1
|
Yang B, Yu N. Traditional Chinese medicine alleviating neuropathic pain targeting purinergic receptor P2 in purinergic signaling: A review. Brain Res Bull 2023; 204:110800. [PMID: 37913850 DOI: 10.1016/j.brainresbull.2023.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Past studies have suggested that Chinese herbal may alleviate neuropathic pain, and the mechanism might target the inhibition of purinergic receptor P2. This review discusses whether traditional Chinese medicine target P2 receptors in neuropathic pain and its mechanism in order to provide references for future clinical drug development. The related literatures were searched from Pubmed, Embase, Sinomed, and CNKI databases before June 2023. The search terms included"neuropathic pain", "purinergic receptor P2", "P2", "traditional Chinese medicine", "Chinese herbal medicine", and "herb". We described the traditional Chinese medicine alleviating neuropathic pain via purinergic receptor P2 signaling pathway including P2X2/3 R, P2X3R, P2X4R, P2X7R, P2Y1R. Inhibition of activating glial cells, changing synaptic transmission, increasing painful postsynaptic potential, and activating inflammatory signaling pathways maybe the mechanism. Purine receptor P2 can mediate the occurrence of neuropathic pain. And many of traditional Chinese medicines can target P2 receptors to relieve neuropathic pain, which provides reasonable evidences for the future development of drugs. Also, the safety and efficacy and mechanism need more in-depth experimental research.
Collapse
Affiliation(s)
- Bo Yang
- Department of Center for Psychosomatic Medicine,Sichuan Provincial Center for Mental Health,Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611135, China
| | - Nengwei Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
2
|
Sikka P, Behl T, Chandel P, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM. Scrutinizing the Therapeutic Promise of Purinergic Receptors Targeting Depression. Neurotox Res 2022; 40:1570-1585. [PMID: 35930172 DOI: 10.1007/s12640-022-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Antidepressant use has resulted in a variety of negative consequences, including permanent brain damage and erectile dysfunction. So, the purpose lies in developing something more productive with minimal side effects and consequently improved efficacy. A growing body of evidences indicated a remarkable purinergic signalling system, which helped in dealing with this complication. This has been found to be a powerful formula in dealing with psychiatric disorders. P1 (adenosine), P2X, and P2Y (ATP) are the receptors, involved in the pathology as well as exhibiting the therapeutic action by triggering the purinergic pathway. It was found that A2A and P2X7 receptors specifically were involved and recognized as possible targets for treating depression. Further, the development of biomarkers for the diagnosis of depression has also been attributed to accelerate the process. One such biomarker includes serum uric acid. Many clinical studies reveal the importance of antagonizing P2X7 and A2A receptors, for promising research in understanding the molecular premises of depression. However, further investigations are still needed to be done to open several unfolded mysteries for a better and safe upshot. The selective antagonists for A2A and P2X7 receptors may have antidepressant effects showing positive results, in agreement with non-clinical testing. In this review, efforts are being devoted to the targeted receptors in bringing out antidepressant effects with a possible link involving depression and defined purinergic signalling. Additionally, the overview of various receptors, including their functions and distribution, is being explored in a representative way along with the biomarkers involved.
Collapse
Affiliation(s)
- Priyanshi Sikka
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Parteek Chandel
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.,Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
3
|
Zhang W, Li Z, Li Z, Sun T, He Z, Manyande A, Xu W, Xiang H. The Role of the Superior Cervical Sympathetic Ganglion in Ischemia Reperfusion-Induced Acute Kidney Injury in Rats. Front Med (Lausanne) 2022; 9:792000. [PMID: 35530034 PMCID: PMC9069004 DOI: 10.3389/fmed.2022.792000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Acute kidney injury (AKI) has been found to be a serious clinical problem with high morbidity and mortality, and is associated with acute inflammatory response and sympathetic activation that subsequently play an important role in the development of AKI. It is well known that the sympathetic nervous system (SNS) and immune system intensely interact and mutually control each other in order to maintain homeostasis in response to stress or injury. Evidence has shown that the superior cervical sympathetic ganglion (SCG) participates in the bidirectional network between the immune and the SNS, and that the superior cervical ganglionectomy has protective effect on myocardial infarction, however, the role of the SCG in the setting of renal ischemic reperfusion injury has not been studied. Here, we sought to determine whether or not the SCG modulates renal ischemic reperfusion (IR) injury in rats. Our results showed that bilateral superior cervical ganglionectomy (SCGx) 14 days before IR injury markedly reduced the norepinephrine (NE) in plasma, and down-regulated the increased expression of tyrosine hydroxylase (TH) in the kidney and hypothalamus. Sympathetic denervation by SCGx in the AKI group increased the level of blood urea nitrogen (BUN) and kidney injury molecule-1 (KIM-1), and exacerbated renal pathological damage. Sympathetic denervation by SCGx in the AKI group enhanced the expression of pro-inflammatory cytokines in plasma, kidney and hypothalamus, and increased levels of Bax in denervated rats with IR injury. In addition, the levels of purinergic receptors, P2X3R and P2X7R, in the spinal cord were up-regulated in the denervated rats of the IR group. In conclusion, these results demonstrate that the sympathetic denervation by SCGx aggravated IR-induced AKI in rats via enhancing the inflammatory response, thus, the activated purinergic signaling in the spinal cord might be the potential mechanism in the aggravated renal injury.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Anesthesiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Li
- Department of Anesthesiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiao Li
- Department of Anesthesiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tianning Sun
- Department of Anesthesiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigang He
- Department of Anesthesiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Weiguo Xu
- Department of Orthopedics, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weiguo Xu,
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hongbing Xiang,
| |
Collapse
|
4
|
Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain Processing. Int J Mol Sci 2021; 22:ijms22010405. [PMID: 33401689 PMCID: PMC7795269 DOI: 10.3390/ijms22010405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.
Collapse
|
5
|
Voiding Dysfunction in Old Male Rats Associated With Enlarged Prostate and Irregular Afferent-Triggered Reflex Responses. Int Neurourol J 2020; 24:258-269. [PMID: 33017896 PMCID: PMC7538283 DOI: 10.5213/inj.2040114.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/24/2020] [Indexed: 11/08/2022] Open
Abstract
Purpose This study was conducted to evaluate the hypothesis that an enlarged prostate in old rats may lead to complications associated with voiding dysfunction involving ionotropic P2X2/3-type purinergic receptors Methods Intact animals were divided into male young (MYR; 8–10 weeks old) and male old (MOR; 20 months old) rats. The animals underwent simultaneous detrusor electromyography (EMG) and suprapubic cystometry (CMG) under urethane anesthesia. Immunofluorescence techniques were used to evaluate prostatic autonomic innervation and P2X3R expression in bladder urothelial cells. The functional role of P2X3R was characterized by intramuscular application of AF-353, a selective P2X2/3R antagonist. Results The prostate index significantly increased in MOR, suggestive of an enlarged prostate affecting micturition patterns. Significant EMG and CMG differences were found between MYR and MOR. Higher immunoreactivity for P2X2/3R in the urothelial layer and for prostatic neurofilaments was seen in MOR. Systemic inhibition of P2X2/3R had minimal effects on MYR responsiveness, but improved voiding function in MOR with a marked decrease of intravesical pressure and bladder contractile responses. Conclusions The data support the hypothesis that an enlarged prostate in MOR may contribute to voiding dysfunction involving activation of P2X2/3R, which enhances a prostate-bladder reflex. This reflex may increase bladder afferent transmission and activation of increased prostate innervation, leading to voiding dysfunction.
Collapse
|
6
|
Peterson RA, König C, Zimmermann K, Barry CM, Wiklendt L, Brookes SJH. Effects of Lactate on One Class of Group III (CT3) Muscle Afferents. Front Cell Neurosci 2020; 14:215. [PMID: 32848615 PMCID: PMC7424053 DOI: 10.3389/fncel.2020.00215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
A class of Group III muscle afferent neurons has branching sensory terminals in the connective tissue between layers of mouse abdominal muscles (“CT3 muscle afferents”). These sensory endings are both mechanosensitive and metabosensitive. In the present study, responses of CT3 afferents to lactate ions and changes in temperature were recorded. Raising muscle temperature from 32.7°C to 37°C had no consistent effects on CT3 afferent basal firing rate or responses to either von Frey hair stimulation or to an applied load. Superfusion with lactate ions (15 mM, pH 7.4) was associated with an increase in firing from 6 ± 0.7 Hz to 11.7 ± 6.7 Hz (14 units, n = 13, P < 0.05, P = 0.0484) but with considerable variability in the nature and latency of response. Reducing the concentration of extracellular divalent cations, which mimicked the chelating effects of lactate, did not increase firing. Raised concentrations of divalent cations (to compensate for chelation) did not block excitatory effects of lactate on CT3 afferents, suggesting that effects via ASIC3 were not involved. Messenger RNA for the G-protein coupled receptor, hydroxyl carboxylic acid receptor 1 (HCAR1) was detected in dorsal root ganglia and HCAR1-like immunoreactivity was present in spinal afferent nerve cell bodies retrogradely labeled from mouse abdominal muscles. HCAR1-like immunoreactivity was also present in axons in mouse abdominal muscles. This raises the possibility that some effects of lactate on group III muscle afferents may be mediated by HCAR1.
Collapse
Affiliation(s)
- Rochelle A Peterson
- Neurogastroentrology Laboratory, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Christine König
- Klinik für Anästhesiologie am Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Zimmermann
- Klinik für Anästhesiologie am Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christine M Barry
- Musculoskeletal Neurobiology Laboratory, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Lukasz Wiklendt
- Neurogastroentrology Laboratory, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Simon J H Brookes
- Neurogastroentrology Laboratory, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
7
|
Stokes L, Bidula S, Bibič L, Allum E. To Inhibit or Enhance? Is There a Benefit to Positive Allosteric Modulation of P2X Receptors? Front Pharmacol 2020; 11:627. [PMID: 32477120 PMCID: PMC7235284 DOI: 10.3389/fphar.2020.00627] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
The family of ligand-gated ion channels known as P2X receptors were discovered several decades ago. Since the cloning of the seven P2X receptors (P2X1-P2X7), a huge research effort has elucidated their roles in regulating a range of physiological and pathophysiological processes. Transgenic animals have been influential in understanding which P2X receptors could be new therapeutic targets for disease. Furthermore, understanding how inherited mutations can increase susceptibility to disorders and diseases has advanced this knowledge base. There has been an emphasis on the discovery and development of pharmacological tools to help dissect the individual roles of P2X receptors and the pharmaceutical industry has been involved in pushing forward clinical development of several lead compounds. During the discovery phase, a number of positive allosteric modulators have been described for P2X receptors and these have been useful in assigning physiological roles to receptors. This review will consider the major physiological roles of P2X1-P2X7 and discuss whether enhancement of P2X receptor activity would offer any therapeutic benefit. We will review what is known about identified compounds acting as positive allosteric modulators and the recent identification of drug binding pockets for such modulators.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Lučka Bibič
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Elizabeth Allum
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
8
|
Bán EG, Brassai A, Vizi ES. The role of the endogenous neurotransmitters associated with neuropathic pain and in the opioid crisis: The innate pain-relieving system. Brain Res Bull 2019; 155:129-136. [PMID: 31816407 DOI: 10.1016/j.brainresbull.2019.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
Neuropathic pain is a chronic pain caused by central and peripheral nerve injury, long-term diabetes or treatment with chemotherapy drugs, and it is dissimilar to other chronic pain conditions. Chronic pain usually seriously affects the quality of life, and its drug treatment may result in increased costs of social and medical care. As in the USA and Canada, in Europe, the demand for pain-relieving medicines used in chronic pain has also significantly increased, but most European countries are not experiencing an opioid crisis. In this review, the role of various endogenous transmitters (noradrenaline, dopamine, serotonin, met- and leu-enkephalins, β-endorphin, dynorphins, cannabinoids, ATP) and various receptors (α2, μ, etc.) in the innate pain-relieving system will be discussed. Furthermore, the modulation of pain processing pathways by transmitters, focusing on neuropathic pain and the role of the sympathetic nervous system in the side effects of excessive opioid treatment, will be explained.
Collapse
Affiliation(s)
- E Gy Bán
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - A Brassai
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - E S Vizi
- Institute of Experimental Medicine, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
9
|
Liu S, Wang M, Wang N, Li S, Sun R, Xing J, Wang Y, Yu S, Li L, Li G, Liang S. Exploring the molecular mechanism of the effect of puerarin on P2X 3. Int J Biol Macromol 2019; 142:484-491. [PMID: 31593721 DOI: 10.1016/j.ijbiomac.2019.09.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
P2X3 is a ligand-gated nonselective cation channel and permeable to Na+, K+ and Ca2+. Adenosine triphosphate (ATP) activation of the P2X3 on primary sensory ganglion neurons is involved in nociceptive transmission. Puerarin is a major active ingredient extracted from the traditional Chinese medicine Ge-gen. Puerarin inhibits nociceptive signal transmission by inhibiting the P2X3 in the dorsal root ganglia (DRG) and sympathetic ganglia, but its molecular mechanism is unclear. The aim of this study was to explore the molecular mechanism of puerarin on the P2X3. Here, molecular docking results revealed that puerarin binds well to the human P2X3 protein in the vicinity of the ATP binding pocket. Protein-ligand docking showed that the V64A mutation reduced the effect of puerarin but had little effect on ATP. V64A site-directed mutagenesis of P2X3 was performed using an overlap extension PCR technique. The wild-type and V64A mutant pEGFP-C1-P2X3 recombinant plasmids were transfected into HEK 293 cells. The electrophysiology results demonstrated that puerarin exerted an obvious inhibitory effect on ATP-activated currents in HEK 293 cells transfected with the wild-type P2X3, while little inhibition was observed in HEK 293 cells transfected with the mutant P2X3. These studies suggest that puerarin inhibits the P2X3 by binding to V64A.
Collapse
Affiliation(s)
- Shuangmei Liu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Mengke Wang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Na Wang
- Undergraduate Student of Second Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Shizhen Li
- Undergraduate Student of Second Clinical Department, Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Rui Sun
- Undergraduate Student of Anesthesiology Department, Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Jingming Xing
- Undergraduate Student of Basic Medical Science Department, Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yueying Wang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Shicheng Yu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Lin Li
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Guodong Li
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China
| | - Shangdong Liang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
10
|
Engel T, Sperlagh B. Purinergic signaling as a target for emerging neurotherapeutics. Brain Res Bull 2019; 151:1-2. [PMID: 31163189 DOI: 10.1016/j.brainresbull.2019.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|