardiomyocytes. Moreover, we demonstrated that LPA suppressed autophagy through the AKT/mTOR signaling pathway because mTOR and PI3K inhibitors significantly prevented LPA-induced mTOR phosphorylation and autophagy inhibition. In addition, we found that knockdown of LPA3 alleviated LPA-mediated autophagy suppression in H9C2 cardiomyoblasts, suggesting that LPA suppresses autophagy through activation of the LPA3 and AKT/mTOR pathways. Conclusion: These findings suggest that LPA plays an important role in mediating cardiac dysfunction and hypertrophy after a MI, and that LPA suppresses autophagy through activation of the LPA3 and AKT/mTOR pathways to induce cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Jinjing Yang
- Department of Cardiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, China.,Shanxi Cardiovascular Disease Institute, Taiyuan, China.,Central Laboratory, Shanxi Cardiovascular Disease Hospital, Taiyuan, China
| | - Jiyao Xu
- Department of Cardiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, China.,Shanxi Cardiovascular Disease Institute, Taiyuan, China
| | - Xuebin Han
- Department of Cardiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, China.,Shanxi Cardiovascular Disease Institute, Taiyuan, China
| | - Hao Wang
- The Affiliated Cardiovascular Disease Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuean Zhang
- Department of Cardiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, China.,Shanxi Cardiovascular Disease Institute, Taiyuan, China
| | - Jin Dong
- Department of Cardiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, China.,Shanxi Cardiovascular Disease Institute, Taiyuan, China
| | - Yongzhi Deng
- Shanxi Cardiovascular Disease Institute, Taiyuan, China.,Department of Cardiovascular Surgery, Shanxi Cardiovascular Disease Hospital, Taiyuan, China
| | - Jingping Wang
- Department of Cardiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, China.,Shanxi Cardiovascular Disease Institute, Taiyuan, China
| |
Collapse
|
44
|
Glycophagy: An emerging target in pathology. Clin Chim Acta 2018; 484:298-303. [DOI: 10.1016/j.cca.2018.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/14/2022]
|