1
|
Mishra S, Mishra Y, Kumar A. Marine-derived bioactive compounds for neuropathic pain: pharmacology and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03667-7. [PMID: 39797987 DOI: 10.1007/s00210-024-03667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management. Marine organisms, including fungi, algae, cone snails, sponges, soft corals, tunicates, and fish, produce a diverse range of secondary metabolites with significant pharmacological properties. These include peptides (e.g., conopeptides, piscidin 1), non-peptides (e.g., guanidinium toxins, astaxanthin, docosahexaenoic acid, fucoidan, apigenin, fumagillin, aaptamine, flexibilide, excavatolide B, capnellenes, austrasulfones, lemnalol), and crude extracts (e.g., Spirulina platensis, Dunaliella salina, Cliothosa aurivilli). These compounds exhibit diverse mechanisms of action, such as modulating ion channels (e.g., transient receptor potential channels, voltage-gated sodium, calcium, and potassium channels, and G protein-coupled inwardly rectifying potassium channels), interacting with cell-surface receptors (e.g., nicotinic acetylcholine, NMDA, kainate, GABAB, and neurotensin receptors), inhibiting norepinephrine transporters, reducing oxidative stress, and attenuating neuroinflammation. These effects collectively contribute to alleviating nerve degeneration and symptoms of neuropathic pain, including hyperalgesia, allodynia, and associated psychomotor disturbances. Marine-derived bioactive compounds represent promising alternatives to conventional neuropathic pain treatments, to advance their development and assess their integration into neuropathic pain management strategies.
Collapse
Affiliation(s)
- Swapnil Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
| |
Collapse
|
2
|
Hashemi B, Fakhri S, Kiani A, Abbaszadeh F, Miraghaee S, Mohammadi M, Echeverría J. Anti-neuropathic effects of astaxanthin in a rat model of chronic constriction injury: passing through opioid/benzodiazepine receptors and relevance to its antioxidant and anti-inflammatory effects. Front Pharmacol 2024; 15:1467788. [PMID: 39654618 PMCID: PMC11625551 DOI: 10.3389/fphar.2024.1467788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Neuropathic pain is a debilitating neurological disorder and is on the rise. Since no effective treatment has been so far approved to combat the complex pathological mechanisms behind neuropathic pain, finding new therapeutic candidates is of great importance. Astaxanthin (AST) is a carotenoid with strong antioxidant, and anti-inflammatory activities. Purpose The present research aimed to evaluate the ameliorative effects of AST on a rat model of neuropathic pain. Methods To induce neuropathic pain, a chronic constriction injury (CCI) model was employed. Accordingly, Wistar rats were divided into nine groups of six including sham, negative control group (CCI), positive control group gabapentin (100 mg/kg), AST (5, 10 mg/kg), flumazenil (0.5 mg/kg), naloxone (0.1 mg/kg), AST (10 mg/kg) + flumazenil (0.5 mg/kg), and AST (10 mg/kg) + naloxone (0.1 mg/kg) were administered intraperitoneally on days 1, 3, 5, 7, 10, and 14. To check the experimental signs of neuropathic pain and motor dysfunction, hot plate, acetone drop, and open field tests were used at the same time points. Additionally, biochemical assay and zymography were done on days 7 and 14 to assess the changes in catalase, glutathione and nitrite, as well as matrix metalloproteinases (MMP-2 and MMP-9). Besides, histological evaluations were performed for tissue damages on days 7 and 14. Results and discussion Results indicated that intraperitoneal injection of AST improved allodynia, hyperalgesia, and locomotor activity after CCI. AST also increased catalase and glutathione while suppressing nitrite, MMP-2, and MMP-9 activity through opioid/benzodiazepine receptors. Conclusion The results highlighted AST as a promising candidate against neuropathic pain with beneficial effects on motor function by suppressing inflammatory mediators, and augmenting antioxidant factors, passing through opioid/benzodiazepine receptors.
Collapse
Affiliation(s)
- Boshra Hashemi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mohammadi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
3
|
Liu Y, Cai X, Shi B, Mo Y, Zhang J, Luo W, Yu B, Li X. Mechanisms and Therapeutic Prospects of Microglia-Astrocyte Interactions in Neuropathic Pain Following Spinal Cord Injury. Mol Neurobiol 2024:10.1007/s12035-024-04562-1. [PMID: 39470872 DOI: 10.1007/s12035-024-04562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
Neuropathic pain is a prevalent and debilitating condition experienced by the majority of individuals with spinal cord injury (SCI). The complex pathophysiology of neuropathic pain, involving continuous activation of microglia and astrocytes, reactive gliosis, and altered neuronal plasticity, poses significant challenges for effective treatment. This review focuses on the pivotal roles of microglia and astrocytes, the two major glial cell types in the central nervous system, in the development and maintenance of neuropathic pain after SCI. We highlight the extensive bidirectional interactions between these cells, mediated by the release of inflammatory mediators, neurotransmitters, and neurotrophic factors, which contribute to the amplification of pain signaling. Understanding the microglia-astrocyte crosstalk and its impact on neuronal function is crucial for developing novel therapeutic strategies targeting neuropathic pain. In addition, this review discusses the fundamental biology, post-injury pain roles, and therapeutic prospects of microglia and astrocytes in neuropathic pain after SCI and elucidates the specific signaling pathways involved. We also speculated that the extracellular matrix (ECM) can affect the glial cells as well. Furthermore, we also mentioned potential targeted therapies, challenges, and progress in clinical trials, as well as new biomarkers and therapeutic targets. Finally, other relevant cell interactions in neuropathic pain and the role of glial cells in other neuropathic pain conditions have been discussed. This review serves as a comprehensive resource for further investigations into the microglia-astrocyte interaction and the detailed mechanisms of neuropathic pain after SCI, with the aim of improving therapeutic efficacy.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yajie Mo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianmin Zhang
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenting Luo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Jiang W, Yu W, Tan Y. Activation of GPR55 alleviates neuropathic pain and chronic inflammation. Biotechnol Appl Biochem 2024. [PMID: 39219239 DOI: 10.1002/bab.2656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Neuropathic pain (NP) significantly impacts the quality of life due to its prolonged duration and lack of effective treatment. Recent findings suggest that targeting neuroinflammation is a promising approach for treating NP. G protein-coupled receptor 55 (GPR55), a member of the GPCR family, plays an important role in neuroinflammatory regulation. CID16020046, a GPR55 agonist, possesses promising anti-neuroinflammatory effects. Herein, the therapeutic effect of CID16020046 on NP was investigated in an NP rat model. The NP model was established using the unilateral sciatic nerve chronic constriction injury (CCI) assay. Both sham and CCI rats were intraperitoneally administered with 20 mg/kg CID16020046. NP was assessed using paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). First, we showed that GPR55 was downregulated in the spinal dorsal horn of CCI rats. After CCI rats were treated with CID16020046, the values of PWT and PWL were increased, indicating their effect on pain relief. The treated rats had attenuated release of inflammatory cytokines in the spinal cord, decreased spinal malondialdehyde (MDA) levels, and increased spinal glutathione peroxidase (GSH-PX) activity. Additionally, the increased levels of phosphorylated nuclear factor (NF)-κB p65 in CCI rats were significantly alleviated by CID16020046 treatment. Mechanistically, we showed that CID16020046 significantly suppressed the activation of the Janus kinase (JAK2)/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway in the spinal cord of CCI-treated rats. However, Colivelin TFA (a STAT3 agonist) abolished the effect of CID16020046 on JAK2/STAT3 activation. In conclusion, our data demonstrate that the activation of GPR55 by CID16020046 alleviates NP and neuroinflammation in CCI rats by mediating the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Weiqun Jiang
- Department of Anesthesiology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Wenbin Yu
- Department of Anesthesiology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Yu Tan
- Department of Anesthesiology, Nanchang First Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Adıgüzel E, Ülger TG. A marine-derived antioxidant astaxanthin as a potential neuroprotective and neurotherapeutic agent: A review of its efficacy on neurodegenerative conditions. Eur J Pharmacol 2024; 977:176706. [PMID: 38843946 DOI: 10.1016/j.ejphar.2024.176706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Astaxanthin is a potent lipid-soluble carotenoid produced by several different freshwater and marine microorganisms, including microalgae, bacteria, fungi, and yeast. The proven therapeutic effects of astaxanthin against different diseases have made this carotenoid popular in the nutraceutical market and among consumers. Recently, astaxanthin is also receiving attention for its effects in the co-adjuvant treatment or prevention of neurological pathologies. In this systematic review, studies evaluating the efficacy of astaxanthin against different neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebrovascular diseases, and spinal cord injury are analyzed. Based on the current literature, astaxanthin shows potential biological activity in both in vitro and in vivo models. In addition, its preventive and therapeutic activities against the above-mentioned diseases have been emphasized in studies with different experimental designs. In contrast, none of the 59 studies reviewed reported any safety concerns or adverse health effects as a result of astaxanthin supplementation. The preventive or therapeutic role of astaxanthin may vary depending on the dosage and route of administration. Although there is a consensus in the literature regarding its effectiveness against the specified diseases, it is important to determine the safe intake levels of synthetic and natural forms and to determine the most effective forms for oral intake.
Collapse
Affiliation(s)
- Emre Adıgüzel
- Karamanoğlu Mehmetbey University, Faculty of Health Sciences, Department of Nutrition and Dietetics, 70100, Karaman, Turkey.
| | - Taha Gökmen Ülger
- Bolu Abant İzzet Baysal University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Bolu, Turkey
| |
Collapse
|
6
|
Bagheri Bavandpouri FS, Azizi A, Abbaszadeh F, Kiani A, Farzaei MH, Mohammadi-Noori E, Fakhri S, Echeverría J. Polydatin attenuated neuropathic pain and motor dysfunction following spinal cord injury in rats by employing its anti-inflammatory and antioxidant effects. Front Pharmacol 2024; 15:1452989. [PMID: 39193334 PMCID: PMC11347411 DOI: 10.3389/fphar.2024.1452989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Background Considering the complex pathological mechanisms behind spinal cord injury (SCI) and the adverse effects of present non-approved drugs against SCI, new studies are needed to introduce novel multi-target active ingredients with higher efficacy and lower side effects. Polydatin (PLD) is a naturally occurring stilbenoid glucoside recognized for its antioxidative and anti-inflammatory properties. This study aimed to assess the effects of PLD on sensory-motor function following SCI in rats. Methods Following laminectomy and clip compression injury at the thoracic 8 (T8)-T9 level of the spinal cord, rats were randomly assigned to five groups: Sham, SCI, and three groups receiving different doses of PLD treatment (1, 2, and 3 mg/kg). Over 4 weeks, behavioral tests were done such as von Frey, acetone drop, hot plate, Basso-Beattie-Bresnahan, and inclined plane test. At the end of the study, changes in catalase and glutathione activity, nitrite level, activity of matrix metalloproteinase 2 (MMP2) and MMP9 as well as spinal tissue remyelination/neurogenesis, were evaluated. Results The results revealed that PLD treatment significantly improved the behavioral performance of the animals starting from the first week after SCI. Additionally, PLD increased catalase, and glutathione levels, and MMP2 activity while reduced serum nitrite levels and MMP9. These positive effects were accompanied by a reduction in the size of the lesion and preservation of neuronal count. Conclusion In conclusion, PLD showed neuroprotective effects in SCI rats by employing anti-inflammatory and antioxidant effects, through which improve sensory and motor function.
Collapse
Affiliation(s)
| | - Atefeh Azizi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Kiani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
7
|
Utomo NP, Pinzon RT, Latumahina PK, Damayanti KRS. Astaxanthin and improvement of dementia: A systematic review of current clinical trials. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 7:100226. [PMID: 39036318 PMCID: PMC11260299 DOI: 10.1016/j.cccb.2024.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 07/23/2024]
Abstract
Worldwide, the incidence of neurodegenerative diseases especially dementia is steadily increasing due to the aging population. Abundant research emerges on the probability of combating or preventing the degeneration process, with the most established one being to tackle the existence of oxidative stress and free radicals production due to their nature of aggravating dementia. Astaxanthin, a marine carotenoid, was proven to be a protective agent of cerebral ischemia through many animal model clinical trials. This review summarizes the evidence of Astaxanthin's benefits for cognitive function across clinical trials done in older age. The results are of interest as its supplementation does not exhibit unwanted issues on the consumer based on physical and laboratory examinations. Despite not being supported statistically, however, subjective and objective cognitive amelioration were reported according to the majority of this review's trial subjects. Although there is no clear and direct mechanism for cognitive improvement by Astaxanthin activity in the body systems, the encouragement of Astaxanthin supplementation should be considered as the elderly with dementia may highly benefit from the improved cognitive function.
Collapse
Affiliation(s)
- Nunki Puspita Utomo
- Faculty of Medicine, Duta Wacana Christian University/ Department of Neurology, Bethesda Hospital, Yogyakarta, Indonesia
| | - Rizaldy Taslim Pinzon
- Faculty of Medicine, Duta Wacana Christian University/ Department of Neurology, Bethesda Hospital, Yogyakarta, Indonesia
| | - Patrick Kurniawan Latumahina
- Faculty of Medicine, Duta Wacana Christian University/ Department of Neurology, Bethesda Hospital, Yogyakarta, Indonesia
| | - Kadex Reisya Sita Damayanti
- Faculty of Medicine, Duta Wacana Christian University/ Department of Neurology, Bethesda Hospital, Yogyakarta, Indonesia
| |
Collapse
|
8
|
Qin H, Liu X, Ding Q, Liu H, Ma C, Wei Y, Lv Y, Wang S, Ren Y. Astaxanthin reduces inflammation and promotes a chondrogenic phenotype by upregulating SIRT1 in osteoarthritis. Knee 2024; 48:83-93. [PMID: 38555717 DOI: 10.1016/j.knee.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE To investigate the effects of astaxanthin (AST) on mouse osteoarthritis (OA) and lipopolysaccharide (LPS)-induced ATDC5 cell damage and to explore whether SIRT1 protein plays a role. METHODS In this study, some mouse OA models were constructed by anterior cruciate ligament transection (ACLT). Imaging, molecular biology and histopathology methods were used to study the effect of AST administration on traumatic OA in mice. In addition, LPS was used to stimulate ATDC5 cells to mimic the inflammatory response of OA. The effects of AST on the cell activity, inflammatory cytokines, matrix metalloproteinases and collagen type II levels were studied by CCK8 activity assay, reverse transcription polymerase chain reaction and protein imprinting. The role of SIRT1 protein was also detected. RESULTS In the mouse OA model, the articular surface collapsed, the articular cartilage thickness and cartilage matrix protein abundance were significantly decreased, while the expression of inflammatory cytokines and matrix metalloproteinases was increased; but AST treatment reversed these effects. Meanwhile, AST pretreatment could partially reverse LPS-induced ATDC5 cell damage and upregulate SIRT1 expression, but this protective effect of AST was attenuated by concurrent administration of the SIRT1 inhibitor Ex527. CONCLUSION AST can protect against the early stages of OA by affecting SIRT1 signalling, suggesting that AST might be a potential therapeutic agent for OA treatment.
Collapse
Affiliation(s)
- Haonan Qin
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, People's Republic of China
| | - Xingjing Liu
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Qirui Ding
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, People's Republic of China
| | - Huan Liu
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, People's Republic of China
| | - Cheng Ma
- Department of Orthopedics, The First Affliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Yifan Wei
- Department of Orthopedics, The First Affliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - You Lv
- Department of Orthopedics, The First Affliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Shouguo Wang
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, People's Republic of China
| | - Yongxin Ren
- Department of Orthopedics, The First Affliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Atoki AV, Aja PM, Shinkafi TS, Ondari EN, Awuchi CG. Naringenin: its chemistry and roles in neuroprotection. Nutr Neurosci 2024; 27:637-666. [PMID: 37585716 DOI: 10.1080/1028415x.2023.2243089] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
According to epidemiological research, as the population ages, neurological illnesses are becoming a bigger issue. Despite improvements in the treatment of these diseases, there are still widespread worries about how to find a long-lasting remedy. Several neurological diseases can be successfully treated with natural substances. As a result, current research has been concentrated on finding effective neuroprotective drugs with improved efficacy and fewer side effects. Naringenin is one potential treatment for neurodegenerative diseases. Many citrus fruits, tomatoes, bergamots, and other fruits are rich in naringenin, a flavonoid. This phytochemical is linked to a variety of biological functions. Naringenin has attracted a lot of interest for its ability to exhibit neuroprotection through several mechanisms. In the current article, we present evidence from the literature that naringenin reduces neurotoxicity and oxidative stress in brain tissues. Also, the literatures that are currently accessible shows that naringenin reduces neuroinflammation and other neurological anomalies. Additionally, we found several studies that touted naringenin as a promising anti-amyloidogenic, antidepressant, and neurotrophic treatment option. This review's major goal is to reflect on advancements in knowledge of the molecular processes that underlie naringenin's possible neuroprotective effects. Furthermore, this article also provides highlights of Naringenin with respect to its chemistry and pharmacokinetics.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
10
|
Jaberi KR, Alamdari-palangi V, Savardashtaki A, Vatankhah P, Jamialahmadi T, Tajbakhsh A, Sahebkar A. Modulatory Effects of Phytochemicals on Gut-Brain Axis: Therapeutic Implication. Curr Dev Nutr 2024; 8:103785. [PMID: 38939650 PMCID: PMC11208951 DOI: 10.1016/j.cdnut.2024.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
This article explores the potential therapeutic implications of phytochemicals on the gut-brain axis (GBA), which serves as a communication network between the central nervous system and the enteric nervous system. Phytochemicals, which are compounds derived from plants, have been shown to interact with the gut microbiota, immune system, and neurotransmitter systems, thereby influencing brain function. Phytochemicals such as polyphenols, carotenoids, flavonoids, and terpenoids have been identified as having potential therapeutic implications for various neurological disorders. The GBA plays a critical role in the development and progression of various neurological disorders, including Parkinson's disease, multiple sclerosis, depression, anxiety, and autism spectrum disorders. Dysbiosis, or an imbalance in gut microbiota composition, has been associated with a range of neurological disorders, suggesting that modulating the gut microbiota may have potential therapeutic implications for these conditions. Although these findings are promising, further research is needed to elucidate the optimal use of phytochemicals in neurological disorder treatment, as well as their potential interactions with other medications. The literature review search was conducted using predefined search terms such as phytochemicals, gut-brain axis, neurodegenerative, and Parkinson in PubMed, Embase, and the Cochrane library.
Collapse
Affiliation(s)
- Khojasteh Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahab Alamdari-palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooya Vatankhah
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Sheethal S, Ratheesh M, Jose SP, Sandya S, Samuel S, Madhavan J. Anti-insomnia Effect of a Polyherbal Formulation on P-chlorophenyalanine Induced Experimental Animal Model. Neurochem Res 2024; 49:327-337. [PMID: 37768468 DOI: 10.1007/s11064-023-04035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Sleep is a dynamic and controlled set of physiological and behavioural practices during which the stabilisation and restoration processes of the body take place properly. Therefore, sleep disorders, especially chronic insomnia, can harm an individual's physical and mental health. However, the therapeutic alternatives are limited and possess severe side effects. Thus, in this study, we aimed to investigate the anti-insomnia effect of a polyherbal formulation (Sleep) (SLP) on p-chlorophenyalanine (PCPA) induced insomnia in rats. Intraperitoneal injection of PCPA induced the experimental condition, and the therapeutic effect of SLP was evaluated by studying the sleep pattern and expression of various neurotransmitters and receptors, along with neurotrophins. Moreover, insomnia-associated oxidative stress and inflammation were also studied. From the findings, we found that the SLP-supplemented animals improved their sleeping behaviour and that the major neurotransmitters, hormones, and receptors were maintained at an equilibrium level. Furthermore, the neurotrophin level was increased and pro-inflammatory cytokines were reduced. The evaluation of oxidative stress markers shows that the antioxidants were significantly boosted, and as a result, lipid peroxidation was prevented. The overall findings suggest that SLP can be used as an effective medication for the treatment of sleep disorders like insomnia as it triggers the major neurotransmitter system.
Collapse
Affiliation(s)
- S Sheethal
- Department of Biochemistry, St. Thomas College, Palai, Kottayam, Kerala, 686574, India
| | - M Ratheesh
- Department of Biochemistry, St. Thomas College, Palai, Kottayam, Kerala, 686574, India.
| | - Svenia P Jose
- Department of Biochemistry, St. Thomas College, Palai, Kottayam, Kerala, 686574, India
| | - S Sandya
- -Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sarala Samuel
- -Research and Development, Kerala Ayurveda Ltd, Athani, Ernakulam, Kerala, India
| | | |
Collapse
|
12
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
13
|
Ciapała K, Mika J. Advances in Neuropathic Pain Research: Selected Intracellular Factors as Potential Targets for Multidirectional Analgesics. Pharmaceuticals (Basel) 2023; 16:1624. [PMID: 38004489 PMCID: PMC10675751 DOI: 10.3390/ph16111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. Unlike acute pain, which is short-term and starts suddenly in response to an injury, neuropathic pain arises from somatosensory nervous system damage or disease, is usually chronic, and makes every day functioning difficult, substantially reducing quality of life. The main reason for the lack of effective pharmacotherapies for neuropathic pain is its diverse etiology and the complex, still poorly understood, pathophysiological mechanism of its progression. Numerous experimental studies, including ours, conducted over the last several decades have shown that the development of neuropathic pain is based on disturbances in cell activity, imbalances in the production of pronociceptive factors, and changes in signaling pathways such as p38MAPK, ERK, JNK, NF-κB, PI3K, and NRF2, which could become important targets for pharmacotherapy in the future. Despite the availability of many different analgesics, relieving neuropathic pain is still extremely difficult and requires a multidirectional, individual approach. We would like to point out that an increasing amount of data indicates that nonselective compounds directed at more than one molecular target exert promising analgesic effects. In our review, we characterize four substances (minocycline, astaxanthin, fisetin, and peimine) with analgesic properties that result from a wide spectrum of actions, including the modulation of MAPKs and other factors. We would like to draw attention to these selected substances since, in preclinical studies, they show suitable analgesic properties in models of neuropathy of various etiologies, and, importantly, some are already used as dietary supplements; for example, astaxanthin and fisetin protect against oxidative stress and have anti-inflammatory properties. It is worth emphasizing that the results of behavioral tests also indicate their usefulness when combined with opioids, the effectiveness of which decreases when neuropathy develops. Moreover, these substances appear to have additional, beneficial properties for the treatment of diseases that frequently co-occur with neuropathic pain. Therefore, these substances provide hope for the development of modern pharmacological tools to not only treat symptoms but also restore the proper functioning of the human body.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
14
|
Abbaszadeh F, Jorjani M, Joghataei MT, Raminfard S, Mehrabi S. Astaxanthin ameliorates spinal cord edema and astrocyte activation via suppression of HMGB1/TLR4/NF-κB signaling pathway in a rat model of spinal cord injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3075-3086. [PMID: 37145127 DOI: 10.1007/s00210-023-02512-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Spinal cord edema is a quick-onset phenomenon with long-term effects. This complication is associated with inflammatory responses, as well as poor motor function. No effective treatment has been developed against spinal edema, which urges the need to provide novel therapies. Astaxanthin (AST) is a fat-soluble carotenoid with anti-inflammatory effects and a promising candidate for treating neurological disorders. This study aimed to investigate the underlying mechanism of AST on the inhibition of spinal cord edema, astrocyte activation, and reduction of inflammatory responsesin a rat compression spinal cord injury (SCI) model. Male rats underwent laminectomy at thoracic 8-9, and the SCI model was induced using an aneurysm clip. After SCI, rats received dimethyl sulfoxide or AST via intrathecal injection. The effects of AST were examined on the motor function, spinal cord edema, integrity of blood-spinal cord barrier (BSCB), and expression of high mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), glial fibrillary acidic protein (GFAP), and aquaporin-4 (AQP4), and matrix metallopeptidase- 9 (MMP-9) post-SCI. We showed that AST potentially improved the recovery of motor function and inhibited the spinal cord edema via maintaining the integrity of BSCB, reducing the expression of HMGB1, TLR4, and NF-κB, MMP-9 as well as downregulation of astrocyte activation (GFAP) and AQP4 expression. AST improves motor function and reduces edema and inflammatory responses in the spinal tissue. These effects are mediated by suppression of the HMGB1/TLR4/NF-κB signaling pathway, suppressing post-SCI astrocyte activation, and decreasing AQP4 and MMP-9 expression.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran.
- Department of Innovation in Medical Education, Faculty of Medicine, Ottawa University, Ottawa, Canada.
| | - Samira Raminfard
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institue, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
15
|
Zhou LY, Wu ZM, Chen XQ, Yu BB, Pan MX, Fang L, Li J, Cui XJ, Yao M, Lu X. Astaxanthin promotes locomotor function recovery and attenuates tissue damage in rats following spinal cord injury: a systematic review and trial sequential analysis. Front Neurosci 2023; 17:1255755. [PMID: 37881327 PMCID: PMC10595034 DOI: 10.3389/fnins.2023.1255755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition with few therapeutic options. Astaxanthin (AST), a natural nutritional supplement with powerful antioxidant activities, is finding its new application in the field of SCI. Here, we performed a systematic review to assess the neurological roles of AST in rats following SCI, and assessed the potential for clinical translation. Searches were conducted on PubMed, Embase, Cochrane Library, the Web of Science, China National Knowledge Infrastructure, WanFang data, Vip Journal Integration Platform, and SinoMed databases. Animal studies that evaluated the neurobiological roles of AST in a rat model of SCI were included. A total of 10 articles were included; most of them had moderate-to-high methodological quality, while the overall quality of evidence was not high. Generally, the meta-analyses revealed that rats treated with AST exhibited an increased Basso, Beattie, and Bresnahan (BBB) score compared with the controls, and the weighted mean differences (WMDs) between those two groups showed a gradual upward trend from days 7 (six studies, n = 88, WMD = 2.85, 95% CI = 1.83 to 3.87, p < 0.00001) to days 28 (five studies, n = 76, WMD = 6.42, 95% CI = 4.29 to 8.55, p < 0.00001) after treatment. AST treatment was associated with improved outcomes in spared white matter area, motor neuron survival, and SOD and MDA levels. Subgroup analyses indicated there were differences in the improvement of BBB scores between distinct injury types. The trial sequential analysis then firmly proved that AST could facilitate the locomotor recovery of rats following SCI. In addition, this review suggested that AST could modulate oxidative stress, neuroinflammation, neuron loss, and autophagy via multiple signaling pathways for treating SCI. Collectively, with a protective effect, good safety, and a systematic action mechanism, AST is a promising candidate for future clinical trials of SCI. Nonetheless, in light of the limitations of the included studies, larger and high-quality studies are needed for verification.
Collapse
Affiliation(s)
- Long-yun Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi-ming Wu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-qing Chen
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bin-bin Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng-xiao Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Fang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue-jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Qiao L, Tang Q, An Z, Qi J. Minocycline relieves neuropathic pain in rats with spinal cord injury via activation of autophagy and suppression of PI3K/Akt/mTOR pathway. J Pharmacol Sci 2023; 153:12-21. [PMID: 37524449 DOI: 10.1016/j.jphs.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVE In this study, we studied whether minocycline hydrochloride improved neuropathic pain induced by spinal cord injury (SCI) in rats through PI3K/Akt pathway. METHODS The SCI was induced by compressed at level of T9-T11 of spinal cord in Sprague Dawley male rats. Animals were given different concentrations of minocycline (3 mg/kg, 30 mg/kg, 90 mg/kg) at the first and 24 h after SCI, then subsequently every 7, 12, 16, 20, 25 days via peroral route. The locomotor function was assessed by Basso Mouse Scale (BMS). The changes of spinal cord tissues were observed by HE. The inflammatory cytokines in spinal cord, IL-6, IL-1β and TNF-α, were measured by ELISA. The LC3B levels of spinal cord were observed by immunofluorescence. The autophagy related proteins and PI3K/AKT pathway related proteins were analysed by Western blot. Furthermore, the PI3K/AKT pathway inhibitor LY294002, and activator IGF-1 were used to confirm the mechanism of minocycline. RESULTS Contrasted to sham group, the inflammatory response in spinal cord was enhanced after SCI. Compared with the SCI rats, minocycline treatment significantly improved the locomotor activity, pathological injury of spinal cord, suppressed the levels of inflammatory factors. In addition, minocycline treatment upregulated autophagy response in damaged spinal cord through increasing LC3B, Beclin-1 and decreasing P62. The results of mechanism study showed that minocycline treatment clearly suppressed phosphorylation of PI3K, Akt and mTOR proteins expression. CONCLUSION Minocycline could improve neuropathic pain induced by SCI through activating autophagy and inhibiting PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Leyan Qiao
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Qian Tang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Zhongzhe An
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China.
| | - Jun Qi
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China.
| |
Collapse
|
17
|
Cunha SA, Borges S, Baptista-Silva S, Ribeiro T, Oliveira-Silva P, Pintado M, Batista P. Astaxanthin impact on brain: health potential and market perspective. Crit Rev Food Sci Nutr 2023; 64:11067-11090. [PMID: 37417323 DOI: 10.1080/10408398.2023.2232866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Nowadays, there is an emergent interest in new trend-driven biomolecules to improve health and wellbeing, which has become an interesting and promising field, considering their high value and biological potential. Astaxanthin is one of these promising biomolecules, with impressive high market growth, especially in the pharmaceutical and food industries. This biomolecule, obtained from natural sources (i.e., microalgae), has been reported in the literature to have several beneficial health effects due to its biological properties. These benefits seem to be mainly associated with Astaxanthin's high antioxidant and anti-inflammatory properties, which may act on several brain issues, thus attenuating symptoms. In this sense, several studies have demonstrated the impact of astaxanthin on a wide range of diseases, namely on brain disorders (such as Alzheimer's disease, Parkinson, depression, brain stroke and autism). Therefore, this review highlights its application in mental health and illness. Furthermore, a S.W.O.T. analysis was performed to display an approach from the market/commercial perspective. However, to bring the molecule to the market, there is still a need for more studies to increase deep knowledge regarding the real impact and mechanisms in the human brain.HIGHLIGHTSAstaxanthin has been mainly extracted from the algae Haematococcus pluvialisAstaxanthin, bioactive molecule with high antioxidant and anti-inflammatory propertiesAstaxanthin has an important protective effect on brain disordersAstaxanthin is highly marketable, mainly for food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sara A Cunha
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sandra Borges
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Sara Baptista-Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Tânia Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Oliveira-Silva
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Patrícia Batista
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- Universidade Católica Portuguesa, Research Centre for Human Development, Human Neurobehavioral Laboratory, Porto, Portugal
| |
Collapse
|
18
|
Shehata MK, Ismail AA, Kamel MA. Nose to Brain Delivery of Astaxanthin–Loaded Nanostructured Lipid Carriers in Rat Model of Alzheimer’s Disease: Preparation, in vitro and in vivo Evaluation. Int J Nanomedicine 2023; 18:1631-1658. [PMID: 37020692 PMCID: PMC10069509 DOI: 10.2147/ijn.s402447] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Background Astaxanthin (AST) is a second-generation antioxidant with anti-inflammatory and neuroprotective properties and could be a promising candidate for Alzheimer's disease (AD) therapy, but is shows poor oral bioavailability due to its high lipophilicity. Purpose This study aimed to prepare and evaluate AST-loaded nanostructured lipid carriers (NLCs), for enhanced nose-to-brain drug delivery to improve its therapeutic efficacy in rat model of AD. Methods AST-NLCs were prepared using hot high-pressure homogenization technique, and processing parameters such as total lipid-to-drug ratio, solid lipid-to-liquid lipid ratio, and concentration of surfactant were optimized. Results The optimized AST-NLCs had a mean particle size of 142.8 ± 5.02 nm, polydispersity index of 0.247 ± 0.016, zeta potential of -32.2 ± 7.88 mV, entrapment efficiency of 94.1 ± 2.46%, drug loading of 23.5 ± 1.48%, and spherical morphology as revealed by transmission electron microscopy. Differential scanning calorimetry showed that AST was molecularly dispersed in the NLC matrix in an amorphous state, whereas Fourier transform infrared spectroscopy indicated that there is no interaction between AST and lipids. AST displayed a biphasic release pattern from NLCs; an initial burst release followed by sustained release for 24 h. AST-NLCs were stable at 4-8 ±2°C for six months. Intranasal treatment of AD-like rats with the optimized AST-NLCs significantly decreased oxidative stress, amyloidogenic pathway, neuroinflammation and apoptosis, and significantly improved the cholinergic neurotransmission compared to AST-solution. This was observed by the significant decline in the levels of malondialdehyde, nuclear factor-kappa B, amyloid beta (Aβ1‑42), caspase-3, acetylcholinesterase, and β-site amyloid precursor protein cleaving enzyme-1 expression, and significant increase in the contents of acetylcholine and glutathione after treatment with AST-NLCs. Conclusion NLCs enhanced the intranasal delivery of AST and significantly improved its therapeutic properties.
Collapse
Affiliation(s)
- Mustafa K Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Correspondence: Mustafa K Shehata, Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Khartoum Square, Azzarita, Alexandria, 21521, Egypt, Tel +20 1114740302, Fax +20 3 4871668, Email ;
| | - Assem A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Fullam T, Armon C, Barkhaus P, Barnes B, Beauchamp M, Benatar M, Bertorini T, Bowser R, Bromberg M, Mascias Cadavid J, Carter GT, Dimachkie M, Ennist D, Feldman EL, Heiman-Patterson T, Jhooty S, Lund I, Mcdermott C, Pattee G, Ratner D, Wicks P, Bedlack R. ALSUntangled # 69: astaxanthin. Amyotroph Lateral Scler Frontotemporal Degener 2023:1-5. [PMID: 36694292 DOI: 10.1080/21678421.2023.2171302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ALSUntangled reviews alternative and off-label treatments for people living with amyotrophic lateral sclerosis (PALS). Here we review astaxanthin which has plausible mechanisms for slowing ALS progression including antioxidant, anti-inflammatory, and anti-apoptotic effects. While there are no ALS-specific pre-clinical studies, one verified "ALS reversal" occurred in a person using a combination of alternative therapies which included astaxanthin. There have been no trials of astaxanthin in people living with ALS. Natural astaxanthin appears to be safe and inexpensive. Based on the above information, we support further pre-clinical and/or clinical trials of astaxanthin in disease models and PALS, respectively, to further elucidate efficacy.
Collapse
Affiliation(s)
| | - Carmel Armon
- Department of Neurology, Loma Linda University, Loma Linda, CA, USA
| | - Paul Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Benjamin Barnes
- Department of Neurology, Medical College of Georgia, Augusta, GA, USA
| | | | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Tulio Bertorini
- Neurology Department, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark Bromberg
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Gregory T Carter
- Department of Rehabilitation, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Mazen Dimachkie
- Department of Neurology, University of Kansas, Kansas City, KS, USA
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Sartaj Jhooty
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Gary Pattee
- Department of Neurology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Paul Wicks
- Independent Consultant, Lichfield, UK, and
| | | |
Collapse
|
20
|
Bajaj S, Gupta S. Nutraceuticals: A Promising Approach Towards Diabetic Neuropathy. Endocr Metab Immune Disord Drug Targets 2023; 23:581-595. [PMID: 36263482 DOI: 10.2174/1871530323666221018090024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Various nutraceuticals from different sources have various beneficial actions and have been reported for many years. The important findings from the research conducted using various nutraceuticals exhibiting significant physiological and pharmacological activities have been summarized. METHODS An extensive investigation of literature was done using several worldwide electronic scientific databases like PUBMED, SCOPUS, Science Direct, Google Scholar, etc. The entire manuscript is available in the English language that is used for our various compounds of interest. These databases were thoroughly reviewed and summarized. RESULTS Nutraceuticals obtained from various sources play a vital role in the management of peripheral neuropathy associated with diabetes. Treatment with nutraceuticals has been beneficial as an alternative in preventing the progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DPN. CONCLUSION Nutraceuticals obtained from different sources like a plant, an animal, and marine have been properly utilized for the safety of health. In our opinion, this review could be of great interest to clinicians, as it offers a complementary perspective on the management of DPN. Trials with a well-defined patient and symptom selection have shown robust pharmacological design as pivotal points to let these promising compounds become better accepted by the medical community.
Collapse
Affiliation(s)
- Sakshi Bajaj
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana-133207, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana-133207, India
| |
Collapse
|
21
|
Astaxanthin ameliorates serum level and spinal expression of macrophage migration inhibitory factor following spinal cord injury. Behav Pharmacol 2022; 33:505-512. [PMID: 36148838 DOI: 10.1097/fbp.0000000000000698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Astaxanthin (AST) is a lipid-soluble carotenoid with antioxidant and anti-inflammatory properties. Previous reports demonstrated the promising effects of AST on spinal cord injury (SCI)-induced inflammation and sensory-motor dysfunction. Macrophage migration inhibitory factor (MIF), as a cytokine, plays a critical role in the inflammatory phase of SCI. The aim of this study was to evaluate the effects of AST on post-SCI levels of MIF in serum and spinal cord. The possible correlation between MIF and mechanical pain threshold was also assessed. Adult male rats were subjected to a severe compression spinal injury and 30 min later were treated with AST (Intrathecal, 2 nmol) or vehicle. Neuropathic pain was assessed by von Frey filaments before the surgery, and then on days 7, 14, 21, and 28 post-SCI. Western blot and ELISA were used to measure the serum level and spinal expression of MIF following SCI in the same time points. AST treatment significantly attenuated the SCI-induced dysregulations in the serum levels and tissue expression of MIF. A negative correlation was observed between mechanical pain threshold and serum MIF level (r = -0.5463, P < 0.001), as well as mechanical pain threshold and spinal level of MIF (r = -0.9562; P < 0.001). AST ameliorates SCI-induced sensory dysfunction, probably through inhibiting MIF-regulated inflammatory pathways.
Collapse
|
22
|
Carotenoids in Palliative Care—Is There Any Benefit from Carotenoid Supplementation in the Adjuvant Treatment of Cancer-Related Symptoms? Nutrients 2022; 14:nu14153183. [PMID: 35956359 PMCID: PMC9370407 DOI: 10.3390/nu14153183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Carotenoids are organic, liposoluble pigments found in nature, which are responsible for the characteristic colors of ripe tomatoes, carrots, peppers, and crustaceans, among others. Palliative care provided to patients with an incurable disease is aimed at improving the patient’s quality of life through appropriate treatment of symptoms accompanying the disease. Palliative care patients with burdensome symptoms related to advanced-stage cancers are especially interested in the use of natural dietary supplements and herbal remedies to reduce symptoms’ intensity and ameliorate the quality of life. Carotenoids seem to be a group of natural compounds with particularly promising properties in relieving symptoms, mainly due to their strong antioxidant, anti-inflammatory, and neuroprotective properties. Moreover, carotenoids have been used in folk medicine to treat various diseases and alleviate the accompanying symptoms. In this narrative review, the authors decided to determine whether there is any scientific evidence supporting the rationale for carotenoid supplementation in advanced-stage cancer patients, with particular emphasis on the adjuvant treatment of cancer-related symptoms, such as neuropathic pain and cancer-related cachexia.
Collapse
|
23
|
Astaxanthin Ameliorates Diabetic Retinopathy in Swiss Albino Mice via Inhibitory Processes of Neuron-Specific Enolase Activity. Processes (Basel) 2022. [DOI: 10.3390/pr10071318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Retinopathy is one of the most common complications of diabetes mellitus. Diabetic retinopathy (DR) occurs due to microvascular damage in retinal tissues provoked by high blood sugar levels. The available drugs for DR are limited. Astaxanthin (AST) has anti-hypertensive, anti-obesity, and anti-diabetic properties. However, the therapeutic effect of AST on DR remains elusive. The present study is designed to investigate the effects of AST on DR via inhibition of neuron-specific enolase (NSE) activity. DR was induced by the administration of streptozotocin (STZ, 35 mg/kg: intraperitoneal; and 20 μL of STZ: intravitreal) in mice. AST (10 and 20 mg/kg) was administered orally (p.o.) for 21 days. The DR associated visual changes were assessed at different time intervals via optokinetic motor response (OMR) and penta-maze (PM) tests. Blood glucose level as well as retinal catalase, lactate dehydrogenase (LDH), & neuron-specific enolase (NSE) were estimated. The reference drug i.e., dexamethasone (DEX, 10 mg/kg; p.o.) was administered for 21 days. The administration of AST showed significant ameliorative potential in DR. Hence, AST can be used as a natural medicine for the management of DR due to its potential antioxidant, anti-diabetic, and NSE inhibitory properties.
Collapse
|
24
|
Abbaszadeh F, Jorjani M, Joghataei MT, Mehrabi S. Astaxanthin Modulates Autophagy, Apoptosis, and Neuronal Oxidative Stress in a Rat Model of Compression Spinal Cord Injury. Neurochem Res 2022; 47:2043-2051. [PMID: 35435619 DOI: 10.1007/s11064-022-03593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
The effects of astaxanthin (AST) were evaluated on oxidative mediators, neuronal apoptosis, and autophagy in functional motor recovery after spinal cord injury (SCI). Rats were divided into three groups of sham, SCI + DMSO (dimethyl sulfoxide), and SCI + AST. Rats in the sham group only underwent a laminectomy at thoracic 8-9. While, the SCI + DMSO and SCI + AST groups had a compression SCI with an aneurysm clip. Then, this groups received an intrathecal (i.t.) injection of 5% DMSO and AST (10 μl of 0.005 mg/kg), respectively. The rat motor functions were assessed weekly until the 28th day using a combined behavioral score (CBS). Total antioxidant capacity (TAC), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured in spinal tissue to evaluate oxidative stress-related parameters. Besides, autophagy-related proteins (P62, LC3B, and Beclin1) and apoptosis-associated proteins (Bax and Bcl2) were determined using western blotting on the 1st and 7th days after surgery. Hematoxylin-eosin and Fluoro-Jade B staining were performed to detect the histological alterations and neuronal degeneration. As the result, treatment with AST potentially attenuated rat CBS scores (p < 0.001) towards a better motor performance. AST significantly reduced the spinal level of oxidative stress by increasing TAC, SOD, and GPx, while decreasing MDA (p < 0.001). Furthermore, AST treatment remarkably upregulated expression of LC3B (p < 0.001), and Beclin1 (p < 0.05) in the spinal cord, but downregulated P62 (p < 0.05) and the Bax/Bcl2 ratio (p < 0.001). Consequently, AST reduced SCI-induced histological alterations and neuronal degeneration (p < 0.001). In conclusion, AST can improve motor function after SCI by reducing oxidative stress/apoptosis and increasing neuronal autophagy.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Soraya Mehrabi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
25
|
Fakhri S, Sabouri S, Kiani A, Farzaei MH, Rashidi K, Mohammadi-Farani A, Mohammadi-Noori E, Abbaszadeh F. Intrathecal administration of naringenin improves motor dysfunction and neuropathic pain following compression spinal cord injury in rats: relevance to its antioxidant and anti-inflammatory activities. Korean J Pain 2022; 35:291-302. [PMID: 35768984 PMCID: PMC9251389 DOI: 10.3344/kjp.2022.35.3.291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background Spinal cord injury (SCI) is one of the most debilitating disorders throughout the world, causing persistent sensory-motor dysfunction, with no effective treatment. Oxidative stress and inflammatory responses play key roles in the secondary phase of SCI. Naringenin (NAR) is a natural flavonoid with known anti-inflammatory and antioxidative properties. This study aims at evaluating the effects of intrathecal NAR administration on sensory-motor disability after SCI. Methods Animals underwent a severe compression injury using an aneurysm clip. About 30 minutes after surgery, NAR was injected intrathecally at the doses of 5, 10, and 15 mM in 20 µL volumes. For the assessment of neuropathic pain and locomotor function, acetone drop, hot plate, inclined plane, and Basso, Beattie, Bresnahan tests were carried out weekly till day 28 post-SCI. Effects of NAR on matrix metalloproteinase (MMP)-2 and MMP-9 activity was appraised by gelatin zymography. Also, histopathological analyses and serum levels of glutathione (GSH), catalase and nitrite were measured in different groups. Results NAR reduced neuropathic pain, improved locomotor function, and also attenuated SCI-induced weight loss weekly till day 28 post-SCI. Zymography analysis showed that NAR suppressed MMP-9 activity, whereas it increased that of MMP-2, indicating its anti-neuroinflammatory effects. Also, intrathecal NAR modified oxidative stress related markers GSH, catalase, and nitrite levels. Besides, the neuroprotective effect of NAR was corroborated through increased survival of sensory and motor neurons after SCI. Conclusions These results suggest intrathecal NAR as a promising candidate for medical therapeutics for SCI-induced sensory and motor dysfunction.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahryar Sabouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.,Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Wang S, Qi X. The Putative Role of Astaxanthin in Neuroinflammation Modulation: Mechanisms and Therapeutic Potential. Front Pharmacol 2022; 13:916653. [PMID: 35814201 PMCID: PMC9263351 DOI: 10.3389/fphar.2022.916653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation is a protective mechanism against insults from exogenous pathogens and endogenous cellular debris and is essential for reestablishing homeostasis in the brain. However, excessive prolonged neuroinflammation inevitably leads to lesions and disease. The use of natural compounds targeting pathways involved in neuroinflammation remains a promising strategy for treating different neurological and neurodegenerative diseases. Astaxanthin, a natural xanthophyll carotenoid, is a well known antioxidant. Mounting evidence has revealed that astaxanthin is neuroprotective and has therapeutic potential by inhibiting neuroinflammation, however, its functional roles and underlying mechanisms in modulating neuroinflammation have not been systematically summarized. Hence, this review summarizes recent progress in this field and provides an update on the medical value of astaxanthin. Astaxanthin modulates neuroinflammation by alleviating oxidative stress, reducing the production of neuroinflammatory factors, inhibiting peripheral inflammation and maintaining the integrity of the blood-brain barrier. Mechanistically, astaxanthin scavenges radicals, triggers the Nrf2-induced activation of the antioxidant system, and suppresses the activation of the NF-κB and mitogen-activated protein kinase pathways. With its good biosafety and high bioavailability, astaxanthin has strong potential for modulating neuroinflammation, although some outstanding issues still require further investigation.
Collapse
|
27
|
Li Y, Fang SC, Zhou L, Mo XM, Guo HD, Deng YB, Yu HH, Gong WY. Complement Receptor 3 Pathway and NMDA Receptor 2B Subunit Involve Neuropathic Pain Associated with Spinal Cord Injury. J Pain Res 2022; 15:1813-1823. [PMID: 35784110 PMCID: PMC9242000 DOI: 10.2147/jpr.s366782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Neuropathic pain (NP) after spinal cord injury (SCI-evoked NP) is clinically challenging; the underlying mechanisms are not fully understood, leading to a lack of promising treatment options. NP occurs in only a subset of patients with SCI. The injured spinal cord exhibits a series of histopathological changes, and the complement system has been shown to play an important role in these processes. In addition, NMDA receptor subunit 2B (NR2B) is involved in the development and maintenance of NP. This preliminary study was performed to investigate the correlations of the complement receptor 3/complement component 3 (CR3/C3) pathway and NR2B with SCI-evoked NP. Methods A trauma-induced SCI animal model was established and SCI-evoked NP was evaluated by behavioural analysis. Transcriptome analysis was performed to identify genes in the CR3/C3 pathway related to synaptic modification, while the expression and distribution of NR2B in the injured spinal cord, and the relation to NP, were examined by immunohistochemical analysis. Results Nine of seventeen SCI rats (52.9%) developed NP. C3 mRNA expression was significantly decreased in SCI-evoked NP rats and significantly increased in the non-NP SCI rats. C1q mRNA and CR3 mRNA expression were significantly increased in all SCI rats, but higher levels of expression were observed in the non-NP SCI rats. NR2B mRNA expression was significantly increased in the SCI-evoked NP rats and significantly decreased in the non-NP SCI rats. In addition, significantly elevated expression of NR2B-positive cells was seen in lamina II of the superficial dorsal horn in SCI-evoked NP rats in comparison with non-NP SCI rats. Conclusion NP occurred in only a subset of SCI rats, and the CR3/C3 pathway and NR2B were involved in SCI-evoked NP. Further studies are required to determine the mechanisms underlying the SCI-evoked NP associated with the CR3/C3 pathway and NR2B.
Collapse
Affiliation(s)
- Yong Li
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi, 541100, People’s Republic of China
| | - Sheng-Chun Fang
- Department of Anesthesiology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430015, People’s Republic of China
| | - Lan Zhou
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi, 541100, People’s Republic of China
| | - Xue-Mei Mo
- Department of Pain Management, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, People’s Republic of China
| | - Hao-Dong Guo
- Department of Pain Management, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, People’s Republic of China
| | - Yan-Bo Deng
- Department of Pain Management, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, People’s Republic of China
| | - Hong-Hao Yu
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi, 541100, People’s Republic of China
- Correspondence: Hong-Hao Yu, College of Biotechnology, Guilin Medical University, Guilin, Guangxi, 541100, People’s Republic of China, Email
| | - Wei-Yi Gong
- Department of Pain Management, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, People’s Republic of China
- Wei-Yi Gong, Department of Pain Management, Affiliated Hospital of Guilin Medical University, Guilin, 541000, Guangxi, People’s Republic of China, Email
| |
Collapse
|
28
|
Levetiracetam Attenuates the Spinal Cord Injury Induced by Acute Trauma via Suppressing the Expression of Perforin. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7218666. [PMID: 35633929 PMCID: PMC9135510 DOI: 10.1155/2022/7218666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The spinal cord injury (SCI) is one of the major reasons causing the motor dysfunctions of the patients. At present, few therapeutic strategies can effectively improve the symptom of SCI. Levetiracetam has been confirmed to alleviate the injury of nerve cells, while its functions in SCI remains unclear. In this study, C57BL/6J mice were used to establish SCI models to observe the effect of levetiracetam on SCI. The mice were fed with 180 mg/kg levetiracetam when suffering from SCI, and Basso mouse score (BMS) and CatWalk-assisted gait analysis were used to observe the motor functions of the mice. Nissl staining and TUNEL staining were used to observe the injury of nerve cells. The abundance of inflammatory factors was measured by ELISA. The permeability of blood-spinal cord barrier (BSCB) in mice was detected with macrophage infiltration analysis. Moreover, the abundance of perforin in the tissues was detected by western blot. The results showed that the SCI mice treated with levetiracetam exhibited lighter motor dysfunction compared with the mice treated with saline. Levetiracetam can effectively reduce the inflammatory reactions and alleviate apoptosis of the nerve cells. Moreover, levetiracetam remarkably decreased the BSCB permeability of SCI mice. Besides, it was also found that levetiracetam can significantly inhibit the expression of perforin. In conclusion, this study suggests that levetiracetam can attenuate the injury of BSCB to block the progression of SCI via suppressing the expression of perforin.
Collapse
|
29
|
Zhao L, Tao X, Wan C, Dong D, Wang C, Xi Q, Liu Y, Song T. Astaxanthin alleviates inflammatory pain by regulating the p38 mitogen-activated protein kinase and nuclear factor-erythroid factor 2-related factor/heme oxygenase-1 pathways in mice. Food Funct 2021; 12:12381-12394. [PMID: 34825683 DOI: 10.1039/d1fo02326h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammatory pain is a complex process that has a substantial negative impact on post-injury quality of life. Astaxanthin (AST), which is a lipid-soluble red-orange carotenoid that is found in lobsters, inhibits the development and maintenance of inflammation in mice via its antioxidant and anti-inflammatory activities. However, the specific mechanisms underlying these effects remain unclear. In this study, we aimed to elucidate the mechanism by which astaxanthin alleviated inflammation using a mouse model with Complete Freund's adjuvant (CFA)-induced inflammatory pain. Mechanical allodynia and thermal hyperalgesia were observed on days 1-14 post CFA injection. Expression of p38 mitogen-activated protein kinase (MAPK) in the left paw and L4-6 dorsal root ganglia (DRG) were upregulated in the CFA-induced mice. Expression of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways were also increased. Astaxanthin relieved mechanical allodynia and thermal hyperalgesia induced by CFA and inhibited the inflammatory response (e.g., infiltration of inflammatory cells and production of inflammatory factors) in the ipsilateral paw and DRG. Additionally, AST inhibited p38 MAPK and enhanced Nrf2/HO-1 contents in the left paw and DRG, and reversed the pain induced by p38 MAPK agonist and Nrf2 inhibitors. These findings suggest that AST exerts anti-inflammatory effects and regulates p38 MAPK and Nrf2/HO-1 to alleviate inflammatory pain. AST may be a potential therapeutic agent for relieving inflammation.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Xueshu Tao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Chengfu Wan
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Daosong Dong
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Chenglong Wang
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Qi Xi
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Yan Liu
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| | - Tao Song
- Department of Pain, The First Affiliated Hospital to China Medical University, Shenyang 110000, People's Republic of China.
| |
Collapse
|
30
|
Derangula K, Javalgekar M, Kumar Arruri V, Gundu C, Kumar Kalvala A, Kumar A. Probucol attenuates NF-κB/NLRP3 signalling and augments Nrf-2 mediated antioxidant defence in nerve injury induced neuropathic pain. Int Immunopharmacol 2021; 102:108397. [PMID: 34891000 DOI: 10.1016/j.intimp.2021.108397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
Neuroinflammation is one of the most significant pathological drivers following nerve injury which along with immune cell activation, oxidative stress and other associated molecular mechanisms contribute to development of neuropathic pain characterized by hyperalgesia and allodynia. In the current study we have investigated the pharmacological effect of probucol (prb) using chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain (NP) model in rats. CCI of sciatic nerve resulted in marked decrease in pain threshold along with perturbations in anti-oxidant defence, enhanced inflammatory mediators and abnormal foot posture. Administration of prb at the doses of 8 and 16 mg/kg, p.o. for 14 days significantly attenuated the behavioural, biochemical and functional deficits following CCI of sciatic nerve. To further explore the molecular mechanisms of prb, we assessed the post treatment levels of inflammatory and oxidative stress markers like NLRP3 inflammasome, NF-κB and associated proinflammatory molecules such as IL-1 β, TNF-α & IL-6 along with Nrf-2 and HO-1. Our findings demonstrated that CCI induced changes in levels of these markers were dose dependently reversed by administration of prb. Of note, at molecular level the elevated expression of transcription factors such as NF-κB which is crucial for Nlrp3 activation and diminished levels of Nrf-2 were manifested following CCI induction, these changes were markedly reversed with 14 days treatment of prb at both the doses. Our findings highlighted the dual pharmacological effect of prb, anti-inflammatory and anti-oxidant via modulation of NF-κB/NLRP3 signalling and Nrf-2 pathway in attenuation of CCI of sciatic nerve induced NP.
Collapse
Affiliation(s)
- Kalyani Derangula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Mohit Javalgekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Vijay Kumar Arruri
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Chayanika Gundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Anil Kumar Kalvala
- College of Pharmacy and Pharmaceutical Science, Florida A&M University, Tallahassee, FL, USA
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India; National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Chunnilal Bhavan, 168, Maniktala Main Road, Kolkata, West Bengal, India.
| |
Collapse
|
31
|
Zhao L, Tao X, Song T. Astaxanthin alleviates neuropathic pain by inhibiting the MAPKs and NF-κB pathways. Eur J Pharmacol 2021; 912:174575. [PMID: 34673033 DOI: 10.1016/j.ejphar.2021.174575] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023]
Abstract
Neuropathic pain is a complex condition that usually lasts a lifetime and has a major negative impact on life after injury. Improving pain management is an important and unmet need. Astaxanthin (AST) is a natural marine medicine with effective antioxidant and anti-inflammatory properties and neuroprotective effects. However, few mechanisms can explain the role of AST in the treatment of neuropathic pain. In the present study, we examined its potential to eliminate spinal nerve ligation (SNL) damage by inhibiting the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-κB (NF-κB) p65 and the inflammatory response. The results of behavior tests indicated the promising role of AST in analgesic effect in SNL mice. AST decreased the neuronal and non-neuronal activation, the levels of the inflammatory signaling mediators (p-ERK1/2 p-p38 MAPK and NF-κB p65) and inflammatory cytokine expression (interleukin [IL]-1, IL-17, IL-6, and tumor necrosis factor-α [TNF-α]. These results suggest that AST is a promising candidate to reduce nociceptive hypersensitization after SNL.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shen Yang, China
| | - Xueshu Tao
- Department of Pain, The First Affiliated Hospital to China Medical University, Shen Yang, China
| | - Tao Song
- Department of Pain, The First Affiliated Hospital to China Medical University, Shen Yang, China.
| |
Collapse
|
32
|
Mohammadi S, Fakhri S, Mohammadi-Farani A, Farzaei MH, Abbaszadeh F. Astaxanthin engages the l-arginine/NO/cGMP/KATP channel signaling pathway toward antinociceptive effects. Behav Pharmacol 2021; 32:607-614. [PMID: 34561366 DOI: 10.1097/fbp.0000000000000655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the main functions of the sensory system in our body is to maintain somatosensory homeostasis. Recent reports have led to a significant advance in our understanding of pain signaling mechanisms; however, the exact mechanisms of pain transmission have remained unclear. There is an urgent need to reveal the precise signaling mediators of pain to provide alternative therapeutic agents with more efficacy and fewer side effects. Accordingly, although the anti-inflammatory, antioxidative and anti-neuropathic effects of astaxanthin (AST) have been previously highlighted, its peripheral antinociceptive mechanisms are not fully understood. In this line, considering the engagement of l-arginine/nitric oxide (NO)/cyclic GMP (cGMP)/potassium channel (KATP) signaling pathway in the antinociceptive responses, the present study evaluated its associated role in the antinociceptive activity of AST. Male mice were intraperitoneally (i.p.) injected with l-arginine (100 mg/kg), SNAP (1 mg/kg), L-NAME (30 mg/kg), sildenafil (5 mg/kg), and glibenclamide (10 mg/kg) alone and prior to the most effective dose of AST. Following AST administration, intraplantarly (i.pl) injection of formalin was done, and pain responses were evaluated in mice during the primary (acute) and secondary (inflammatory) phases of formalin test. The results highlighted that 10 mg/kg i.p. dose of AST showed the greatest antinociceptive effect. Besides, while L-NAME and glibenclamide reduced the antinociceptive effect of AST, it was significantly increased by l-arginine, SNAP and sildenafil during both the primary and secondary phases of formalin test. These data suggest that the antinociceptive activity of AST is passing through the l-arginine/NO/cGMP/KATP pathway.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| | - Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Kohandel Z, Farkhondeh T, Aschner M, Pourbagher-Shahri AM, Samarghandian S. Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases. Biomed Pharmacother 2021; 145:112179. [PMID: 34736076 DOI: 10.1016/j.biopha.2021.112179] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Astaxanthin (AST) is a red pigmented carotenoid with significant antioxidant, anti-inflammatory, anti-proliferative, and anti-apoptotic properties. In this study, we summarize the available literature on the anti-inflammatory efficacy of AST in various chronic and acute disorders, such as neurodegenerative, renal-, hepato-, skin- and eye-related diseases, as well as gastrointestinal disorders. In addition, we elaborated on therapeutic efficacy of AST and the role of several pathways, including PI3K/AKT, Nrf2, NF-κB, ERK1/2, JNK, p38 MAPK, and JAK-2/STAT-3 in mediating its effects. However, additional experimental and clinical studies should be performed to corroborate the anti-inflammatory effects and protective effects of AST against inflammatory diseases in humans. Nevertheless, this review suggests that AST with its demonstrated anti-inflammatory property may be a suitable candidate for drug design with novel technology.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
34
|
Masoudi A, Jorjani M, Alizadeh M, Mirzamohammadi S, Mohammadi M. Anti-inflammatory and antioxidant effects of astaxanthin following spinal cord injury in a rat animal model. Brain Res Bull 2021; 177:324-331. [PMID: 34688832 DOI: 10.1016/j.brainresbull.2021.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) is a severely debilitating problem leading to substantial decrease in the quality of life. After spinal cord injury, inflammation and oxidative stress plays a key role in initiating the secondary injury cascades leading to progressive tissue degradation and extreme functional deficits. Given that the primary mechanical injuries to spinal cord are rarely repaired, the pharmacological interventions may improve the neurological outcomes caused by secondary injury. Astaxanthin (AST) is considered as a xanthophyll carotenoid with potent antioxidant and anti-inflammatory properties, which has various pharmacological activities. In the present study, we aimed to firstly assess the protective effect of AST, and then to define the AST mechanism of action on a rat model of SCI. Based on the results of von Frey test, AST treatment significantly alleviated the SCI-induced neuropathic pain compared with the control groups (P < 0.05). The expression analysis by western blot shows reduced expression levels of COX-2, TNF-α, IL-1β, and IL-6 following AST treatment (P < 0.05). The activity of antioxidant enzymes was evaluated using ELISA. Therefore, ELISA experiments showed a significant reduction in the level of oxidative stress in SCI rat following AST treatment (P < 0.05). Furthermore, histopathological evaluations revealed that myelinated white matter and motor neuron number were significantly preserved after treatment with AST (P < 0.05). In conclusion, our study shows that AST could improve SCI through anti-inflammatory and antioxidant effects which leads to decreased tissue damage and mechanical pain after SCI.
Collapse
Affiliation(s)
- Alireza Masoudi
- Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Morteza Alizadeh
- Department of tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Solmaz Mirzamohammadi
- Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mola Mohammadi
- Physiology Departmen, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and Anticancer Effects of Microalgal Carotenoids. Mar Drugs 2021; 19:531. [PMID: 34677429 PMCID: PMC8539290 DOI: 10.3390/md19100531] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Sara García-Gil
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Virginia Motilva
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Elena Talero
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| |
Collapse
|
36
|
The antinociceptive mechanisms of melatonin: role of L-arginine/nitric oxide/cyclic GMP/KATP channel signaling pathway. Behav Pharmacol 2021; 31:728-737. [PMID: 32925224 DOI: 10.1097/fbp.0000000000000579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pain is one of the most common medical challenges, reducing life quality. Despite the progression in pain management, it has remained a clinical challenge, which raises the need for investigating novel antinociceptive drugs with correspondence signaling pathways. Besides, the precise antinociceptive mechanisms of melatonin are not revealed. Accordingly, owing to the critical role of L-arginine/nitric oxide (NO)/cyclic GMP (cGMP)/KATP in the antinociceptive responses of various analgesics, the role of this signaling pathway is evaluated in the antinociceptive effects of melatonin. Male NMRI mice were intraperitoneally pretreated with the injection of L-arginine (NO precursor, 100 mg/kg), N(gamma)-nitro-L-arginine methyl ester [L-NAME, NO synthase (NOS) inhibitor, 30 mg/kg], S-nitroso-N-acetylpenicillamine (SNAP, NO donor, 1 mg/kg), sildenafil (phosphodiesterase inhibitor, 0.5 mg/kg), and glibenclamide (KATP channel blocker, 10 mg/kg) alone and before the administration of the most effective dose of melatonin amongst the intraperitoneal doses of 50, 100, and 150 mg/kg. The formalin test (2%, 25 µL, intra-plantarly) was done following the melatonin administration, then the nociceptive responses of mice were evaluated during the early phase for 5 min and the late phase for 15 min. The results showed that 100 mg/kg dose of melatonin carried out the most antinociceptive effects. While the antinociceptive effect of melatonin was increased by L-arginine, SNAP, and sildenafil, it was significantly reduced by L-NAME and glibenclamide in both phases of the formalin test, with no relation to the sedative effects of melatonin evaluated by the inclined plane test. In conclusion, the antinociceptive effect of melatonin is mediated through the L-arginine/NO/cGMP/KATP pathway.
Collapse
|
37
|
Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, Farzaei MH, Xiao J. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. PHYTOMEDICINE 2021; 91:153664. [PMID: 34391082 DOI: 10.1016/j.phymed.2021.153664] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND As common, progressive, and chronic causes of disability and death, neurodegenerative diseases (NDDs) significantly threaten human health, while no effective treatment is available. Given the engagement of multiple dysregulated pathways in neurodegeneration, there is an imperative need to target the axis and provide effective/multi-target agents to tackle neurodegeneration. Recent studies have revealed the role of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) in some diseases and natural products with therapeutic potentials. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating various neuronal disorders via the PI3K/Akt/mTOR signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was done based on the PubMed, Scopus, Web of Science, and Cochrane electronic databases. Two independent investigators followed the PRISMA guidelines and included papers on PI3K/Akt/mTOR and interconnected pathways/mediators targeted by phytochemicals in NDDs. RESULTS Natural products are multi-target agents with diverse pharmacological and biological activities and rich sources for discovering and developing novel therapeutic agents. Accordingly, recent studies have shown increasing phytochemicals in combating Alzheimer's disease, aging, Parkinson's disease, brain/spinal cord damages, depression, and other neuronal-associated dysfunctions. Amongst the emerging targets in neurodegeneration, PI3K/Akt/mTOR is of great importance. Therefore, attenuation of these mediators would be a great step towards neuroprotection in such NDDs. CONCLUSION The application of plant-derived secondary metabolites in managing and/or treating various neuronal disorders through the PI3K/Akt/mTOR signaling pathway is a promising strategy towards neuroprotection.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Ranjbari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA.
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China.
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
38
|
Balendra V, Singh SK. Therapeutic potential of astaxanthin and superoxide dismutase in Alzheimer's disease. Open Biol 2021; 11:210013. [PMID: 34186009 PMCID: PMC8241491 DOI: 10.1098/rsob.210013] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress, the imbalance of the antioxidant system, results in an accumulation of neurotoxic proteins in Alzheimer's disease (AD). The antioxidant system is composed of exogenous and endogenous antioxidants to maintain homeostasis. Superoxide dismutase (SOD) is an endogenous enzymatic antioxidant that converts superoxide ions to hydrogen peroxide in cells. SOD supplementation in mice prevented cognitive decline in stress-induced cells by reducing lipid peroxidation and maintaining neurogenesis in the hippocampus. Furthermore, SOD decreased expression of BACE1 while reducing plaque burden in the brain. Additionally, Astaxanthin (AST), a potent exogenous carotenoid, scavenges superoxide anion radicals. Mice treated with AST showed slower memory decline and decreased depositions of amyloid-beta (Aβ) and tau protein. Currently, the neuroprotective potential of these supplements has only been examined separately in studies. However, a single antioxidant cannot sufficiently resist oxidative damage to the brain, therefore, a combinatory approach is proposed as a relevant therapy for ameliorating pathological changes in AD.
Collapse
Affiliation(s)
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow 226002, India
| |
Collapse
|
39
|
Zhao T, Ma D, Mulati A, Zhao B, Liu F, Liu X. Development of astaxanthin-loaded layer-by-layer emulsions: physicochemical properties and improvement of LPS-induced neuroinflammation in mice. Food Funct 2021; 12:5333-5350. [PMID: 33977957 DOI: 10.1039/d0fo03018j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Astaxanthin (AST) has been shown to have neuroprotective effects; however, its bioavailability in vivo is low due to its hydrophobic properties. In this study, lactoferrin (LF) was prepared by heat-treatment at different temperatures, and on this basis, a layer-by-layer self-assembly method was used to construct double-layer emulsions with LF as the inner layer and polysaccharide (beet pectin, BP or carboxymethyl chitosan, CMCS) as the outer layer. Then AST was encapsulated in the emulsions and their physiochemical properties and function were investigated. The results indicated that high temperature heated LF (95 °C) showed a more stable structure than the lower temperature one, and the exposed internal nonpolar groups of LF could give the emulsion an enhanced stability. The rheology results showed that compared with CMCS, the double-layer emulsion formed by BP had a higher viscosity. In addition, the 95 °C LF-AST-BP emulsion showed the best stability among all the bilayer emulsions. The best emulsion was then used as a model drug to investigate its effects on lipopolysaccharide (LPS)-induced neuroinflammation and learning-memory loss in C57BL/6J mice. Through animal behavioral experiments, it was found that dietary supplementation with the AST emulsion could effectively improve the brain cognitive and learning memory impairment caused by inflammation. Transmission electron microscopy, mRNA and western blotting results also illustrated that the AST emulsion could alleviate neuroinflammation caused by LPS. This study provides a feasible scheme for exploring an AST loaded system and may be suitable for food and drug applications.
Collapse
Affiliation(s)
- Tong Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.
| | | | | | | | | | | |
Collapse
|
40
|
Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021; 139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is globally considered as one of the most debilitating disorders, which interferes with daily activities and life of the affected patients. Despite many developments in related recognizing and treating procedures, post-SCI neuropathic pain (NP) is still a clinical challenge for clinicians with no distinct treatments. Accordingly, a comprehensive search was conducted in PubMed, Medline, Scopus, Web of Science, and national database (SID and Irandoc). The relevant articles regarding signaling pathways, therapeutic targets and pharmacotherapy of post-SCI pain were also reviewed. Data were collected with no time limitation until November 2020. The present study provides the findings on molecular mechanisms and therapeutic targets, as well as developing the critical signaling pathways to introduce novel neuroprotective treatments of post-SCI pain. From the pathophysiological mechanistic point of view, post-SCI inflammation activates the innate immune system, in which the immune cells elicit secondary injuries. So, targeting the critical signaling pathways for pain management in the SCI population has significant importance in providing new treatments. Indeed, several receptors, ion channels, excitatory neurotransmitters, enzymes, and key signaling pathways could be used as therapeutic targets, with a pivotal role of n-methyl-D-aspartate, gamma-aminobutyric acid, and inflammatory mediators. The current review focuses on conventional therapies, as well as crucial signaling pathways and promising therapeutic targets for post-SCI pain to provide new insights into the clinical treatment of post-SCI pain. The need to develop innovative delivery systems to treat SCI is also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Molecular Mechanisms of Astaxanthin as a Potential Neurotherapeutic Agent. Mar Drugs 2021; 19:md19040201. [PMID: 33916730 PMCID: PMC8065559 DOI: 10.3390/md19040201] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neurological disorders are diseases of the central and peripheral nervous system that affect millions of people, and the numbers are rising gradually. In the pathogenesis of neurodegenerative diseases, the roles of many signaling pathways were elucidated; however, the exact pathophysiology of neurological disorders and possible effective therapeutics have not yet been precisely identified. This necessitates developing multi-target treatments, which would simultaneously modulate neuroinflammation, apoptosis, and oxidative stress. The present review aims to explore the potential therapeutic use of astaxanthin (ASX) in neurological and neuroinflammatory diseases. ASX, a member of the xanthophyll group, was found to be a promising therapeutic anti-inflammatory agent for many neurological disorders, including cerebral ischemia, Parkinson's disease, Alzheimer's disease, autism, and neuropathic pain. An effective drug delivery system of ASX should be developed and further tested by appropriate clinical trials.
Collapse
|
42
|
Marine Natural Products: Promising Candidates in the Modulation of Gut-Brain Axis towards Neuroprotection. Mar Drugs 2021; 19:md19030165. [PMID: 33808737 PMCID: PMC8003567 DOI: 10.3390/md19030165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, several neuroprotective agents have been provided in combating neuronal dysfunctions; however, no effective treatment has been found towards the complete eradication of neurodegenerative diseases. From the pathophysiological point of view, growing studies are indicating a bidirectional relationship between gut and brain termed gut-brain axis in the context of health/disease. Revealing the gut-brain axis has survived new hopes in the prevention, management, and treatment of neurodegenerative diseases. Accordingly, introducing novel alternative therapies in regulating the gut-brain axis seems to be an emerging concept to pave the road in fighting neurodegenerative diseases. Growing studies have developed marine-derived natural products as hopeful candidates in a simultaneous targeting of gut-brain dysregulated mediators towards neuroprotection. Of marine natural products, carotenoids (e.g., fucoxanthin, and astaxanthin), phytosterols (e.g., fucosterol), polysaccharides (e.g., fucoidan, chitosan, alginate, and laminarin), macrolactins (e.g., macrolactin A), diterpenes (e.g., lobocrasol, excavatolide B, and crassumol E) and sesquiterpenes (e.g., zonarol) have shown to be promising candidates in modulating gut-brain axis. The aforementioned marine natural products are potential regulators of inflammatory, apoptotic, and oxidative stress mediators towards a bidirectional regulation of the gut-brain axis. The present study aims at describing the gut-brain axis, the importance of gut microbiota in neurological diseases, as well as the modulatory role of marine natural products towards neuroprotection.
Collapse
|
43
|
Kanwugu ON, Glukhareva TV, Danilova IG, Kovaleva EG. Natural antioxidants in diabetes treatment and management: prospects of astaxanthin. Crit Rev Food Sci Nutr 2021; 62:5005-5028. [PMID: 33591215 DOI: 10.1080/10408398.2021.1881434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetes remains a major health emergency in our entire world, affecting hundreds of millions of people worldwide. In conjunction with its much-dreaded complications (e.g., nephropathy, neuropathy, retinopathy, cardiovascular diseases, etc.) it substantially reduces the quality of life, increases mortality as well as economic burden among patients. Over the years, oxidative stress and inflammation have been highlighted as key players in the development and progression of diabetes and its associated complications. Much research has been devoted, as such, to the role of antioxidants in diabetes. Astaxanthin is a powerful antioxidant found mostly in marine organisms. Over the past years, several studies have demonstrated that astaxanthin could be useful in the treatment and management of diabetes. It has been shown to protect β-cells, neurons as well as several organs including the eyes, kidney, liver, etc. against oxidative injuries experienced during diabetes. Furthermore, it improves glucose and lipid metabolism along with cardiovascular health. Its beneficial effects are exerted through multiple actions on cellular functions. Considering these and the fact that foods and natural products with biological and pharmacological activities are of much interest in the 21st-century food and drug industry, astaxanthin has a bright prospect in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Osman N Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia
| | - Tatiana V Glukhareva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia.,Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Irina G Danilova
- Institute of Immunology and Physiology, Ural Branch of the Russia Academy of Science, Yekaterinburg, Russia
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
44
|
Inhibition of ERK1/2 phosphorylation attenuates spinal cord injury induced astrocyte activation and inflammation through negatively regulating aquaporin-4 in rats. Brain Res Bull 2021; 170:162-173. [PMID: 33592275 DOI: 10.1016/j.brainresbull.2021.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 01/09/2023]
Abstract
The extracellular signal-regulated kinase (ERK) pathway has been reported to play a pivotal role in mediating spinal cord injury (SCI) progression. The present study aimed to investigate the effects of phosphorylated ERK1/2 (p-ERK1/2) inhibition on SCI-induced astrocyte activation and inflammation and its possible mechanism in rats. Here, female Sprague-Dawley rats were randomly assigned to four groups: (1) Sham group, (2) SCI group, (3) TGN-020 group (aquaporin-4, AQP4, blocking agent), (4) PD98059 group (ERK blocking agent). A well SCI model was established by compressing the thoracic vertebra 10 level (weight 35 g, time 5 min) in rats. Western blotting and immunofluorescence staining were used to measure the expression of associated proteins after SCI. HE staining and Nissl staining were performed to detect the morphological changes of spinal cords and the number of surviving neurons following SCI, respectively. The Basso-Beattie-Bresnahan open-field rating scale was used to evaluate functional locomotor recovery following SCI in rats. Our results demonstrated that SCI significantly induced the upregulation of aquaporin-4, p-ERK1/2, glial fibrillary acidic protein, proliferating cell nuclear antigen, and proinflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interleukin-1β). However, treatment with TGN-020 or PD98059 could effectively inhibit astrocyte proliferation and proinflammatory cytokine release, preserve the number of surviving ventral horn neurons, and subsequently improve the locomotor function of rats after SCI. Interestingly, the SCI-induced elevation of AQP4 expression was downregulated by p-ERK1/2 inhibition, suggesting that blocking ERK1/2 phosphorylation could attenuate astrocyte activation and inflammatory processes through negative regulation of AQP4. Therefore, p-ERK1/2 blockade may be employed as a therapeutic target for SCI.
Collapse
|
45
|
Donoso A, González-Durán J, Muñoz AA, González PA, Agurto-Muñoz C. "Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials". Pharmacol Res 2021; 166:105479. [PMID: 33549728 DOI: 10.1016/j.phrs.2021.105479] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Astaxanthin is a natural C40 carotenoid with numerous reported biological functions, most of them associated with its antioxidant and anti-inflammatory activity, standing out from other antioxidants as it has shown the highest oxygen radical absorbance capacity (ORAC), 100-500 times higher than ⍺-tocopherol and a 10 times higher free radical inhibitory activity than related antioxidants (α-tocopherol, α-carotene, β -carotene, lutein and lycopene). In vitro and in vivo studies have associated astaxanthin's unique molecular features with several health benefits, including neuroprotective, cardioprotective and antitumoral properties, suggesting its therapeutic potential for the prevention or co-treatment of dementia, Alzheimer, Parkinson, cardiovascular diseases and cancer. Benefits on skin and eye health promotion have also been reported, highlighting its potential for the prevention of skin photo-aging and the treatment of eye diseases like glaucoma, cataracts and uveitis. In this review, we summarize and discuss the currently available evidence on astaxanthin benefits, with a particular focus on human clinical trials, including a brief description of the potential mechanisms of action responsible for its biological activities.
Collapse
Affiliation(s)
- Andrea Donoso
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Javiera González-Durán
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile.
| | - Andrés Agurto Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Agurto-Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile; Departamento de Ciencia y Tecnología de los Alimentos (CyTA), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
46
|
Astaxanthin and its Effects in Inflammatory Responses and Inflammation-Associated Diseases: Recent Advances and Future Directions. Molecules 2020; 25:molecules25225342. [PMID: 33207669 PMCID: PMC7696511 DOI: 10.3390/molecules25225342] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a natural lipid-soluble and red-orange carotenoid. Due to its strong antioxidant property, anti-inflammatory, anti-apoptotic, and immune modulation, astaxanthin has gained growing interest as a multi-target pharmacological agent against various diseases. In the current review, the anti-inflammation mechanisms of astaxanthin involved in targeting for inflammatory biomarkers and multiple signaling pathways, including PI3K/AKT, Nrf2, NF-κB, ERK1/2, JNK, p38 MAPK, and JAK-2/STAT-3, have been described. Furthermore, the applications of anti-inflammatory effects of astaxanthin in neurological diseases, diabetes, gastrointestinal diseases, hepatic and renal diseases, eye and skin disorders, are highlighted. In addition to the protective effects of astaxanthin in various chronic and acute diseases, we also summarize recent advances for the inconsistent roles of astaxanthin in infectious diseases, and give our view that the exact function of astaxanthin in response to different pathogen infection and the potential protective effects of astaxanthin in viral infectious diseases should be important research directions in the future.
Collapse
|
47
|
Fakhri S, Pesce M, Patruno A, Moradi SZ, Iranpanah A, Farzaei MH, Sobarzo-Sánchez E. Attenuation of Nrf2/Keap1/ARE in Alzheimer's Disease by Plant Secondary Metabolites: A Mechanistic Review. Molecules 2020; 25:molecules25214926. [PMID: 33114450 PMCID: PMC7663041 DOI: 10.3390/molecules25214926] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neuronal/cognitional dysfunction, leading to disability and death. Despite advances in revealing the pathophysiological mechanisms behind AD, no effective treatment has yet been provided. It urges the need for finding novel multi-target agents in combating the complex dysregulated mechanisms in AD. Amongst the dysregulated pathophysiological pathways in AD, oxidative stress seems to play a critical role in the pathogenesis progression of AD, with a dominant role of nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)/antioxidant responsive elements (ARE) pathway. In the present study, a comprehensive review was conducted using the existing electronic databases, including PubMed, Medline, Web of Science, and Scopus, as well as related articles in the field. Nrf2/Keap1/ARE has shown to be the upstream orchestrate of oxidative pathways, which also ameliorates various inflammatory and apoptotic pathways. So, developing multi-target agents with higher efficacy and lower side effects could pave the road in the prevention/management of AD. The plant kingdom is now a great source of natural secondary metabolites in targeting Nrf2/Keap1/ARE. Among natural entities, phenolic compounds, alkaloids, terpene/terpenoids, carotenoids, sulfur-compounds, as well as some other miscellaneous plant-derived compounds have shown promising future accordingly. Prevailing evidence has shown that activating Nrf2/ARE and downstream antioxidant enzymes, as well as inhibiting Keap1 could play hopeful roles in overcoming AD. The current review highlights the neuroprotective effects of plant secondary metabolites through targeting Nrf2/Keap1/ARE and downstream interconnected mediators in combating AD.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University G. d’Annunzio CH-PE, 66100 Chieti, Italy;
- Correspondence: (A.P.); (M.H.F.)
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.)
- Correspondence: (A.P.); (M.H.F.)
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| |
Collapse
|
48
|
Fleischmann C, Shohami E, Trembovler V, Heled Y, Horowitz M. Cognitive Effects of Astaxanthin Pretreatment on Recovery From Traumatic Brain Injury. Front Neurol 2020; 11:999. [PMID: 33178093 PMCID: PMC7593578 DOI: 10.3389/fneur.2020.00999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI), caused by mechanical impact to the brain, is a leading cause of death and disability among young adults, with slow and often incomplete recovery. Preemptive treatment strategies may increase the injury resilience of high-risk populations such as soldiers and athletes. In this work, the xanthophyll carotenoid Astaxanthin was examined as a potential nutritional preconditioning method in mice (sabra strain) to increase their resilience prior to TBI in a closed head injury (CHI) model. The effect of Astaxanthin pretreatment on heat shock protein (HSP) dynamics and functional outcome after CHI was explored by gavage or free eating (in pellet form) for 2 weeks before CHI. Assessment of neuromotor function by the neurological severity score (NSS) revealed significant improvement in the Astaxanthin gavage-treated group (100 mg/kg, ATX) during recovery compared to the gavage-treated olive oil group (OIL), beginning at 24 h post-CHI and lasting throughout 28 days (p < 0.007). Astaxanthin pretreatment in pellet form produced a smaller improvement in NSS vs. posttreatment at 7 days post-CHI (p < 0.05). Cognitive and behavioral evaluation using the novel object recognition test (ORT) and the Y Maze test revealed an advantage for Astaxanthin administration via free eating vs. standard chow during recovery post-CHI (ORT at 3 days, p < 0.035; improvement in Y Maze score from 2 to 29 days, p < 0.02). HSP profile and anxiety (open field test) were not significantly affected by Astaxanthin. In conclusion, astaxanthin pretreatment may contribute to improved recovery post-TBI in mice and is influenced by the form of administration.
Collapse
Affiliation(s)
- Chen Fleischmann
- The Institute of Military Physiology, IDF Medical Corps, Tel-Hashomer, Israel.,Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel.,Laboratory of Environmental Physiology, Hebrew University, Jerusalem, Israel
| | - Esther Shohami
- Department of Pharmacology, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Victoria Trembovler
- Department of Pharmacology, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Yuval Heled
- Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel.,Kibbutzim College, Tel Aviv, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hebrew University, Jerusalem, Israel
| |
Collapse
|
49
|
Fakhri S, Nouri Z, Moradi SZ, Farzaei MH. Astaxanthin, COVID-19 and immune response: Focus on oxidative stress, apoptosis and autophagy. Phytother Res 2020; 34:2790-2792. [PMID: 32754955 PMCID: PMC7436866 DOI: 10.1002/ptr.6797] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
50
|
Fu J, Sun H, Wei H, Dong M, Zhang Y, Xu W, Fang Y, Zhao J. Astaxanthin alleviates spinal cord ischemia-reperfusion injury via activation of PI3K/Akt/GSK-3β pathway in rats. J Orthop Surg Res 2020; 15:275. [PMID: 32703256 PMCID: PMC7376638 DOI: 10.1186/s13018-020-01790-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion injury of the spinal cord (SCII) often leads to unalterable neurological deficits, which may be associated with apoptosis induced by oxidative stress and inflammation. Astaxanthin (AST) is a strong antioxidant and anti-inflammatory agent with multitarget neuroprotective effects. This study aimed to investigate the potential therapeutic effects of AST for SCII and the molecular mechanism. METHODS Rat models of SCII with abdominal aortic occlusion for 40 min were carried out to investigate the effects of AST on the recovery of SCII. Tarlov's scores were used to assess the neuronal function; HE and TUNEL staining were used to observe the pathological morphology of lesions. Neuron oxidative stress and inflammation were measured using commercial detection kits. Flow cytometry was conducted to assess the mitochondrial swelling degree. Besides, Western blot assay was used to detect the expression of PI3K/Akt/GSK-3β pathway-related proteins, as well as NOX2 and NLRP3 proteins. RESULTS The results demonstrated that AST pretreatment promoted the hind limb motor function recovery and alleviated the pathological damage induced by SCII. Moreover, AST significantly enhanced the antioxidative stress response and attenuated mitochondrial swelling. However, AST pretreatment hardly inhibited the levels of proinflammatory cytokines after SCII. Most importantly, AST activated p-Akt and p-GSK-3β expression levels. Meanwhile, cotreatment with LY294002 (a PI3K inhibitor) was found to abolish the above protective effects observed with the AST pretreatment. CONCLUSION Overall, these results suggest that AST pretreatment not only mitigates pathological tissue damage but also effectively improves neural functional recovery following SCII, primarily by alleviating oxidative stress but not inhibiting inflammation. A possible underlying molecular mechanism of AST may be mainly attributed to the activation of PI3K/Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Jian Fu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Haibin Sun
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Haofei Wei
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Mingjie Dong
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yongzhe Zhang
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Wei Xu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Yanwei Fang
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Jianhui Zhao
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|