1
|
Balikci A, May-Benson TA, Sirma GC, Ilbay G. HEP ® (Homeostasis-Enrichment-Plasticity) Approach Changes Sensory-Motor Development Trajectory and Improves Parental Goals: A Single Subject Study of an Infant with Hemiparetic Cerebral Palsy and Twin Anemia Polycythemia Sequence (TAPS). CHILDREN (BASEL, SWITZERLAND) 2024; 11:876. [PMID: 39062325 PMCID: PMC11276252 DOI: 10.3390/children11070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Early intervention (EI) for infants identified as being at high risk for cerebral palsy (CP), or who have been diagnosed with it, is critical for promotion of postnatal brain organization. The aim of this study was to explore the effectiveness of the Homeostasis-Enrichment-Plasticity (HEP) Approach, which is a contemporary EI model that applies the key principles of enriched environment paradigms and neuronal plasticity from experimental animal studies to ecological theories of human development on the motor development, sensory functions, and parental goals of an infant with twin anemia polycythemia sequence (TAPS) and CP. METHODS An AB phase with follow-up single case study design which consisted of multiple baseline assessments with the Peabody Developmental Motor Scales-2 (PDMS-2) and the Test of Sensory Functions in Infants (TSFI) was used. Non-overlapping confidence intervals analysis was used for pre-post PDMS-2 scores. The measurement of progress toward goals and objectives was conducted using the Goal Attainment Scale (GAS). The HEP Approach intervention consisted of 12 one-hour sessions implemented over a period of 3 months, where a physical therapist provided weekly clinic-based parental coaching. RESULTS Results found a stable baseline during Phase A and improvement in response to the HEP Approach intervention during Phase B in both the PDMS-2 and TSFI according to 2SD Band analysis. The confidence intervals for the PDMS-2 scores also indicated a significant improvement after HEP intervention. The scores for both the PDMS-2 and the TSFI were consistent or showed improvement throughout the Follow-Up phase. A GAS t-score of 77.14 indicated that the infant exceeded intervention goal expectations. CONCLUSIONS Although our findings suggest that the HEP Approach intervention has promise in enhancing sensory functions, motor skill outcomes, and parental goals in an infant with TAPS and CP, further research is required to validate and apply these results more broadly.
Collapse
Affiliation(s)
| | | | - Gamze Cagla Sirma
- Department of Occupational Therapy, Faculty of Health Sciences, Fenerbahçe University, Istanbul 34758, Türkiye;
| | - Gul Ilbay
- Department of Physiology, Faculty of Medicine, Kocaeli University, Kocaeli 41001, Türkiye;
| |
Collapse
|
2
|
Neves LT, Paz LV, Wieck A, Mestriner RG, de Miranda Monteiro VAC, Xavier LL. Environmental Enrichment in Stroke Research: an Update. Transl Stroke Res 2024; 15:339-351. [PMID: 36717476 DOI: 10.1007/s12975-023-01132-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Environmental enrichment (EE) refers to different forms of stimulation, where the environment is designed to improve the levels of sensory, cognitive, and motor stimuli, inducing stroke recovery in animal models. Stroke is a leading cause of mortality and neurological disability among older adults, hence the importance of developing strategies to improve recovery for such patients. This review provides an update on recent findings, compiling information regarding the parameters affected by EE exposure in both preclinical and clinical studies. During stroke recovery, EE exposure has been shown to improve both the cognitive and locomotor aspects, inducing important neuroplastic alterations, increased angiogenesis and neurogenesis, and modified gene expression, among other effects. There is a need for further research in this field, particularly in those aspects where the evidence is inconclusive. Moreover, it is necessary refine and adapt the EE paradigms for application in human patients.
Collapse
Affiliation(s)
- Laura Tartari Neves
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
| | - Lisiê Valéria Paz
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
| | - Andréa Wieck
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - Jardim Botânico, Porto Alegre, RS, 90610-000, Brazil
| | - Régis Gemerasca Mestriner
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
| | - Valentina Aguiar Cardozo de Miranda Monteiro
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
| | - Léder Leal Xavier
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil.
| |
Collapse
|
3
|
Liu L, Ding M, Wu J, Zhang Y, Wang Q, Wang N, Luo L, Yu K, Fan Y, Zhang J, Wu Y, Xiao X, Zhang Q. High-frequency repetitive transcranial magnetic stimulation promotes ipsilesional functional hyperemia and motor recovery in mice with ischemic stroke. Cereb Cortex 2024; 34:bhae074. [PMID: 38511722 DOI: 10.1093/cercor/bhae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Neurovascular decoupling plays a significant role in dysfunction following an ischemic stroke. This study aimed to explore the effect of low- and high-frequency repetitive transcranial magnetic stimulation on neurovascular remodeling after ischemic stroke. To achieve this goal, we compared functional hyperemia, cerebral blood flow regulatory factors, and neurochemical transmitters in the peri-infract cortex 21 days after a photothrombotic stroke. Our findings revealed that low- and high-frequency repetitive transcranial magnetic stimulation increased the real-time cerebral blood flow in healthy mice and improved neurobehavioral outcomes after stroke. Furthermore, high-frequency (5-Hz) repetitive transcranial magnetic stimulation revealed stronger functional hyperemia recovery and increased the levels of post-synaptic density 95, neuronal nitric oxide synthase, phosphorylated-endothelial nitric oxide synthase, and vascular endothelial growth factor in the peri-infract cortex compared with low-frequency (1-Hz) repetitive transcranial magnetic stimulation. The magnetic resonance spectroscopy data showed that low- and high-frequency repetitive transcranial magnetic stimulation reduced neuronal injury and maintained excitation/inhibition balance. However, 5-Hz repetitive transcranial magnetic stimulation showed more significant regulation of excitatory and inhibitory neurotransmitters after stroke than 1-Hz repetitive transcranial magnetic stimulation. These results indicated that high-frequency repetitive transcranial magnetic stimulation could more effectively promote neurovascular remodeling after stroke, and specific repetitive transcranial magnetic stimulation frequencies might be used to selectively regulate the neurovascular unit.
Collapse
Affiliation(s)
- Li Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ming Ding
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Junfa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qianfeng Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lu Luo
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kewei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yunhui Fan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jingjun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiao Xiao
- Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
4
|
Nie L, He J, Wang J, Wang R, Huang L, Jia L, Kim YT, Bhawal UK, Fan X, Zille M, Jiang C, Chen X, Wang J. Environmental Enrichment for Stroke and Traumatic Brain Injury: Mechanisms and Translational Implications. Compr Physiol 2023; 14:5291-5323. [PMID: 38158368 DOI: 10.1002/cphy.c230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Acquired brain injuries, such as ischemic stroke, intracerebral hemorrhage (ICH), and traumatic brain injury (TBI), can cause severe neurologic damage and even death. Unfortunately, currently, there are no effective and safe treatments to reduce the high disability and mortality rates associated with these brain injuries. However, environmental enrichment (EE) is an emerging approach to treating and rehabilitating acquired brain injuries by promoting motor, sensory, and social stimulation. Multiple preclinical studies have shown that EE benefits functional recovery, including improved motor and cognitive function and psychological benefits mediated by complex protective signaling pathways. This article provides an overview of the enriched environment protocols used in animal models of ischemic stroke, ICH, and TBI, as well as relevant clinical studies, with a particular focus on ischemic stroke. Additionally, we explored studies of animals with stroke and TBI exposed to EE alone or in combination with multiple drugs and other rehabilitation modalities. Finally, we discuss the potential clinical applications of EE in future brain rehabilitation therapy and the molecular and cellular changes caused by EE in rodents with stroke or TBI. This article aims to advance preclinical and clinical research on EE rehabilitation therapy for acquired brain injury. © 2024 American Physiological Society. Compr Physiol 14:5291-5323, 2024.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin He
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory for Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruike Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lin Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Republic of Korea
| | - Ujjal K Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
5
|
Gresita A, Mihai R, Hermann DM, Amandei FS, Capitanescu B, Popa-Wagner A. Effect of environmental enrichment and isolation on behavioral and histological indices following focal ischemia in old rats. GeroScience 2021; 44:211-228. [PMID: 34382128 PMCID: PMC8811116 DOI: 10.1007/s11357-021-00432-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/04/2021] [Indexed: 01/27/2024] Open
Abstract
Stroke is a disease of aging. In stroke patients, the enriched group that received stimulating physical, eating, socializing, and group activities resulted in higher activity levels including spending more time on upper limb, communal socializing, listening and iPad activities. While environmental enrichment has been shown to improve the behavioral outcome of stroke in young animals, the effect of an enriched environment on behavioral recuperation and histological markers of cellular proliferation, neuroinflammation, and neurogenesis in old subjects is not known. We used behavioral testing and immunohistochemistry to assess the effect of environment on post-stroke recovery of young and aged rats kept either in isolation or stimulating social, motor, and sensory environment (( +)Env). We provide evidence that post-stroke animals environmental enrichment ( +)Env had a significant positive effect on recovery on the rotating pole, the inclined plane, and the labyrinth test. Old age exerted a small but significant effect on lesion size, which was independent of the environment. Further, a smaller infarct volume positively correlated with better recovery of spatial learning based on positive reinforcement, working and reference memory of young, and to a lesser extent, old animals kept in ( +)Env. Histologically, isolation/impoverishment was associated with an increased number of proliferating inflammatory cells expressing ED1 cells in the peri-infarcted area of old but not young rats. Further, ( +)Env and young age were associated with an increased number of neuroepithelial cells expressing nestin/BrdU as well as beta III tubulin cells in the damaged brain area which correlated with an increased performance on the inclined plane and rotating pole. Finally, ( +)Env and an increased number of neurons expressing doublecortin/BrdU cells exerted a significant effect on performance for working memory and performance on the rotating pole in both age groups. A stimulating social, motor and sensory environment had a limited beneficial effect on behavioral recovery (working memory and rotating pole) after stroke in old rats by reducing neuroinflammation and increasing the number of neuronal precursors expressing doublecortin. Old age however, exerted a small but significant effect on lesion size, which was independent of the environment.
Collapse
Affiliation(s)
- Andrei Gresita
- Doctoral School, University of Medicine and Pharmacy, Craiova, Romania
| | - Ruscu Mihai
- Doctoral School, University of Medicine and Pharmacy, Craiova, Romania
| | - Dirk M Hermann
- Department of Neurology Chair of Vascular Neurology and Dementia, University of Medicine Essen, Essen, Germany
| | | | | | - Aurel Popa-Wagner
- Department of Neurology Chair of Vascular Neurology and Dementia, University of Medicine Essen, Essen, Germany. .,Griffith University Menzies Health Institute of Queensland, Gold Coast Campus, Southport, QLD, 4222, Australia. .,Doctoral School, University of Medicine and Pharmacy, Craiova, Romania.
| |
Collapse
|