1
|
Zhang X, Zhou H, Liu H, Xu P. Role of Oxidative Stress in the Occurrence and Development of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea Syndrome. Mol Neurobiol 2024; 61:5083-5101. [PMID: 38159196 DOI: 10.1007/s12035-023-03899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS) causes recurrent apnea and intermittent hypoxia at night, leading to several complications such as cognitive dysfunction. However, the molecular mechanisms underlying cognitive dysfunction in OSAS are unclear, and oxidative stress mediated by intermittent hypoxia is an important mechanism. In addition, the improvement of cognitive dysfunction in patients with OSAS varies by different treatment regimens; among them, continuous positive airway pressure therapy (CPAP) is mostly recognized for improving cognitive dysfunction. In this review, we discuss the potential mechanisms of oxidative stress in OSAS, the common factors of affecting oxidative stress and the Links between oxidative stress and inflammation in OSAS, focusing on the potential links between oxidative stress and cognitive dysfunction in OSAS and the potential therapies for neurocognitive dysfunction in patients with OSAS mediated by oxidative stress. Therefore, further analysis on the relationship between oxidative stress and cognitive dysfunction in patients with OSAS will help to clarify the etiology and discover new treatment options, which will be of great significance for early clinical intervention.
Collapse
Affiliation(s)
- XiaoPing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - HaiJun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Huff AD, Karlen-Amarante M, Oliveira LM, Ramirez JM. Chronic intermittent hypoxia reveals role of the Postinspiratory Complex in the mediation of normal swallow production. eLife 2024; 12:RP92175. [PMID: 38655918 PMCID: PMC11042803 DOI: 10.7554/elife.92175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently, we showed the postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests that glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.
Collapse
Affiliation(s)
- Alyssa D Huff
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Neurological Surgery, University of Washington School of MedicineSeattleUnited States
| |
Collapse
|
3
|
Damgaard V, Mariegaard J, Lindhardsen JM, Ehrenreich H, Miskowiak KW. Neuroprotective Effects of Moderate Hypoxia: A Systematic Review. Brain Sci 2023; 13:1648. [PMID: 38137096 PMCID: PMC10741927 DOI: 10.3390/brainsci13121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Emerging evidence highlights moderate hypoxia as a candidate treatment for brain disorders. This systematic review examines findings and the methodological quality of studies investigating hypoxia (10-16% O2) for ≥14 days in humans, as well as the neurobiological mechanisms triggered by hypoxia in animals, and suggests optimal treatment protocols to guide future studies. We followed the preferred reporting items for systematic reviews and meta-analysis (PRISMA) 2020. Searches were performed on PubMed/MEDLINE, PsycInfo, EMBASE, and the Cochrane Library, in May-September 2023. Two authors independently reviewed the human studies with the following tools: (1) revised Cochrane collaboration's risk of bias for randomized trials 2.0; (2) the risk of bias in nonrandomized studies of interventions. We identified 58 eligible studies (k = 8 human studies with N = 274 individuals; k = 48 animal studies) reporting the effects of hypoxia on cognition, motor function, neuroimaging, neuronal/synaptic morphology, inflammation, oxidative stress, erythropoietin, neurotrophins, and Alzheimer's disease markers. A total of 75% of human studies indicated cognitive and/or neurological benefits, although all studies were evaluated ashigh risk of bias due to a lack of randomization and assessor blinding. Low-dose intermittent or continuous hypoxia repeated for 30-240 min sessions, preferably in combination with motor-cognitive training, produced beneficial effects, and high-dose hypoxia with longer (≥6 h) durations and chronic exposure produced more adverse effects. Larger and methodologically stronger translational studies are warranted.
Collapse
Affiliation(s)
- Viktoria Damgaard
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Hovedvejen 17, DK-2000 Frederiksberg, Denmark; (V.D.); (J.M.)
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353 Copenhagen, Denmark
| | - Johanna Mariegaard
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Hovedvejen 17, DK-2000 Frederiksberg, Denmark; (V.D.); (J.M.)
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353 Copenhagen, Denmark
| | - Julie Marie Lindhardsen
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Hovedvejen 17, DK-2000 Frederiksberg, Denmark; (V.D.); (J.M.)
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353 Copenhagen, Denmark
| | - Hannelore Ehrenreich
- University of Göttingen, 37075 Göttingen, Germany;
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany
| | - Kamilla Woznica Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Hovedvejen 17, DK-2000 Frederiksberg, Denmark; (V.D.); (J.M.)
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353 Copenhagen, Denmark
| |
Collapse
|
4
|
Xiong M, Wu Z, Zhao Y, Zhao D, Pan Z, Wu X, Liu W, Hu K. Intermittent hypoxia exacerbated depressive and anxiety-like behaviors in the bleomycin-induced pulmonary fibrosis mice. Brain Res Bull 2023; 198:55-64. [PMID: 37094614 DOI: 10.1016/j.brainresbull.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Depression and anxiety are prevalent in patients with idiopathic pulmonary fibrosis (IPF). Recent researchers reveal that intermittent hypoxia (IH) increases the severity of bleomycin (BLM)-induced lung injury. However, experimental studies dealing with anxiety- and depression-like behavior in animal models of BLM-induced pulmonary fibrosis in a combination of IH are lacking, hence, this study aimed to investigate that. In this study, 80 C57BL/6J male mice were intratracheally injected with BLM or normal saline at day0 and then exposed to IH (alternating cycles of FiO2 21% for 60s and FiO2 10% for 30s, 40 cycles/hour, 8hours/day) or intermittent air (IA) for 21 days. Behavioral tests, including open field test (OFT), sucrose preference test (SPT) and tail suspension test (TST), were detected from day22 to day26. This study found that pulmonary fibrosis developed and lung inflammation were activated in BLM-induced mice, which were potentiated by IH. Significant less time in center and less frequency of entries in the centre arena in OFT were observed in BLM treated mice, and IH exposure further decreased that. Marked decreased percent of sucrose preference in SPT, and significant increased immobility time of the TST were detected in BLM treated mice and IH widen the gaps. The expression of ionized calcium-binding adaptor molecule (Iba1) was activated in the hippocampus of BLM instillation mice and IH enlarged it. Moreover, a positive correlation between hippocampal microglia activation and inflammatory factors was observed. Our results demonstrated that IH exacerbated depressive and anxiety-like behaviors in the BLM-induced pulmonary fibrosis mice. The changes in pulmonary inflammation-hippocampal microglia activation may be a potential mechanism in this phenomenon, which can be researched in future.
Collapse
Affiliation(s)
- Mengqing Xiong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zuotian Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhou Pan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xiaofeng Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
5
|
An overview of recent analysis and detection of acetylcholine. Anal Biochem 2021; 632:114381. [PMID: 34534543 DOI: 10.1016/j.ab.2021.114381] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023]
Abstract
Acetylcholine (ACh), the major neurotransmitter secreted by cholinergic neurons, is widely found in the peripheral and central nervous systems, and its main function is to complete the transmission of neural signals. When cholinergic neurons are impaired, the synthesis and decomposition of ACh are abnormal and the neural signalling transition is blocked. To some extent, the concentration changes of ACh reflects the occurrence and development of many kinds of nervous system diseases, such as Alzheimer's disease, Parkinson's disease, Myasthenia gravis and so on. Thus, researches of the physiological and pathological roles and the tracking of the concentration changes of ACh in vivo are significant to the prevention and treatment of these diseases. In the paper, the pathophysiological functions and the comprehensive research progress on detection methods of ACh are summarized. Specifically, the latest research and related applications of the optical and electrochemical biosensors are described, and the future development directions and challenges are prospected, which provides a reference for the detection and applications of ACh.
Collapse
|
6
|
Zhu J, Tang S, Zhao D, Zeng Z, Mo H, Hu K. Orexin A improves the cognitive impairment induced by chronic intermittent hypoxia in mice. Brain Res Bull 2021; 173:203-210. [PMID: 34051297 DOI: 10.1016/j.brainresbull.2021.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023]
Abstract
The orexin neuron in lateral hypothalamus (LH) was involved in the regulation of sleep-wake cycle. However, the effect of orexin A (OXA) on cognitive impairment resulting from diverse diseases remains controversial. In this study, we investigated the effect of OXA on cognitive impairment induced by chronic intermittent hypoxia (CIH) in mice. Adult (10 weeks old) male C57BL/6 mice were randomly divided into the following four groups: normoxia control (NC)+normal saline (NS), NC + OXA, CIH + NS and CIH + OXA group. Following the CIH mice models establishment, OXA was injected into the right lateral ventricles of mice by a micro-injection system. Water maze test was used to assess spatial memory abilities of the mice. The expression of OXA and c-Fos in LH were analyzed by immunofluorescence staining. Apoptotic cell death and oxidative stress in hippocampus were evaluated using multiple methods including TUNEL, western blot and biochemical analysis. Behavioral tests revealed that CIH significantly increased the escape latency and time of arriving platform, of which were markedly decreased by OXA treatment. Similarly, the CIH + NS group was worse than NC + NS group in terms of the number of platform crossing and time in the target quadrant, of which were also significantly improved by OXA treatment. The number of OXA + neuron in LH was decreased, but the percentage of c-Fos+/OXA + neuron in LH was remarkably increased by CIH. Furthermore, we found that micro-injection of OXA attenuated CIH-induced apoptotic cell death and oxidative stress in the hippocampus. Our results suggested that OXA might improve cognitive impairment induced by CIH through inhibiting hippocampal apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Respiratory and Critical Care Medicine, the People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Si Tang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhaofu Zeng
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huaheng Mo
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|