1
|
Dos Santos TFO, Melo JEC, Santos HF, Souza JLS, Santos EDR, de Oliveira MCS, Bispo JMM, Medeiros KAAL, Lins LCRF, Menezes EC, de Gois AM, Silva RH, Ribeiro AM, Dos Santos JR. Repeated balance exercise promotes cholinergic neuroprotection of the pedunculopontine nucleus in a progressive model of Parkinson's disease. Physiol Behav 2024; 288:114722. [PMID: 39490803 DOI: 10.1016/j.physbeh.2024.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Vestibular rehabilitation (VR) is a therapeutic approach that minimizes the impacts of balance alterations by enhancing the central vestibular compensation mechanism. The present study investigates the effect of repeated balance exercises on the central vestibular compensation mechanism in a reserpine-induced progressive model of parkinsonism in aged rats. Male Wistar rats were assigned to three cohort experiments: Exp 1: repeated balance exercises (narrow beam test) - performed every 48 h during 20 days; Exp 2: balance exercises performed on the 0th and 8th days; Exp 3: balance exercises performed only on the 0th and 20th days. For each experiment, the animals were divided into two groups (n = 7 per group): CTL (vehicle) and RES (reserpine 0.1 mg/kg). The animals received 4 (exp. 2) or 10 (exp 1 and 3) s.c. injections (0.1 mg/kg), one every 48 h. The cohorts were evaluated using catalepsy and open field tests (0th, 8th and 20th days). After completion of behavioral tests, the brains were analyzed for immunohistochemistry for tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT). The RES group presented motor deficits in the catalepsy and open field tests on day 20, but not on day 8. There was no decrease in the number of TH neurons and terminals in the substantia nigra pars compacta (SNpc), ventral tegmental area (VTA) and dorsal striatum (DS) for animals from Exp. 2. However, a decrease was observed in the SNpc, VTA and striatum of animals from Exp 1 and Exp 3. In the balance beam test, the animals in the RES group showed a longer crossing time from day 8 to day 14 (Exp 1), on the 8th day (Exp 2) and on the 20th day (Exp. 3). This finding was correlated with a decrease in the number of ChAT immunoreactive cells in the pedunculopontine tegmental nucleus (PPN) for the animals that performed the dynamic balance test only once (Exp. 2 and 3), but no reduction was observed in the animals that performed the test repeatedly (Epx. 1). Thus, it was possible to verify that repeated exposure of the animals to balance assessment tasks potentiated the performance of the central vestibular compensation mechanism in the animal model of parkinsonism.
Collapse
Affiliation(s)
- Thassya F O Dos Santos
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - João E C Melo
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Heitor F Santos
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil; Federal University of Sergipe, Neurophysiology Laboratory, Department of Physiology, São Cristóvão, SE, Brazil
| | - José L S Souza
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Edson de R Santos
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Maria C S de Oliveira
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - José M M Bispo
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Katty A A L Medeiros
- Federal University of Sergipe, Professor Antônio Garcia Filho Center, Department of Nursing, Lagarto, SE, Brazil
| | - Lívia C R F Lins
- Federal University of Sergipe, Neurophysiology Laboratory, Department of Physiology, São Cristóvão, SE, Brazil
| | - Edenia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Auderlan M de Gois
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil
| | - Regina H Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | - José R Dos Santos
- Federal University of Sergipe, Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Itabaiana, SE, Brazil.
| |
Collapse
|
2
|
Jellinger KA. Behavioral disorders in Parkinson disease: current view. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02846-3. [PMID: 39453553 DOI: 10.1007/s00702-024-02846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Patients with Parkinson disease (PD) frequently experience several behavioral symptoms, such as anxiety, apathy, irritability, agitation, impulsive control and obsessive-compulsive or REM sleep behavior disorders, which can cause severe psychosocial problems and impair quality of life. Occurring in 30-70% of PD patients, these symptoms can manifest at early stages of the disease, sometimes even before the appearance of classic motor symptoms, while others can develop later. Behavioral changes in PD show distinct patterns of brain atrophy, dopaminergic and serotonergic deterioration, altered neuronal connectivity in frontostriatal, corticolimbic, default mode and other networks due to a cascade linking molecular pathologies and deficits in multiple behavior domains. The changes suggest a multi-system neurodegenerative process in the context of a specific α-synucleinopathy inducing a variety of biochemical and functional changes, the neurobiological basis and clinical relevance of which await further elucidation. This paper is intended to review the recent literature with focus on the main behavioral disturbances in PD patients, their epidemiology, clinical features, risk factors, animal models, neuroimaging findings, pathophysiological backgrounds, and treatment options of these deleterious lesions.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
3
|
Lopes-Silva LB, Cunha DMG, Lima AC, Bioni VS, Gonçalves N, Kurita JPF, Wuo-Silva R, Silva RH. Sleep deprivation induces late deleterious effects in a pharmacological model of Parkinsonism. Exp Brain Res 2024; 242:1175-1190. [PMID: 38499659 DOI: 10.1007/s00221-024-06811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/18/2024] [Indexed: 03/20/2024]
Abstract
Parkinson's disease is a degenerative, chronic and progressive disease, characterized by motor dysfunctions. Patients also exhibit non-motor symptoms, such as affective and sleep disorders. Sleep disorders can potentiate clinical and neuropathological features and lead to worse prognosis. The goal of this study was to evaluate the effects of sleep deprivation (SD) in mice submitted to a progressive pharmacological model of Parkinsonism (chronic administration with a low dose of reserpine). Male Swiss mice received 20 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. SD was applied before or during reserpine treatment and was performed by gentle handling for 6 h per day for 10 consecutive days. Animals were submitted to motor and non-motor behavioral assessments and neurochemical evaluations. Locomotion was increased by SD and decreased by reserpine treatment. SD during treatment delayed the onset of catalepsy, but SD prior to treatment potentiated reserpine-induced catalepsy. Thus, although SD induced an apparent beneficial effect on motor parameters, a delayed deleterious effect on alterations induced by reserpine was found. In the object recognition test, both SD and reserpine treatment produced cognitive deficits. In addition, the association between SD and reserpine induced anhedonic-like behavior. Finally, an increase in oxidative stress was found in hippocampus of mice subjected to SD, and tyrosine hydroxylase immunoreactivity was reduced in substantia nigra of reserpine-treated animals. Results point to a possible late effect of SD, aggravating the deficits in mice submitted to the reserpine progressive model of PD.
Collapse
Affiliation(s)
- L B Lopes-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - D M G Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - A C Lima
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - V S Bioni
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - N Gonçalves
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - J P F Kurita
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - R Wuo-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil
| | - R H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Botucatu, 862, Ed. Leal Prado, São Paulo, Brazil.
| |
Collapse
|
4
|
Ahmad MH, Rizvi MA, Ali M, Mondal AC. Neurobiology of depression in Parkinson's disease: Insights into epidemiology, molecular mechanisms and treatment strategies. Ageing Res Rev 2023; 85:101840. [PMID: 36603690 DOI: 10.1016/j.arr.2022.101840] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Parkinson's disease (PD) is characterized mainly by motor dysfunctions due to the progressive loss of dopaminergic neurons. However, PD patients experience a multitude of debilitating non-motor symptoms, including depression, which may have deleteriously detrimental effects on life. Depression is multifactorial and exhibits a bimodal progression in PD, but its underlying molecular mechanisms are poorly understood. Studies demonstrating the pathophysiology of depression in PD and the specific treatment strategies for depression-like symptoms in PD patients are largely lacking, often underrated, under-recognized and, consequently, inadequately/under-treated. Nevertheless, reports suggest that the incidence of depression is approximately 20-30% of PD patients and may precede the onset of motor symptoms. Diagnosing depression in PD becomes difficult due to the clinical overlap in symptomatology between the two diseases, and the nigrostriatal dysfunction alone is insufficient to explain depressive symptoms in PD. Therefore, the current study provides an overview of the molecular mechanisms underlying the development of depression in PD and new insights into developing current antidepressant strategies to treat depression in PD. This review will identify and understand the molecular pathological mechanisms of depression in PD that will fundamentally help tailoring therapeutic interventions for depressive symptoms in PD.
Collapse
Affiliation(s)
- Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Bispo JMM, Melo JEC, Gois AM, Medeiros KAAL, Silva RS, Leal PC, Franco HS, Souza MF, Lins LCRF, Ribeiro AM, Silva RH, Santos JR. Testosterone propionate improves motor alterations and dopaminergic damage in the reserpine-induced progressive model of Parkinson's disease. Brain Res Bull 2022; 187:162-168. [PMID: 35781030 DOI: 10.1016/j.brainresbull.2022.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder with a higher susceptibility to occur in men. Studies suggest that this susceptibility is related to the hormonal differences observed between men and women, being a risk factor for PD. In addition, testosterone supplementation has shown controversial results in animal models of PD and parkinsonian patients. This study evaluated the effect of chronic administration of testosterone propionate (TP) on motor behavior and neurochemical parameters in the reserpine-induced rat model of parkinsonism. Male Wistar rats received 15 injections of reserpine (RES - 0.1 mg/kg) every other day and were concomitantly treated with different doses (0.1, 1.0, or 5.0 mg/kg) of daily TP for 30 days. The rats were euthanized 48 h after the 15th injection of RES or vehicle. Brains were removed and subjected to Tyrosine hydroxylase (TH) immunohistochemistry. TP at 1.0 mg/kg reduced the damages caused by reserpine in the vacuous chewing and tong protrusion behaviors and prevented dopaminergic damage in the SNpc, VTA, and Striatum. TP at 5.0 mg/kg reduced the damages caused by reserpine in the catalepsy and tong protrusion behaviors, prevented the weight loss, and prevented dopaminergic damage in the VTA. Our results suggest that chronic administration of TP has a protective effect in a rat model of parkinsonism, improving motor alterations and dopamine depletion induced by RES.
Collapse
Affiliation(s)
- José M M Bispo
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - João E C Melo
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Auderlan M Gois
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Katty A A L Medeiros
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Rodolfo Santos Silva
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Pollyana C Leal
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Graduate Program in Dentistry / Federal University of Sergipe, Aracaju, SE, Brazil.
| | - Heitor S Franco
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Marina F Souza
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Lívia C R F Lins
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| | | | - Regina H Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - José R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|
6
|
Radulovic J, Ivkovic S, Adzic M. From chronic stress and anxiety to neurodegeneration: Focus on neuromodulation of the axon initial segment. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:481-495. [PMID: 35034756 DOI: 10.1016/b978-0-12-819410-2.00025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To adapt to the sustained demands of chronic stress, discrete brain circuits undergo structural and functional changes often resulting in anxiety disorders. In some individuals, anxiety disorders precede the development of motor symptoms of Parkinson's disease (PD) caused by degeneration of neurons in the substantia nigra (SN). Here, we present a circuit framework for probing a causal link between chronic stress, anxiety, and PD, which postulates a central role of abnormal neuromodulation of the SN's axon initial segment by brainstem inputs. It is grounded in findings demonstrating that the earliest PD pathologies occur in the stress-responsive, emotion regulation network of the brainstem, which provides the SN with dense aminergic and cholinergic innervation. SN's axon initial segment (AIS) has unique features that support the sustained and bidirectional propagation of activity in response to synaptic inputs. It is therefore, especially sensitive to circuit-mediated stress-induced imbalance of neuromodulation, and thus a plausible initiating site of neurodegeneration. This could explain why, although secondary to pathophysiologies in other brainstem nuclei, SN degeneration is the most extensive. Consequently, the cardinal symptom of PD, severe motor deficits, arise from degeneration of the nigrostriatal pathway rather than other brainstem nuclei. Understanding when and how circuit dysfunctions underlying anxiety can progress to neurodegeneration, raises the prospect of timed interventions for reversing, or at least impeding, the early pathophysiologies that lead to PD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Jelena Radulovic
- Department of Neuroscience, Albert Einstein Medical College, Bronx, NY, United States; Department of Psychiatry and Behavioral Sciences, Albert Einstein Medical College, Bronx, NY, United States.
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Fan Y, Han J, Zhao L, Wu C, Wu P, Huang Z, Hao X, Ji Y, Chen D, Zhu M. Experimental Models of Cognitive Impairment for Use in Parkinson's Disease Research: The Distance Between Reality and Ideal. Front Aging Neurosci 2021; 13:745438. [PMID: 34912207 PMCID: PMC8667076 DOI: 10.3389/fnagi.2021.745438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Cognitive impairment is one of the key non-motor symptoms of PD, affecting both mortality and quality of life. However, there are few experimental studies on the pathology and treatments of PD with mild cognitive impairment (PD-MCI) and PD dementia (PDD) due to the lack of representative models. To identify new strategies for developing representative models, we systematically summarized previous studies on PD-MCI and PDD and compared differences between existing models and diseases. Our initial search identified 5432 articles, of which 738 were duplicates. A total of 227 articles met our inclusion criteria and were included in the analysis. Models fell into three categories based on model design: neurotoxin-induced, transgenic, and combined. Although the neurotoxin-induced experimental model was the most common type that was used during every time period, transgenic and combined experimental models have gained significant recent attention. Unfortunately, there remains a big gap between ideal and actual experimental models. While each model has its own disadvantages, there have been tremendous advances in the development of PD models of cognitive impairment, and almost every model can verify a hypothesis about PD-MCI or PDD. Finally, our proposed strategies for developing novel models are as follows: a set of plans that integrate symptoms, biochemistry, neuroimaging, and other objective indicators to judge and identify that the novel model plays a key role in new strategies for developing representative models; novel models should simulate different clinical features of PD-MCI or PDD; inducible α-Syn overexpression and SH-SY5Y-A53T cellular models are good candidate models of PD-MCI or PDD.
Collapse
Affiliation(s)
- Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiajun Han
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunxiao Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peipei Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaoqian Hao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - YiChun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dongfeng Chen
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Lima AC, Meurer YSR, Bioni VS, Cunha DMG, Gonçalves N, Lopes-Silva LB, Becegato M, Soares MBL, Marinho GF, Santos JR, Silva RH. Female Rats Are Resistant to Cognitive, Motor and Dopaminergic Deficits in the Reserpine-Induced Progressive Model of Parkinson's Disease. Front Aging Neurosci 2021; 13:757714. [PMID: 34759815 PMCID: PMC8573221 DOI: 10.3389/fnagi.2021.757714] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. The main symptoms are motor signs such as resting tremor and difficulty in initializing movements. Non-motor alterations, such as cognitive deficits, can precede the motor symptoms. PD is more frequent in men than women. The mechanisms related to this difference are not completely understood. There is evidence that females present distinct characteristics in dopaminergic function compared to males. While the severity of motor impairments is often compared between sexes, little is known about sex differences in the prodromal stage. Most animal models of PD present acute severe motor impairment, which precludes the study of non-motor symptoms. Our research group have proposed an adaptation of the classic reserpine protocol, using low doses in a chronic treatment. This method allows the observation of progressive motor impairment as well as premotor deficits. Here we investigate possible behavioral and neuronal sex differences in the effects of the repeated treatment with a low dose of reserpine in rats. Male and female Wistar rats received 10–15 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. We followed-up the estrous cycle phases and conducted motor and cognitive assessments (catalepsy, open field, oral movements and object recognition tests). The euthanasia occurred 48 h after the 10th or 15th injections, with the collection of blood for the quantification of sex hormones and brains for tyrosine hydroxylase (TH) immunohistochemistry in the substantia nigra pars compact (SNpc). Reserpine induced progressive catalepsy, involuntary oral movements and cognitive deficits in male rats. The behavioral effects of reserpine were attenuated (motor) or absent (cognitive) in females. Reserpine decreased TH immunoreactivity in males, but not in females. Estrogen levels in females negatively correlated with catalepsy duration. Our findings show that females present a delay and/or a prevention in the reserpine-induced motor alterations in the progressive PD model, compatible with the lower prevalence of this disease in women. Further, females were protected from the deficit in object recognition at the prodromal stage. The absence of reserpine-induce decrease in TH immunoreactivity suggests that differences in dopaminergic function/plasticity are related to this protection in female sex.
Collapse
Affiliation(s)
- Alvaro C Lima
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ywlliane S R Meurer
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Vinicius S Bioni
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Débora M G Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Narriman Gonçalves
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leonardo B Lopes-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Manuela B L Soares
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela F Marinho
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Brazil
| | - Regina H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Leão AHFF, Meurer YSR, Freitas TA, Medeiros AM, Abílio VC, Izídio GS, Conceição IM, Ribeiro AM, Silva RH. Changes in the mesocorticolimbic pathway after low dose reserpine-treatment in Wistar and Spontaneously Hypertensive Rats (SHR): Implications for cognitive deficits in a progressive animal model for Parkinson's disease. Behav Brain Res 2021; 410:113349. [PMID: 33971246 DOI: 10.1016/j.bbr.2021.113349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Reserpine (RES) is an irreversible inhibitor of VMAT2 used to study Parkinson's disease (PD) and screening for antiparkinsonian treatments in rodents. Recently, the repeated treatment with a low dose of reserpine was proposed as a model capable of emulating progressive neurochemical, motor and non-motor impairments in PD. Conversely, compared to Wistar rats, Spontaneously Hypertensive Rats (SHR) are resistant to motor changes induced by repeated treatment with a low dose of RES. However, such resistance has not yet been investigated for RES-induced non-motor impairments. We aimed to assess whether SHR would have differential susceptibility to the object recognition deficit induced by repeated low-dose reserpine treatment. We submitted male Wistar and SHR rats to repeated RES treatment (15 s.c. injections of 0.1 mg/kg, every other day) and assessed object memory acquisition and retrieval 48 h after the 6th RES injection (immediately before the appearance of motor impairments). Only RES Wistar rats displayed memory impairment after reserpine treatment. On the other hand, untreated SHR rats displayed object recognition memory deficit, but RES treatment restored such deficits. We also performed immunohistochemistry for tyrosine hydroxylase (TH) and α-synuclein (α-syn) 48 h after the last RES injection. In a different set of animals submitted to the same treatment, we quantified DA, 5-HT and products of lipid peroxidation in the prefrontal cortex (PFC) and hippocampus (HPC). SHR presented increased constitutive levels of DA in the PFC and reduced immunoreactivity to TH in the medial PFC and dorsal HPC. Corroborating the behavioral findings, RES treatment restored those constitutive alterations in SHR. These findings indicate that the neurochemical, molecular and genetic differences in the SHR strain are potentially relevant targets to the study of susceptibility to diseases related to dopaminergic alterations.
Collapse
Affiliation(s)
- Anderson H F F Leão
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ywlliane S R Meurer
- Memory and Cognition Laboratory, Department of Psychology, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Thalma A Freitas
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil; Laboratory of Pharmacology, Group of Toxin Action Mode (MATx), Butantan Institute, São Paulo, Brazil
| | - André M Medeiros
- Center of Health and Biological Sciences, Universidade Federal Rural do Semi-árido, Mossoró, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Geison S Izídio
- Laboratory of Behavioral Genetics, Department of Cellular Biology, Embryology and Genetics, Universidade Federal de Santa Catarina, Florianopolis, Brazil
| | - Isaltino M Conceição
- Laboratory of Pharmacology, Group of Toxin Action Mode (MATx), Butantan Institute, São Paulo, Brazil
| | | | - Regina H Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Cintra RR, Lins LCRF, Medeiros KAAL, Souza MF, Gois AM, Bispo JMM, Melo MS, Leal PC, Meurer YSR, Ribeiro AM, Silva RH, Marchioro M, Santos JR. Nociception alterations precede motor symptoms in a progressive model of parkinsonism induced by reserpine in middle-aged rats. Brain Res Bull 2021; 171:1-9. [PMID: 33675933 DOI: 10.1016/j.brainresbull.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
Nociception alterations are frequent non-motor symptoms of the prodromal phase of Parkinson's disease (PD). The period for the onset of symptoms and the pathophysiological mechanisms underlying these alterations remain unclear. We investigated the course of nociception alterations in a progressive model of parkinsonism induced by reserpine (RES) in rats. Male Wistar rats (6-7 months) received 5 or 10 subcutaneous injections of RES (0.1 mg/kg) or vehicle daily for 20 days. Motor evaluation and nociceptive assessment were performed throughout the treatment. At the end of the treatment rats were euthanized, the brains removed and processed for immunohistochemical analysis (TH and c-Fos). The RES-treated rats exhibited an increased nociceptive response to mechanical and chemical stimulation in the electronic von Frey and formalin tests, respectively. Moreover, these alterations preceded the motor impairment observed in the catalepsy test. In addition, the RES treatment reduced the TH-immunoreactivity in the ventral tegmental area (VTA) and increased the c-Fos expression in the ventral-lateral periaqueductal gray (vlPAG), rostral ventral medulla (RVM) and dorsal raphe nucleus (DRN) after noxious stimuli induced by formalin. Taken together, our results reinforce that nociceptive changes are one of the early signs of PD and monoamine depletion in basal ganglia can be involved in the abnormal processing of nociceptive information in PD.
Collapse
Affiliation(s)
- Rachel R Cintra
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - Lívia C R F Lins
- Department of Health Education, Federal University of Sergipe, Lagarto, SE, Brazil
| | - Katty A A L Medeiros
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - Marina F Souza
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Auderlan M Gois
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - José M M Bispo
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Mônica S Melo
- Department of Health Education, Federal University of Sergipe, Lagarto, SE, Brazil
| | - Pollyana C Leal
- Post-graduate Program of Dentistry, Federal University of Sergipe, Aracaju, SE, Brazil
| | - Ywlliane S R Meurer
- Laboratory of Behavioral and Molecular Neuroscience, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Alessandra M Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil
| | - Regina H Silva
- Laboratory of Behavioral and Molecular Neuroscience, Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Murilo Marchioro
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - José R Santos
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|
11
|
Balance alterations and reduction of pedunculopontine cholinergic neurons in early stages of parkinsonism in middle-aged rats. Exp Gerontol 2020; 145:111198. [PMID: 33310153 DOI: 10.1016/j.exger.2020.111198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
The purpose of the present study was to investigate balance alterations and the possible role of the cholinergic neurons in the pedunculopontine nucleus (PPN) in the early stages of a progressive animal model of Parkinson's disease (PD). Twenty-eight middle-aged (8-9 months) male Wistar rats received 4 or 10 subcutaneous vehicle (control, CTL) or reserpine (RES) injections (0.1 mg/kg). The animals were submitted to different behavioral tests. Forty-eight hours after the 4th injection, half of the animals of each group (n = 7) were perfused and submitted to immunohistochemical analysis for tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT). The remaining animals (n = 7 per group) were killed 48 h after the 10th injection. RES group presented motor deficits in the catalepsy and open field tests starting at days 12 and 20 of treatment, respectively (only for the animals that received 10 injections). On the other hand, dynamic and static balance changes were observed at earlier stages of RES treatment, starting at days 6 and 4, respectively. At this point of the treatment, there was no decrease in the number of TH immunoreactivity neurons in the substantia nigra pars compacta (SNpc), ventral tegmental area (VTA) and dorsal striatum (DS). However, a decrease was observed in SNpc and dorsal striatum of animals that received 10 injections. In contrast, there was a decrease in the number of ChAT immunoreactive cells in PPN concomitantly to the balance alterations at the early stages of treatment (after 4 RES injections). Thus, by mimicking the progressiveness of PD, the reserpine model made it possible to identify static and dynamic balance impairments prior to the motor alterations in the catalepsy and open field tests. In addition, changes in balance were accompanied by a reduction in the number of ChAT immunoreactive cells in NPP in the early stages of treatment.
Collapse
|
12
|
Souza MF, Medeiros KAAL, Lins LCRF, Bispo JMM, Gois AM, Freire MAM, Marchioro M, Santos JR. Intracerebroventricular injection of deltamethrin increases locomotion activity and causes spatial working memory and dopaminergic pathway impairment in rats. Brain Res Bull 2019; 154:1-8. [PMID: 31606407 DOI: 10.1016/j.brainresbull.2019.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
Deltamethrin (DM) is widely used in agriculture, veterinary medicine and control of domestic pests. Epidemiological studies suggest that DM exposure is a risk factor for neurodegenerative disorders such as Parkinson's (PD) and Alzheimer diseases; however the mechanisms are elusive. In the present study we evaluated the effects of intracerebroventricular (i.c.v.) administration of DM on locomotion activity, spatial working memory and dopaminergic pathway in the rat. Middle-aged male Wistar rats received three i.c.v. injections of DM 0.5 μg, DM 5 μg or vehicle, every other day. Across the treatment, the animals were submitted to behavioral evaluation in the catalepsy test, open field test, and spontaneous alternation task. Following completion of behavioral tests, rats were perfused and their brains were processed to tyrosine hydroxylase (TH) immunohistochemistry. We observed that i.c.v. administration of DM 5 μg increased locomotion activity (open field) and caused spatial working memory impairment (spontaneous alternation task). These alterations were accompanied by reduction TH immunoreactivity in the substantia nigra pars compacta (SNpc), ventral tegmental area (VTA) and dorsal striatum. Conversely, no motor change was observed in the catalepsy test. These results indicate that i.c.v. administration of DM can cause hyperactivity and cognitive alteration which may be related to disruption of the dopaminergic pathway.
Collapse
Affiliation(s)
- Marina F Souza
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Katty Anne A L Medeiros
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Lívia C R F Lins
- Department of Health Education, Federal University of Sergipe, Lagarto, SE, Brazil
| | - José M M Bispo
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Auderlan M Gois
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Marco Aurelio M Freire
- Post Graduation Program in Health and Society, University of the State of Rio Grande do Norte, Mossoró, RN, Brazil; New Hope Faculty of Mossoró, RN, Brazil
| | - Murilo Marchioro
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - José R Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|