1
|
Hurley SW, Douton JE, Carelli RM. Neuronal Ensembles in the Infralimbic Cortex Dynamically Process Distinct Aspects of Hedonic Value. J Neurosci 2023; 43:8032-8042. [PMID: 37816597 PMCID: PMC10669753 DOI: 10.1523/jneurosci.0253-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
Hedonic processing is critical for guiding appropriate behavior, and the infralimbic cortex (IL) is a key neural substrate associated with this function in rodents and humans. We used deep brain in vivo calcium imaging and taste reactivity in freely behaving male and female Sprague Dawley rats to examine whether the infralimbic cortex is involved in encoding innate versus conditioned hedonic states. In experiment 1, we examined the IL neuronal ensemble responsiveness to intraoral innately rewarding (sucrose) versus aversive (quinine) tastants. Most IL neurons responded to either sucrose only or both sucrose and quinine, with fewer neurons selectively processing quinine. Among neurons that responded to both stimuli, some appear to encode hedonic processing. In experiment 2, we examined how IL neurons process devalued sucrose using conditioned taste aversion (CTA). We found that neurons that responded exclusively to sucrose were disengaged while additional quinine-exclusive neurons were recruited. Moreover, tastant-specific neurons that did not change their neuronal activity after CTA appeared to encode objective hedonic value. However, other neuronal ensembles responded to both tastants and appear to encode distinct aspects of hedonic processing. Specifically, some neurons responded differently to quinine and sucrose and shifted from appetitive-like to aversive-like activity after CTA, thus encoding the subjective hedonic value of the stimulus. Conversely, neurons that responded similarly to both tastants were heightened after CTA. Our findings show dynamic shifts in IL ensembles encoding devalued sucrose and support a role for parallel processing of objective and subjective hedonic value.SIGNIFICANCE STATEMENT Disrupted affective processing contributes to psychiatric disorders including depression, substance use disorder, and schizophrenia. We assessed how the infralimbic cortex, a key neural substrate involved in affect generation and affect regulation, processes innate and learned hedonic states using deep brain in vivo calcium imaging in freely behaving rats. We report that unique infralimbic cortex ensembles encode stimulus subjective and objective hedonic value. Further, our findings support similarities and differences in innate versus learned negative affective states. This study provides insight into the neural mechanisms underlying affect generation and helps to establish a foundation for the development of novel treatment strategies to reduce negative affective states that arise in many psychiatric disorders.
Collapse
Affiliation(s)
- Seth W Hurley
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joaquin E Douton
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599
| | - Regina M Carelli
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
2
|
Berta B, Kertes E, Péczely L, Ollmann T, László K, Gálosi R, Kállai V, Petykó Z, Zagorácz O, Kovács A, Karádi Z, Lénárd L. Ventromedial prefrontal cortex is involved in preference and hedonic evaluation of tastes. Behav Brain Res 2019; 367:149-157. [PMID: 30940513 DOI: 10.1016/j.bbr.2019.03.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023]
Abstract
The ventromedial prefrontal cortex (vmPFC) of rats has reciprocal connections with the gustatory and the hedonic impact coding structures. The main goal of the present study was to investigate the involvement of local neurons of vmPFC and their catecholaminergic innervations in taste preference and taste reactivity test. Therefore, kainate or 6-hydroxydopamine (6-OHDA) lesions were performed in the vmPFC by iontophoretic method. In the first experiment, taste preference was tested to 250 mM and 500 mM glucose solutions over water in two-bottle choice test. In the second experiment, taste reactivity was examined to 4 concentrations of glucose solutions (250 mM, 500 mM, 750 mM and 1000 mM) and 4 concentrations of quinine solutions (0.125 mM, 0.25 mM, 1.25 mM and 2.5 mM). Our results showed, that kainate microlesion of vmPFC did not modify the preference of 250 mM and 500 mM glucose solutions in two-bottle choice test. In contrast, 6-OHDA microlesion of vmPFC resulted in increased preference to the higher concentration of glucose (500 mM) solution over water. Results of taste reactivity test showed that kainate lesion resulted in more ingestive and less rejective responses to 750 mM glucose solution and elevated rejectivity to the higher concentrations (1.25 mM and 2.5 mM) of quinine solutions. 6-OHDA lesion of vmPFC increased the number of ingestive responses to highly concentrated (500 mM, 750 mM and 1000 mM) glucose solutions and decreased the number of ingestive responses to the lower concentration (0.125 mM) of quinine solution. The present data provide evidence for the important role of vmPFC neurons and catecholaminergic innervation of the vmPFC in the regulation of hedonic evaluation of tastes and in the hedonic consummatory behavior.
Collapse
Affiliation(s)
- Beáta Berta
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Zoltán Petykó
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Neuroscience Center, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology Research Group, Szentágothai Research Center, Pécs University, Pécs, Hungary
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Neuroscience Center, Pécs University, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Neuroscience Center, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology Research Group, Szentágothai Research Center, Pécs University, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, Pécs University, Pécs, Hungary; Neuroscience Center, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology Research Group, Szentágothai Research Center, Pécs University, Pécs, Hungary.
| |
Collapse
|