1
|
Sun Z, Chen G, Gan J, Tang Y, Wu H, Shi Z, Yi T, Yang Y, Liu S, Ji Y. Exploring the Neural Mechanisms of Mirrored-Self Misidentification in Alzheimer's Disease. Int J Geriatr Psychiatry 2024; 39:e6148. [PMID: 39334521 DOI: 10.1002/gps.6148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a complex neurodegenerative condition that causes a range of cognitive disturbances, including mirror-self misidentification syndrome (MSM), in which patients cannot recognize themselves in a mirror. However, the mechanism of action of MSM is not precisely known. This study aimed to explore the possible neural mechanisms of action of MSM in AD using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS This study included 48 AD patients, 13 in the MSM group and 35 in the non-MSM group. The permeability of the blood-brain barrier (BBB) was quantitatively monitored by measuring the transfer rate (Ktrans) of the contrast agent from the vasculature to the surrounding tissue using DCE-MRI. The concentration of contrast agents in different brain regions was measured, and the Patlak model was used to calculate Ktrans. Ktrans values were compared between the left and right cerebral hemispheres in different brain areas between the MSM and non-MSM groups. Additionally, the difference in Ktrans values between mild and severe MSM was assessed. Logistic regression analysis was used to examine the risk factors for MSM. RESULTS The Mann‒Whitney U test was used to compare two groups and revealed elevated Ktrans values in the left thalamus, left putamen, left globus pallidus, left corona radiata, and right caudate in the MSM group (p < 0.05). Logistic regression analysis revealed that increased Ktrans values in the left putamen (OR = 1.53, 95% CI = 1.04, 2.26) and left globus pallidus (OR = 1.54, 95% CI = 1.02, 2.31) may be risk factors for MSM. After dividing MSM patients into mild and moderate-severe groups, the Ktrans values of the thalamus in the moderate-severe group were greater than those in the mild group (p < 0.05). CONCLUSION Our study revealed the relationship between BBB permeability and MSM in AD. MSM is associated with BBB breakdown in the left putamen and globus pallidus. The left putamen and globus pallidus may function in mirror self-recognition. Higher BBB permeability in the thalamus may reflect the severity of AD in MSM.
Collapse
Affiliation(s)
- Zhen Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
- Department of Neurology, Linfen Central Hospital, Linfen, China
| | - Gang Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Interventional Vascular Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuqiao Tang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Tingting Yi
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yaqi Yang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Yong Ji
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| |
Collapse
|
2
|
Xu F, Xin Q, Ren M, Shi P, Wang B. Inhibition of piezo1 prevents chronic cerebral hypoperfusion-induced cognitive impairment and blood brain barrier disruption. Neurochem Int 2024; 175:105702. [PMID: 38401846 DOI: 10.1016/j.neuint.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) plays a critical role in the onset and progression of vascular dementia (VD), which is now recognized as the second most common form of dementia after Alzheimer's disease (AD). The mechanosensitive piezo1 channel has been identified to play important roles in several neurological disorders. However, the roles and possible mechanisms of piezo1 in CCH-induced cognitive decline and blood brain barrier (BBB) disruption, as well as the underlying mechanisms remain elusive. In this study, the CCH model was established by bilateral common carotid artery occlusion in rats and by oxygen and glucose deprivation/reoxygenation (OGD/R) in bEnd.3 cells. The results demonstrated that the antagonist of piezo1 GsMTx4 ameliorated CCH-induced cognitive dysfunction and mitigated cerebral edema. Furthermore, this study indicated that GsMTx4 improved the permeability and integrity of BBB and protected cerebral microvasculature after CCH. In vitro, GsMTx4 improved cell viability, promoted the ability of cell motility and migration, and inhibited the degradation of BBB integrity-related proteins by inhibiting NLRP3 inflammasome activation. In addition, NLRP3 agonist abolished the beneficial effects of GsMTx4. Collectively, our results demonstrate that piezo1 might be involved in CCH-induced cognitive impairment and BBB damage, which may be at least partially mediated through regulation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Fei Xu
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Department of Vascular Surgery, Jining NO.1 People's Hospital, Jining, 272000, China
| | - Qing Xin
- Department of Physiology, Jining Medical University, Jining, 272000, China
| | - Mengyao Ren
- Department of Physiology, Jining Medical University, Jining, 272000, China
| | - Peixin Shi
- Department of Physiology, Jining Medical University, Jining, 272000, China
| | - Bing Wang
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Hajipour S, Farbood Y, Dianat M, Nesari A, Sarkaki A. Effect of Berberine against Cognitive Deficits in Rat Model of Thioacetamide-Induced Liver Cirrhosis and Hepatic Encephalopathy (Behavioral, Biochemical, Molecular and Histological Evaluations). Brain Sci 2023; 13:944. [PMID: 37371422 DOI: 10.3390/brainsci13060944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Liver cirrhosis (LC) is one of the chronic liver diseases with high disability and mortality accompanying hepatic encephalopathy (HE) followed by cognitive dysfunctions. In this work, the effect of berberine (Ber) on spatial cognition was studied in a rat model of LC induced by thioacetamide (TAA). MATERIALS AND METHODS Male Wistar rats (200-250 g) were divided into six groups: (1) control; (2) TAA, 200 mg/kg/day, i.p.; (3-5) TAA + Ber; received Ber (10, 30, and 60 mg/kg, i.p., daily after last TAA injection); (6) Dizocilpine (MK-801) + TAA, received MK-801 (2 mg/kg/day, i.p.) 30 m before TAA injection. The spatial memory, BBB permeability, brain edema, liver enzymes, urea, serum and brain total bilirubin, oxidative stress and cytokine markers in the hippocampus were measured. Furthermore, a histological examination of the hippocampus was carried out. RESULTS The BBB permeability, brain edema, liver enzymes, urea, total bilirubin levels in serum and hippocampal MDA and TNF-α increased significantly after TAA injection (p < 0.001); the spatial memory was impaired (p < 0.001), and hippocampal IL-10 decreased (p < 0.001). Ber reversed all the above parameters significantly (p < 0.05, p < 0.01 and p < 0.001). MK-801 prevented the development of LC via TAA (p < 0.001). CONCLUSION Results showed that Ber improves spatial learning and memory in TAA-induced LC by improving the BBB function, oxidative stress and neuroinflammation. Ber might be a promising therapeutic agent for cognitive improvement in LC.
Collapse
Affiliation(s)
- Somayeh Hajipour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
| | - Ali Nesari
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz P.O. Box 61355-15795, Iran
- National Institute for Medical Research Development "NIMAD", Tehran 1419693111, Iran
| |
Collapse
|
4
|
Dhote V, Mandloi AS, Singour PK, Kawadkar M, Ganeshpurkar A, Jadhav MP. Neuroprotective effects of combined trimetazidine and progesterone on cerebral reperfusion injury. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100108. [PMID: 35602337 PMCID: PMC9118508 DOI: 10.1016/j.crphar.2022.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
Cerebral ischemia-reperfusion injury induces multi-dimensional damage to neuronal cells through exacerbation of critical protective mechanisms. Targeting more than one mechanism simultaneously namely, inflammatory responses and metabolic energy homeostasis could provide additional benefits to restrict or manage cerebral injury. Being proven neuroprotective agents both, progesterone (PG) and trimetazidine (TMZ) has the potential to add on the individual therapeutic outcomes. We hypothesized the simultaneous administration of PG and TMZ could complement each other to synergize, or at least enhance neuroprotection in reperfusion injury. We investigated the combination of PG and TMZ on middle cerebral artery occlusion (MCAO) induced cerebral reperfusion injury in rats. Molecular docking on targets of energy homeostasis and apoptosis assessed the initial viability of PG and TMZ for neuroprotection. Animal experimentation with MCA induced ischemia-reperfusion (I/R) injury in rats was performed on five randomized groups. Sham operated control group received vehicle (saline) while the other four I-R groups were pre-treated with vehicle (saline), PG (8 mg/kg), TMZ treated (25 mg/kg), and PG + TMZ (8 and 25 mg/kg) for 7 days by intraperitoneal route. Neurological deficit, infarct volume, and oxidative stress were evaluated to assess the extent of injury in rats. Inflammatory reactivity and apoptotic activity were determined with alterations in myeloperoxidase (MPO) activity, blood-brain barrier (BBB) permeability, and DNA fragments. Reperfusion injury inflicted cerebral infarct, neurological deficit, and shattered BBB integrity. The combination treatment of PG and TMZ restricted cellular damage indicated by significant (p < 0.05) decrease in infarct volume and improvement in free radical scavenging ability (SOD activity and GSH level). MPO activity and LPO decreased which contributed in improved BBB integrity in treated rats. We speculate that inhibition of inflammatory and optimum energy utilization would critically contribute to observed neuroprotection with combined PG and TMZ treatment. Further exploration of this neuroprotective approach for post-recovery cognitive improvement is worth investigating. Molecular docking study. Drug repurposing. Combinatorial approach. Network Pharmacology.
Collapse
|
5
|
Kaliszewska A, Allison J, Martini M, Arias N. Improving Age-Related Cognitive Decline through Dietary Interventions Targeting Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:ijms22073574. [PMID: 33808221 PMCID: PMC8036520 DOI: 10.3390/ijms22073574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is inevitable and it is one of the major contributors to cognitive decline. However, the mechanisms underlying age-related cognitive decline are still the object of extensive research. At the biological level, it is unknown how the aging brain is subjected to progressive oxidative stress and neuroinflammation which determine, among others, mitochondrial dysfunction. The link between mitochondrial dysfunction and cognitive impairment is becoming ever more clear by the presence of significant neurological disturbances in human mitochondrial diseases. Possibly, the most important lifestyle factor determining mitochondrial functioning is nutrition. Therefore, with the present work, we review the latest findings disclosing a link between nutrition, mitochondrial functioning and cognition, and pave new ways to counteract cognitive decline in late adulthood through diet.
Collapse
Affiliation(s)
- Aleksandra Kaliszewska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Joseph Allison
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
| | - Matteo Martini
- Department of Psychology, University of East London, London E154LZ, UK;
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (A.K.); (J.A.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33005 Oviedo, Spain
- Correspondence:
| |
Collapse
|
6
|
Li C, Wang Y, Yan XL, Guo ZN, Yang Y. Pathological changes in neurovascular units: Lessons from cases of vascular dementia. CNS Neurosci Ther 2021; 27:17-25. [PMID: 33423390 PMCID: PMC7804924 DOI: 10.1111/cns.13572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular dementia (VD) is the second leading cause of dementia after Alzheimer's disease (AD). The decrease of cerebral blood flow (CBF) to different degrees is one of the main causes of VD. Neurovascular unit (NVU) is a vessel‐centered concept, emphasizing all the cellular components play an integrated role in maintaining the normal physiological functions of the brain. More and more evidence shows that reduced CBF causes a series of changes in NVU, such as impaired neuronal function, abnormal activation of glial cells, and changes in vascular permeability, all of which collectively play a role in the pathogenesis of VD. In this paper, we review NVU changes as CBF decreases, focusing on each cellular component of NVU. We also highlight remote ischemic preconditioning as a promising approach for VD prevention and treatment from the NVU perspective of view.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yan Wang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
7
|
Triglyceride is a Good Biomarker of Increased Injury Severity on a High Fat Diet Rat After Traumatic Brain Injury. Neurochem Res 2020; 45:1536-1550. [PMID: 32222876 DOI: 10.1007/s11064-020-03018-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Injury severity is correlated with poor prognosis after traumatic brain injury (TBI). It is not known whether triglycerides (TGs) or total cholesterol (TC) is good biomarker of increased injury of neuroinflammation and apoptosis in a high fat diet (HFD)-treated rat after TBI episodes. Five-week-old male Sprague-Dawley (SD) rats were fed a HFD for 8 weeks. The anesthetized male SD rats were divided into three sub-groups: sham-operated and TBI with 1.6 atm or with 2.4 atm fluid percussion injury (FPI). Cell infarction volume (triphenyltetrazolium chloride stain), tumor necrosis factor-alpha (TNF-α) expression in the microglia (OX42 marker) and astrocytes (Glial fibrillary acidic protein marker), TNF-α receptor expression in the neurons (TNFR1 and TNFR2 markers), and the extent of neuronal apoptosis (TUNEL marker) were evaluated by immunofluorescence, and the functional outcome was assessed by an inclined plane test. These tests were performed 72 h after TBI. Serum triglyceride and cholesterol levels were measured at 24, 48 and 72 h after TBI. The FPI with 2.4 atm significantly increased body weight loss, infarction volume, neuronal apoptosis and TNF-α expression in the microglia and astrocytes, and it decreased the maximum grasp degree and TNFR1 and TNFR2 expression in neurons at the 3rd day following TBI. The serum TG level was positively correlated with FPI force, infarction volume, Neu-N-TUNEL, GFAP-TNFα, and OX42-TNFα Simultaneously; the serum TG level was negatively correlated with Neu-N-TNFR1 and Neu-N-TNFR2. TG is a good biomarker of increased injury for neuroinflammation and apoptosis at the 3rd day after TBI in HFD rats.
Collapse
|
8
|
Electroacupuncture Improved Chronic Cerebral Hypoperfusion-Induced Anxiety-Like Behavior and Memory Impairments in Spontaneously Hypertensive Rats by Downregulating the ACE/Ang II/AT1R Axis and Upregulating the ACE2/Ang-(1-7)/MasR Axis. Neural Plast 2020; 2020:9076042. [PMID: 32184813 PMCID: PMC7061137 DOI: 10.1155/2020/9076042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/05/2020] [Accepted: 01/28/2020] [Indexed: 12/27/2022] Open
Abstract
Electroacupuncture (EA) can effectively alleviate anxiety disorders and memory impairments caused by various neurodegenerative diseases; however, the molecular mechanisms underlying its neuroprotective effects are unclear. Previous studies have shown that the renin-angiotensin system (RAS) comprises of two axes with mutual antagonism: the classical angiotensin converting enzyme/angiotensin II/angiotensin II type 1 receptor (ACE/Ang II/AT1R) axis and the protective angiotensin converting enzyme 2/angiotensin-(1-7)/Mas receptor (ACE2/Ang-(1-7)/MasR) axis. In this study, we observed that chronic cerebral hypoperfusion (CCH) mediated anxiety-like behavior and memory impairments in spontaneously hypertensive rats (SHR) via upregulation of the hippocampal classical axis (ACE/Ang II/AT1R) and the partial hippocampal protective axis (ACE2/Ang-(1-7)). However, Ang II levels were much higher than those of Ang-(1–7), indicating that the ACE/Ang II/AT1R axis plays a dominant role in the comorbidity of CCH and hypertension. Moreover, candesartan cilexetil (Canc) and perindopril (Peril) were used as positive control drugs. We found that EA, Canc, and Peril attenuated CCH-induced anxiety-like behavior and memory impairments in SHR, potentially via downregulation of the hippocampal classical axis (ACE/Ang II/AT1R) and upregulation of the whole hippocampal protective axis (ACE2/Ang-(1-7)/MasR). These results suggest that EA therapy for CCH with hypertension may be mediated by two hippocampal RAS axes.
Collapse
|
9
|
Hajipour S, Farbood Y, Gharib-Naseri MK, Goudarzi G, Rashno M, Maleki H, Bakhtiari N, Nesari A, Khoshnam SE, Dianat M, Sarkaki B, Sarkaki A. Exposure to ambient dusty particulate matter impairs spatial memory and hippocampal LTP by increasing brain inflammation and oxidative stress in rats. Life Sci 2019; 242:117210. [PMID: 31874166 DOI: 10.1016/j.lfs.2019.117210] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Exposure of healthy subjects to ambient airborne dusty particulate matter (PM) causes brain dysfunction. This study aimed to investigate the effect of sub-chronic inhalation of ambient PM in a designed special chamber to create factual dust storm (DS) conditions on spatial cognition, hippocampal long-term potentiation (LTP), inflammatory cytokines, and oxidative stress in the brain tissue. METHODS Adult male Wistar rats (250-300 g) were randomly divided into four groups: Sham (clean air, the concentration of dusty PM was <150 μg/m3), DS1 (200-500 μg/m3), DS2 (500-2000 μg/m3) and DS3 (2000-8000 μg/m3). Experimental rats were exposed to clean air or different sizes and concentrations of dust PM storm for four consecutive weeks (exposure was during 1-4, 8-11, 15-16 and 20-23 days, 30 min, twice daily) in a real-ambient dust exposure chamber. Subsequently, cognitive performance, hippocampal LTP, blood-brain barrier (BBB) permeability and brain edema of the animals evaluated. As well as, inflammatory cytokines and oxidative stress indexes in the brain tissue measured using ELISA assays. RESULTS Exposing to dust PM impaired spatial memory (p < 0.001), hippocampal LTP (p < 0.001). These disturbances were in line with the severe damage to respiratory system followed by disruption of BBB integrity (p < 0.001), increased brain edema (p < 0.001), inflammatory cytokines (p < 0.001) excretion and oxidative stress (p < 0.001) in brain tissue. CONCLUSIONS Our study showed that exposure to ambient dust PM increased brain edema and BBB permeability, induced memory impairment and hippocampal LTP deficiency by increasing the inflammatory responses and oxidative stress in the brain of the rats.
Collapse
Affiliation(s)
- Somayeh Hajipour
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases (APRD) Research Center, Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Medicine Faculty, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heidar Maleki
- Air Pollution and Respiratory Diseases (APRD) Research Center, Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Engineer, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nima Bakhtiari
- Pain Research Center, Imam Khomeiny Hospital Research and Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Nesari
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behjat Sarkaki
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Iran National Science Foundation (INSF), Science Deputy of Presidency, Islamic Republic of Iran, Iran; Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
The Prevalence of Dyslipidemia and Hyperglycemia among Stroke Patients: Preliminary Findings. Stroke Res Treat 2019; 2019:8194960. [PMID: 31781362 PMCID: PMC6875342 DOI: 10.1155/2019/8194960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
Background/Aim Stroke or cerebrovascular accident is defined as sudden or sub acute onset of focal neurologic deficit, caused by the interruption of blood flow to parts of the brain. In this study, we aimed to investigate the prevalence of dyslipidemia and hyperglycemia among stroke patients in Palestine. Materials and Methods A total of 70 patients with stroke were included in a cross-sectional study between November 2017 and February 2018. Stroke patients were diagnosed based on a CT scan reviewed by a neurologist. Fasting venous blood samples were collected to measure the lipid profile (cholesterol, low-density lipoproteins (LDL), triacylglycerol (TAG), high-density lipoproteins (HDL)), fasting blood glucose (FBG), and glycosylated hemoglobin (HbA1c) levels. An interview-based questionnaire, included background data, past medical history, family history, and other risk factors for stroke, was filled for each patient. Results Based on our results, 28.57% of patients had high LDL, 17.1% had high cholesterol, 15.7% had high TAG and 61.3% had low HDL. About half of the patients (51.4%) had abnormal HbA1c and abnormal FBG (52.8%). The majority (67.1%) of patients were males, whereas, 11% of patients were obese (BMI of more than 30 kg/m2) and 51.4% were smokers. Regarding the family history of diseases, 81% of patients had a family history of hypertension, 50% had a family history of stroke, and 58% had a family history of diabetes mellitus. Conclusion Male gender and smoking were most likely to increase the risk of stroke. Risk factors like low HDL, high LDL, high FBG, high HbA1c, and hypertension contribute substantially to the incidence of stroke. A family history of stroke, hypertension and diabetes were significant risk factors for stroke.
Collapse
|