1
|
Yarali E, Klimopoulou M, David K, Boukany PE, Staufer U, Fratila-Apachitei LE, Zadpoor AA, Accardo A, Mirzaali MJ. Bone cell response to additively manufactured 3D micro-architectures with controlled Poisson's ratio: Auxetic vs. non-auxetic meta-biomaterials. Acta Biomater 2024; 177:228-242. [PMID: 38325707 DOI: 10.1016/j.actbio.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The Poisson's ratio and elastic modulus are two parameters determining the elastic behavior of biomaterials. While the effects of elastic modulus on the cell response is widely studied, very little is known regarding the effects of the Poisson's ratio. The micro-architecture of meta-biomaterials determines not only the Poisson's ratio but also several other parameters that also influence cell response, such as porosity, pore size, and effective elastic modulus. It is, therefore, very challenging to isolate the effects of the Poisson's ratio from those of other micro-architectural parameters. Here, we computationally design meta-biomaterials with controlled Poisson's ratios, ranging between -0.74 and +0.74, while maintaining consistent porosity, pore size, and effective elastic modulus. The 3D meta-biomaterials were additively manufactured at the micro-scale using two-photon polymerization (2PP), and were mechanically evaluated at the meso‑scale. The response of murine preosteoblasts to these meta-biomaterials was then studied using in vitro cell culture models. Meta-biomaterials with positive Poisson's ratios resulted in higher metabolic activity than those with negative values. The cells could attach and infiltrate all meta-biomaterials from the bottom to the top, fully covering the scaffolds after 17 days of culture. Interestingly, the meta-biomaterials exhibited different cell-induced deformations (e.g., shrinkage or local bending) as observed via scanning electron microscopy. The outcomes of osteogenic differentiation (i.e., Runx2 immunofluorescent staining) and matrix mineralization (i.e., Alizarin red staining) assays indicated the significant potential impact of these meta-biomaterials in the field of bone tissue engineering, paving the way for the development of advanced bone meta-implants. STATEMENT OF SIGNIFICANCE: We studied the influence of Poisson's ratio on bone cell response in meta-biomaterials. While elastic modulus effects are well-studied, the impact of Poisson's ratio, especially negative values found in architected biomaterials, remains largely unexplored. The complexity arises from intertwined micro-architectural parameters, such as porosity and elastic modulus, making it challenging to isolate the Poisson's ratio. To overcome this limitation, this study employed rational computational design to create meta-biomaterials with controlled Poisson's ratios, alongside consistent effective elastic modulus, porosity, and pore size. The study reveals that two-photon polymerized 3D meta-biomaterials with positive Poisson's ratios displayed higher metabolic activity, while all the developed meta-biomaterials supported osteogenic differentiation of preosteoblasts as well as matrix mineralization. The outcomes pave the way for the development of advanced 3D bone tissue models and meta-implants.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands; Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - Maria Klimopoulou
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Kristen David
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Urs Staufer
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| |
Collapse
|
2
|
Akolawala Q, Keuning F, Rovituso M, van Burik W, van der Wal E, Versteeg HH, Rondon AMR, Accardo A. Micro-Vessels-Like 3D Scaffolds for Studying the Proton Radiobiology of Glioblastoma-Endothelial Cells Co-Culture Models. Adv Healthc Mater 2024; 13:e2302988. [PMID: 37944591 PMCID: PMC11468971 DOI: 10.1002/adhm.202302988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Glioblastoma (GBM) is a devastating cancer of the brain with an extremely poor prognosis. While X-ray radiotherapy and chemotherapy remain the current standard, proton beam therapy is an appealing alternative as protons can damage cancer cells while sparing the surrounding healthy tissue. However, the effects of protons on in vitro GBM models at the cellular level, especially when co-cultured with endothelial cells, the building blocks of brain micro-vessels, are still unexplored. In this work, novel 3D-engineered scaffolds inspired by the geometry of brain microvasculature are designed, where GBM cells cluster and proliferate. The architectures are fabricated by two-photon polymerization (2PP), pre-cultured with endothelial cells (HUVECs), and then cultured with a human GBM cell line (U251). The micro-vessel structures enable GBM in vivo-like morphologies, and the results show a higher DNA double-strand breakage in GBM monoculture samples when compared to the U251/HUVECs co-culture, with cells in 2D featuring a larger number of DNA damage foci when compared to cells in 3D. The discrepancy in terms of proton radiation response indicates a difference in the radioresistance of the GBM cells mediated by the presence of HUVECs and the possible induction of stemness features that contribute to radioresistance and improved DNA repair.
Collapse
Affiliation(s)
- Qais Akolawala
- Department of Precision and Microsystems EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyMekelweg 22628 CDDelftThe Netherlands
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Floor Keuning
- Erasmus University CollegeNieuwemarkt 1A, Rotterdam3011 HPRotterdamThe Netherlands
| | - Marta Rovituso
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Wouter van Burik
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Ernst van der Wal
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Henri H. Versteeg
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Araci M. R. Rondon
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyMekelweg 22628 CDDelftThe Netherlands
| |
Collapse
|
3
|
Marques-Almeida T, Lanceros-Mendez S, Ribeiro C. State of the Art and Current Challenges on Electroactive Biomaterials and Strategies for Neural Tissue Regeneration. Adv Healthc Mater 2024; 13:e2301494. [PMID: 37843074 DOI: 10.1002/adhm.202301494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/22/2023] [Indexed: 10/17/2023]
Abstract
The loss or failure of an organ/tissue stands as one of the healthcare system's most prevalent, devastating, and costly challenges. Strategies for neural tissue repair and regeneration have received significant attention due to their particularly strong impact on patients' well-being. Many research efforts are dedicated not only to control the disease symptoms but also to find solutions to repair the damaged tissues. Neural tissue engineering (TE) plays a key role in addressing this problem and significant efforts are being carried out to develop strategies for neural repair treatment. In the last years, active materials allowing to tune cell-materials interaction are being increasingly used, representing a recent paradigm in TE applications. Among the most important stimuli influencing cell behavior are the electrical and mechanical ones. In this way, materials with the ability to provide this kind of stimuli to the neural cells seem to be appropriate to support neural TE. In this scope, this review summarizes the different biomaterials types used for neural TE, highlighting the relevance of using active biomaterials and electrical stimulation. Furthermore, this review provides not only a compilation of the most relevant studies and results but also strategies for novel and more biomimetic approaches for neural TE.
Collapse
Affiliation(s)
- Teresa Marques-Almeida
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Clarisse Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| |
Collapse
|
4
|
Castillo Ransanz L, Van Altena PFJ, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol 2022; 10:1096054. [PMID: 36588937 PMCID: PMC9794772 DOI: 10.3389/fbioe.2022.1096054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The biomechanical properties of the brain microenvironment, which is composed of different neural cell types, the extracellular matrix, and blood vessels, are critical for normal brain development and neural functioning. Stiffness, viscoelasticity and spatial organization of brain tissue modulate proliferation, migration, differentiation, and cell function. However, the mechanical aspects of the neural microenvironment are largely ignored in current cell culture systems. Considering the high promises of human induced pluripotent stem cell- (iPSC-) based models for disease modelling and new treatment development, and in light of the physiological relevance of neuromechanobiological features, applications of in vitro engineered neuronal microenvironments should be explored thoroughly to develop more representative in vitro brain models. In this context, recently developed biomaterials in combination with micro- and nanofabrication techniques 1) allow investigating how mechanical properties affect neural cell development and functioning; 2) enable optimal cell microenvironment engineering strategies to advance neural cell models; and 3) provide a quantitative tool to assess changes in the neuromechanobiological properties of the brain microenvironment induced by pathology. In this review, we discuss the biological and engineering aspects involved in studying neuromechanobiology within scaffold-free and scaffold-based 2D and 3D iPSC-based brain models and approaches employing primary lineages (neural/glial), cell lines and other stem cells. Finally, we discuss future experimental directions of engineered microenvironments in neuroscience.
Collapse
Affiliation(s)
- Lucía Castillo Ransanz
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter F. J. Van Altena
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Vivi M. Heine
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
5
|
Pázmány R, Nagy KS, Zsembery Á, Jedlovszky–Hajdu A. Ultrasound induced, easy-to-store porous poly(amino acid) based electrospun scaffolds. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Hacene S, Le Friec A, Desmoulin F, Robert L, Colitti N, Fitremann J, Loubinoux I, Cirillo C. Present and future avenues of cell-based therapy for brain injury: The enteric nervous system as a potential cell source. Brain Pathol 2022; 32:e13105. [PMID: 35773942 PMCID: PMC9425017 DOI: 10.1111/bpa.13105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Cell therapy is a promising strategy in the field of regenerative medicine; however, several concerns limit the effective clinical use, namely a valid cell source. The gastrointestinal tract, which contains a highly organized network of nerves called the enteric nervous system (ENS), is a valuable reservoir of nerve cells. Together with neurons and neuronal precursor cells, it contains glial cells with a well described neurotrophic potential and a newly identified neurogenic one. Recently, enteric glia is looked at as a candidate for cell therapy in intestinal neuropathies. Here, we present the therapeutic potential of the ENS as cell source for brain repair, too. The example of stroke is introduced as a brain injury where cell therapy appears promising. This disease is the first cause of handicap in adults. The therapies developed in recent years allow a partial response to the consequences of the disease. The only prospect of recovery in the chronic phase is currently based on rehabilitation. The urgency to offer other treatments is therefore tangible. In the first part of the review, some elements of stroke pathophysiology are presented. An update on the available therapeutic strategies is provided, focusing on cell‐ and biomaterial‐based approaches. Following, the ENS is presented with its anatomical and functional characteristics, focusing on glial cells. The properties of these cells are depicted, with particular attention to their neurotrophic and, recently identified, neurogenic properties. Finally, preliminary data on a possible therapeutic approach combining ENS‐derived cells and a biomaterial are presented.
Collapse
Affiliation(s)
- Sirine Hacene
- National Veterinary School of Toulouse, University of Toulouse, Toulouse, France.,Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France.,Department of Biological and Chemical Engineering-Medical Biotechnology, Aarhus University, Aarhus, Denmark
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Juliette Fitremann
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
7
|
Akolawala Q, Rovituso M, Versteeg HH, Rondon AMR, Accardo A. Evaluation of Proton-Induced DNA Damage in 3D-Engineered Glioblastoma Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20778-20789. [PMID: 35442634 PMCID: PMC9100514 DOI: 10.1021/acsami.2c03706] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Glioblastoma (GBM) is a devastating cancer of the brain with an extremely poor prognosis. For this reason, besides clinical and preclinical studies, novel in vitro models for the assessment of cancer response to drugs and radiation are being developed. In such context, three-dimensional (3D)-engineered cellular microenvironments, compared to unrealistic two-dimensional (2D) monolayer cell culture, provide a model closer to the in vivo configuration. Concerning cancer treatment, while X-ray radiotherapy and chemotherapy remain the current standard, proton beam therapy is an appealing alternative as protons can be efficiently targeted to destroy cancer cells while sparing the surrounding healthy tissue. However, despite the treatment's compelling biological and medical rationale, little is known about the effects of protons on GBM at the cellular level. In this work, we designed novel 3D-engineered scaffolds inspired by the geometry of brain blood vessels, which cover a vital role in the colonization mechanisms of GBM cells. The architectures were fabricated by two-photon polymerization (2PP), cultured with U-251 GBM cells and integrated for the first time in the context of proton radiation experiments to assess their response to treatment. We employed Gamma H2A.X as a fluorescent biomarker to identify the DNA damage induced in the cells by proton beams. The results show a higher DNA double-strand breakage in 2D cell monolayers as compared to cells cultured in 3D. The discrepancy in terms of proton radiation response could indicate a difference in the radioresistance of the GBM cells or in the rate of repair kinetics between 2D cell monolayers and 3D cell networks. Thus, these biomimetic-engineered 3D scaffolds pave the way for the realization of a benchmark tool that can be used to routinely assess the effects of proton therapy on 3D GBM cell networks and other types of cancer cells.
Collapse
Affiliation(s)
- Qais Akolawala
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628
CD Delft, The Netherlands
| | - Marta Rovituso
- Holland
Proton Therapy Center (HollandPTC), Huismansingel 4, 2629 JH Delft, The Netherlands
| | - Henri H. Versteeg
- Einthoven
Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis
and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Araci M. R. Rondon
- Einthoven
Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis
and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Angelo Accardo
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628
CD Delft, The Netherlands
- . Tel: +31 (0)15 27 81610
| |
Collapse
|
8
|
Chiang MC, Nicol CJB, Chen SJ, Huang RN. TO901317 activation of LXR-dependent pathways mitigate amyloid-beta peptide-induced neurotoxicity in 3D human neural stem cell culture scaffolds and AD mice. Brain Res Bull 2021; 178:57-68. [PMID: 34801648 DOI: 10.1016/j.brainresbull.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) is the major cause of neurodegeneration worldwide and is characterized by the accumulation of amyloid beta (Aβ) in the brain, which is associated with neuronal loss and cognitive impairment. Liver X receptor (LXR), a critical nuclear receptor, and major regulator in lipid metabolism and inflammation, is suggested to play a protective role against the mitochondrial dysfunction noted in AD. In our study, our established 3D gelatin scaffold model and a well characterized in vivo (APP/PS1) murine model of AD were used to directly investigate the molecular, biochemical and behavioral effects of neuronal stem cell exposure to Aβ to improve understanding of the in vivo etiology of AD. Herein, human neural stem cells (hNSCs) in our 3D model were exposed to Aβ, and had significantly decreased cell viability, which correlated with decreased mRNA and protein expression of LXR, Bcl-2, CREB, PGC1α, NRF-1, and Tfam, and increased caspase 3 and 9 activities. Cotreatment with a synthetic agonist of LXR (TO901317) significantly abrogated these Aβ-mediated effects in hNSCs. Moreover, TO901317 cotreatment both significantly rescues hNSCs from Aβ-mediated decreases in ATP levels and mitochondrial mass, and significantly restores Aβ-induced fragmented mitochondria to almost normal morphology. TO901317 cotreatment also decreases tau aggregates in Aβ-treated hNSCs. Importantly, TO901317 treatment significantly alleviates the impairment of memory, decreases Aβ aggregates and increases proteasome activity in APP/PS1 mice; whereas, these effects were blocked by cotreatment with an LXR antagonist (GSK2033). Together, these novel results improve our mechanistic understanding of the central role of LXR in Aβ-mediated hNSC dysfunction. We also provide preclinical data unveiling the protective effects of using an LXR-dependent agonist, TO901317, to block the toxicity observed in Aβ-exposed hNSCs, which may guide future treatment strategies to slow or prevent neurodegeneration in some AD patients.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Christopher J B Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Shiang-Jiuun Chen
- Department of Life Science and Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant-Medicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
9
|
Wang X, Guo M, Liu Y, Niu K, Zheng X, Yang Y, Wang P. Reduced Graphene Oxide Fibers for Guidance Growth of Trigeminal Sensory Neurons. ACS APPLIED BIO MATERIALS 2021; 4:4236-4243. [PMID: 35006836 DOI: 10.1021/acsabm.1c00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurite alignment and elongation play special roles in the treatment of neuron disease, design of tissue engineering implants, and bioelectrodes applications. For instance, the trigeminal neurons (TGNs) free nerve endings are a key component of the pulp-dentin complex. The reinnervation of the pulp canal space requires the recruitment of apically positioned free nerve endings through axonal guidance. Many studies have been carried to develop patterned two-dimensional substrates or three-dimensional scaffolds with aligned topographical structures to guide axonal growth. However, most of the strategies are either complicated/inconvenient in process or time-/cost-sacrifice. One-step dimensionally confined hydrothermal (DCH) technique has been considered an effective and facile approach to fabricate reduced graphene oxide fibers (rGOFs), and the rGOFs have shown significant potential in regulating neural stem cells differentiation toward neurons. Here, inspired by the relationship between the lateral size of GO nanosheets and the electrical conductivity of GO films made from GO sheets as a building block, we fabricated surface conductivity and topography-controlled rGOFs based on the DCH method. Well "self-patterned" directional channel structure of rGOF showed outstanding ability to improve the neurofilament alignment and migration, with the cell deviation angle less than 10° for over 90% of the cells, while a porous surface structure tended to form neuron nets. All of the rGOF possessed excellent cytocompatibility with TGNs. Our results underlined the high degree of alignment of topographical cues in guidance of neurite over high electrical conductivity. The as-prepared rGOFs could be used in many areas including biosensing, electrochemistry, energy, and peripheral or central nerve tissue engineering.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Ming Guo
- Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Yang Liu
- Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Kai Niu
- The First Hospital of Jilin University, Changchun 130021, China
| | - Xianliang Zheng
- Key Laboratory of Automobile Materials of MOE, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Yumin Yang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ping Wang
- The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
10
|
Gómez IJ, Vázquez Sulleiro M, Mantione D, Alegret N. Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art. Polymers (Basel) 2021; 13:745. [PMID: 33673680 PMCID: PMC7957790 DOI: 10.3390/polym13050745] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Carbon nanomaterials are at the forefront of the newest technologies of the third millennium, and together with conductive polymers, represent a vast area of indispensable knowledge for developing the devices of tomorrow. This review focusses on the most recent advances in the field of conductive nanotechnology, which combines the properties of carbon nanomaterials with conjugated polymers. Hybrid materials resulting from the embedding of carbon nanotubes, carbon dots and graphene derivatives are taken into consideration and fully explored, with discussion of the most recent literature. An introduction into the three most widely used conductive polymers and a final section about the most recent biological results obtained using carbon nanotube hybrids will complete this overview of these innovative and beyond belief materials.
Collapse
Affiliation(s)
- I. Jénnifer Gómez
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| | | | - Daniele Mantione
- Laboratoire de Chimie des Polymères Organiques (LCPO-UMR 5629), Université de Bordeaux, Bordeaux INP, CNRS F, 33607 Pessac, France
| | - Nuria Alegret
- POLYMAT and Departamento de Química Aplicada, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
11
|
Kumar P, Pillay V, Choonara YE. Macroporous chitosan/methoxypoly(ethylene glycol) based cryosponges with unique morphology for tissue engineering applications. Sci Rep 2021; 11:3104. [PMID: 33542336 PMCID: PMC7862315 DOI: 10.1038/s41598-021-82484-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional porous scaffolds are widely employed in tissue engineering and regenerative medicine for their ability to carry bioactives and cells; and for their platform properties to allow for bridging-the-gap within an injured tissue. This study describes the effect of various methoxypolyethylene glycol (mPEG) derivatives (mPEG (-OCH3 functionality), mPEG-aldehyde (mPEG-CHO) and mPEG-acetic acid (mPEG-COOH)) on the morphology and physical properties of chemically crosslinked, semi-interpenetrating polymer network (IPN), chitosan (CHT)/mPEG blend cryosponges. Physicochemical and molecular characterization revealed that the –CHO and –COOH functional groups in mPEG derivatives interacted with the –NH2 functionality of the chitosan chain. The distinguishing feature of the cryosponges was their unique morphological features such as fringe thread-, pebble-, curved quartz crystal-, crystal flower-; and canyon-like structures. The morphological data was well corroborated by the image processing data and physisorption curves corresponding to Type II isotherm with open hysteresis loops. Functionalization of mPEG had no evident influence on the macro-mechanical properties of the cryosponges but increased the matrix strength as determined by the rheomechanical analyses. The cryosponges were able to deliver bioactives (dexamethasone and curcumin) over 10 days, showed varied matrix degradation profiles, and supported neuronal cells on the matrix surface. In addition, in silico simulations confirmed the compatibility and molecular stability of the CHT/mPEG blend compositions. In conclusion, the study confirmed that significant morphological variations may be induced by minimal functionalization and crosslinking of biomaterials.
Collapse
Affiliation(s)
- Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.
| |
Collapse
|
12
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Guan S, Li Y, Cheng C, Gao X, Gu X, Han X, Ye H. Manufacture of pH- and HAase-responsive hydrogels with on-demand and continuous antibacterial activity for full-thickness wound healing. Int J Biol Macromol 2020; 164:2418-2431. [PMID: 32798544 DOI: 10.1016/j.ijbiomac.2020.08.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
A kind of "intelligent" antibacterial dressing-A-HA/HA-ADH/SS hydrogel was in situ formed quickly via dynamic covalent bonds cross-linking between aldehyde hyaluronic acid (A-HA), adipic acid dihydrazide graft hyaluronic acid (HA-ADH) and sisomicin sulfate (SS). FT-IR, SEM and rheological results displayed that the hydrogels were successfully prepared. The hydrogels had good optical transmittance, injectability, self-healing ability, cytocompatibility, antioxidant activity and hemostatic performance which were beneficial to observe the wound healing condition and provide a good healing environment for wounds. In addition, the hydrogels showed a pH- and HAase- dependent degradability, which allowed them to release more SS at infected wound and then exert on-demand and sustained antibacterial effect against S. aureus and E. coli. The results of wound healing and histological examination revealed that these hydrogels have a good therapeutic effect in the full-thickness mouse skin defect wound. Thus, the hydrogels are expected to be used as potential wound dressings to improve wound healing.
Collapse
Affiliation(s)
- Shengcan Guan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
| | - Ya Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xiaoran Gao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Hanhui Ye
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China.
| |
Collapse
|
14
|
Yu X, Zhang T, Li Y. 3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering. Polymers (Basel) 2020; 12:E1637. [PMID: 32717878 PMCID: PMC7465920 DOI: 10.3390/polym12081637] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fabrication of nerve conduits for perfectly repairing or replacing damaged peripheral nerve is an urgent demand worldwide, but it is also a formidable clinical challenge. In the last decade, with the rapid development of manufacture technologies, 3D printing and bioprinting have been becoming remarkable stars in the field of neural engineering. In this review, we explore that the biomaterial inks (hydrogels, thermoplastic, and thermoset polyesters and composite) and bioinks have been selected for 3D printing and bioprinting of peripheral nerve conduits. This review covers 3D manufacturing technologies, including extrusion printing, inkjet printing, stereolithography, and bioprinting with inclusion of cells, bioactive molecules, and drugs. Finally, an outlook on the future directions of 3D printing and 4D printing in customizable nerve therapies is presented.
Collapse
Affiliation(s)
- Xiaoling Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| | - Tian Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yuan Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| |
Collapse
|
15
|
Crowe JA, El-Tamer A, Nagel D, Koroleva AV, Madrid-Wolff J, Olarte OE, Sokolovsky S, Estevez-Priego E, Ludl AA, Soriano J, Loza-Alvarez P, Chichkov BN, Hill EJ, Parri HR, Rafailov EU. Development of two-photon polymerised scaffolds for optical interrogation and neurite guidance of human iPSC-derived cortical neuronal networks. LAB ON A CHIP 2020; 20:1792-1806. [PMID: 32314760 DOI: 10.1039/c9lc01209e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent progress in the field of human induced pluripotent stem cells (iPSCs) has led to the efficient production of human neuronal cell models for in vitro study. This has the potential to enable the understanding of live human cellular and network function which is otherwise not possible. However, a major challenge is the generation of reproducible neural networks together with the ability to interrogate and record at the single cell level. A promising aid is the use of biomaterial scaffolds that would enable the development and guidance of neuronal networks in physiologically relevant architectures and dimensionality. The optimal scaffold material would need to be precisely fabricated with submicron resolution, be optically transparent, and biocompatible. Two-photon polymerisation (2PP) enables precise microfabrication of three-dimensional structures. In this study, we report the identification of two biomaterials that support the growth and differentiation of human iPSC-derived neural progenitors into functional neuronal networks. Furthermore, these materials can be patterned to induce alignment of neuronal processes and enable the optical interrogation of individual cells. 2PP scaffolds with tailored topographies therefore provide an effective method of producing defined in vitro human neural networks for application in influencing neurite guidance and complex network activity.
Collapse
Affiliation(s)
- J A Crowe
- School of Life and Health Sciences, Aston University, B4 7ET Birmingham, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
El Merhie A, Salerno M, Heredia-Guerrero JA, Dante S. Graphene-enhanced differentiation of neuroblastoma mouse cells mediated by poly-D-lysine. Colloids Surf B Biointerfaces 2020; 191:110991. [PMID: 32408266 DOI: 10.1016/j.colsurfb.2020.110991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
We compared the proliferation and differentiation of mouse neuroblastoma Neuro 2A cell line on single layer graphene and glass substrates. Quantitative and qualitative analysis of the cell proliferation and differentiation were performed, considering also the effect of a common adhesion factor, namely polylysine. We observed that on graphene substrates the cells proliferate faster with respect to glass; additionally, the presence of the adhesion factor enhances the difference and, remarkably, boosts the cell differentiation on the graphene-based interface. To understand the mechanism underlying a different cell behavior on the same adhesion coating, we carried out a physicochemical investigation of the studied interfaces (glass and graphene, bare and polylysine coated) by several techniques. In particular, we employed infrared spectroscopy to gain information on polylysine conformation, and atomic force microscopy force-distance curves to study adhesion properties at the surface. The results indicate that polylysine has an enhanced binding affinity for graphene, as well as a different molecular arrangement on graphene with respect to glass. These properties act as surface cues to trigger the cell response.
Collapse
Affiliation(s)
- Amira El Merhie
- Nanoscopy & NIC@IIT, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Marco Salerno
- Materials Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - José Alejandro Heredia-Guerrero
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy; IHSM La Mayora, Departamento de Mejora Genética y Biotecnología, Consejo Superior de Investigaciones Científicas, E-29750 Algarrobo-Costa, Málaga, Spain
| | - Silvia Dante
- Materials Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
17
|
Fan D, Staufer U, Accardo A. Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering (Basel) 2019; 6:E113. [PMID: 31847117 PMCID: PMC6955903 DOI: 10.3390/bioengineering6040113] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
The realization of biomimetic microenvironments for cell biology applications such as organ-on-chip, in vitro drug screening, and tissue engineering is one of the most fascinating research areas in the field of bioengineering. The continuous evolution of additive manufacturing techniques provides the tools to engineer these architectures at different scales. Moreover, it is now possible to tailor their biomechanical and topological properties while taking inspiration from the characteristics of the extracellular matrix, the three-dimensional scaffold in which cells proliferate, migrate, and differentiate. In such context, there is therefore a continuous quest for synthetic and nature-derived composite materials that must hold biocompatible, biodegradable, bioactive features and also be compatible with the envisioned fabrication strategy. The structure of the current review is intended to provide to both micro-engineers and cell biologists a comparative overview of the characteristics, advantages, and drawbacks of the major 3D printing techniques, the most promising biomaterials candidates, and the trade-offs that must be considered in order to replicate the properties of natural microenvironments.
Collapse
Affiliation(s)
| | | | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands; (D.F.); (U.S.)
| |
Collapse
|
18
|
Modo M, Lampe K. Development and implementation of biomaterials to promote neural repair. Brain Res Bull 2019; 152:297-298. [DOI: 10.1016/j.brainresbull.2019.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|