1
|
Fu Z, Liu M, Wang S, Zhang H, Sun Y, Zhou Y, Li X, Ming P, Song J, Xu G. Impairment of inhibitory control due to repetitive subconcussions from indirect brain impacts: Evidence from event-related potentials and resting-state EEG complexity in parachuters. Brain Res Bull 2024; 216:111053. [PMID: 39173778 DOI: 10.1016/j.brainresbull.2024.111053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/27/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
The present study aims to investigate the unknown relationship between inhibitory control and repetitive subconcussion induced by the indirect brain impacts. We enrolled 28 parachuters exposed to repetitive subconcussion (SC) and 27 matched health controls (HC). Parachuters who have completed at least 70 actual parachuting (71-112 times) and at least 1500 simulated platform jumps (1500-4500 times) were included in the SC group. The SC group had a reduced accuracy rate in both the Stroop congruent and incongruent conditions. Larger N2 and N450 amplitudes were elicited in the frontal regions of the SC group, which indicate compensatory adaptations to the deficit in conflict monitoring. The reduced frontal resting-state EEG complexity in full-band (1-40 Hz) may demonstrate the frontal structural damage following the indirect brain impacts of repetitive subconcussion. Pearson correlation analysis showed that in the SC group, the frontal beta-band sample entropy values are positively correlated with the accuracy rate of the Stroop incongruent condition, suggesting the frontal beta-band sample entropy values may serve as potential electrophysiological markers of impaired inhibitory control after indirectly repetitive brain impacts. This study provides the robust evidence that repetitive subconcussion resulting from indirect brain impacts may lead to impairment of inhibitory control.
Collapse
Affiliation(s)
- Zhenghao Fu
- The First School of Clinical Medicine, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China; Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China
| | - Min Liu
- Airborne Troop Hospital, Wuhan, China
| | - Shuochen Wang
- Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China
| | - Haoran Zhang
- Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China; Medical College, Wuhan University of Science and Technology, 947 Heping Avenue, Wuhan 430081, China
| | - Yuanyi Sun
- The First School of Clinical Medicine, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China; Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China
| | - Yang Zhou
- Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China; Hubei University of Medicine, 16 Shanghai Road, Shiyan, Hubei Province 442000, China
| | - Xiang Li
- Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China; Hubei University of Medicine, 16 Shanghai Road, Shiyan, Hubei Province 442000, China
| | | | - Jian Song
- The First School of Clinical Medicine, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China; Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China.
| | - Guozheng Xu
- The First School of Clinical Medicine, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China; Department of Neurosurgery, General Hospital of Central Theater Command, 627 Wuluo Road, Wuhan 430070, China.
| |
Collapse
|
2
|
Smith CR, Onate JA, Edwards NA, Hagen JA, Kolba C, Paur S, Walters J, Caccese JB. Characterizing Head Acceleration Events in Law Enforcement Cadets During Subject Control Technique Training. Ann Biomed Eng 2024; 52:2768-2779. [PMID: 37847420 PMCID: PMC11402850 DOI: 10.1007/s10439-023-03382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Law enforcement cadets (LECs) complete weeks of subject control technique training. Similar sport-related combat training has been shown to expose participants to head acceleration events (HAEs) that have potential to result in short- and long-term impairments. The purpose of this study was to describe the number and magnitude of HAEs in LECs throughout their training. 37 LECs (7 females; age = 30.6 ± 8.8 years; BMI = 30.0 ± 6.0) were recruited from a law enforcement organization. Participants wore instrumented mouthguards, which recorded all HAEs exceeding a resultant 5 g threshold for training sessions with the potential for HAEs. Participants completed three defensive tactics (DT) training sessions, a DT skill assessment (DTA), and three boxing sessions. Outcome measures included the number of HAEs, peak linear acceleration (PLA), and peak rotational velocity (PRV). There were 2758 true-positive HAEs recorded across the duration of the study. Boxing sessions accounted for 63.7% of all true-positive HAEs, while DT accounted for 31.4% and DTA accounted for 4.9%. Boxing sessions resulted in a higher number of HAEs per session (F2,28 = 48.588, p < 0.001, ηp2 = 0.776), and higher median PLA (F2,28 = 8.609, p = 0.001, ηp2 = 0.381) and median PRV (F2,28 = 11.297, p < 0.001, ηp2 = 0.447) than DT and DTA. The LECs experience a high number of HAEs, particularly during boxing sessions. Although this training is necessary for job duties, HAE monitoring may lead to modifications in training structure to improve participant safety and enhance recovery.
Collapse
Affiliation(s)
- Carly R Smith
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - James A Onate
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
- Human Performance Collaborative, The Ohio State University, Columbus, OH, USA
| | - Nathan A Edwards
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
- Human Performance Collaborative, The Ohio State University, Columbus, OH, USA
| | - Joshua A Hagen
- Human Performance Collaborative, The Ohio State University, Columbus, OH, USA
| | - Chris Kolba
- Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Scott Paur
- Franklin County Sheriff's Office, Columbus, OH, USA
| | | | - Jaclyn B Caccese
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Pensato U, Cortelli P. Soccer (football) and brain health. J Neurol 2024; 271:3019-3029. [PMID: 38558150 PMCID: PMC11136867 DOI: 10.1007/s00415-024-12320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Soccer is one of the most popular sports worldwide, played by over 270 million people and followed by many more. Several brain health benefits are promoted by practising soccer and physical exercise at large, which helps contrast the cognitive decline associated with ageing by enhancing neurogenesis processes. However, sport-related concussions have been increasingly recognised as a pressing public health concern, not only due to their acute impact but also, more importantly, due to mounting evidence indicating an elevated risk for the development of neurological sequelae following recurrent head traumas, especially chronic traumatic encephalopathy (CTE). While soccer players experience less frequent concussions compared with other contact or combat sports, such as American football or boxing, it stands alone in its purposeful use of the head to hit the ball (headings), setting its players apart as the only athletes exposed to intentional, sub-concussive head impacts. Additionally, an association between soccer and amyotrophic lateral sclerosis has been consistently observed, suggesting a potential "soccer-specific" risk factor. In this review, we discuss the neurological sequelae related to soccer playing, the emerging evidence of a detrimental effect related to recurrent headings, and the need for implementation of comprehensive strategies aimed at preventing and managing the burden of head impact in soccer.
Collapse
Affiliation(s)
- Umberto Pensato
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
- IRCCS Humanitas Research Hospital, via Manzoni 56 Rozzano, 20089, Milan, Italy.
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Gaudiani MA, Castle JP, Wolterink TD, Sprys-Tellner TJ, Haan JW, Sean Lynch T. Analysis of Player Performance and Financial Costs Associated With Implementation of an Updated National Hockey League Concussion Protocol: A Retrospective Comparative Study. Orthop J Sports Med 2024; 12:23259671241231757. [PMID: 38665385 PMCID: PMC11044774 DOI: 10.1177/23259671241231757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 04/28/2024] Open
Abstract
Background An updated National Hockey League (NHL) concussion protocol (NHLCP) was established in the 2016-2017 season to mitigate the negative outcomes of sport-related concussions. However, few studies on the effects of implementing the NHLCP have been performed. Purpose To define concussion incidence and investigate differences in NHL player performance after a concussion during periods before and after NHLCP implementation and assess the financial impact on NHL teams associated with NHLCP implementation. Study Design Cohort study; Level of evidence, 3. Methods This was a retrospective review of NHL players who sustained a concussion before (2000-2001 to 2015-2016 seasons) and after (2016-2017 to 2020-2021 seasons) implementing the NHLCP (pre-NHLCP and post-NHLCP groups). For each group, multiple performance metrics-including 30 days, 1 season, and 3 seasons before and after concussion-were compared for both groups. Return to play, total concussion cost, and association of return to play with cost were investigated using regression analysis. Results A total of 452 players (423 skaters, 29 goalies) sustained concussions during the study period, including 331 players (315 skaters, 16 goalies) in the pre-NHLCP group and 121 players (108 skaters, 13 goalies) in the post-NHLCP group. For both groups, no significant differences in standard performance were observed during the 30-day and 1-season periods before and after concussion. The mean return to play was significantly higher in the pre-NHLCP group than in the post-NHLCP group (20.1 vs 15.7 days; P = .022). The mean adjusted player salary was not different between groups; nonetheless, the mean adjusted replacement player salary was significantly higher in the post-NHLCP group ($744,505 vs $896,942; P = .032). The mean cost of time missed did not differ between groups. The mean return to play time significantly decreased over the entire study period (R2 = 0.33; P = .005), and the mean return to play time was positively associated with cost R2 = 0.215; P = .030). Conclusion Concussion incidence did not change after implementation of the updated NHLCP; nonetheless, players had significantly less missed time from injury after protocol implementation. Changes in player performance 30 days and 1 year before and after concussion injury were not different before and after NHLCP implementation. No differences were found in the financial cost of concussions between the pre- and post-NHLCP groups, and missed time was significantly correlated with mean cost from missed time.
Collapse
Affiliation(s)
- Michael A. Gaudiani
- Department of Orthopaedic Surgery, Henry Ford Health, Detroit, Michigan, USA
| | - Joshua P. Castle
- Department of Orthopaedic Surgery, Henry Ford Health, Detroit, Michigan, USA
| | | | | | - Jager W. Haan
- College of Human Medicine, Michigan State University, Michigan, USA
| | - T. Sean Lynch
- Department of Orthopaedic Surgery, Henry Ford Health, Detroit, Michigan, USA
| |
Collapse
|
5
|
Da Broi M, Al Awadhi A, Voruz P, Nouri A, Schaller K. The spectrum of acute and chronic consequences of neurotrauma in professional and amateur boxing - A call to action is advocated to better understand and prevent this phenomenon. BRAIN & SPINE 2023; 4:102743. [PMID: 38510617 PMCID: PMC10951782 DOI: 10.1016/j.bas.2023.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 03/22/2024]
Abstract
Introduction Despite changes in regulations, boxing-related injuries and fatalities are still occurring. The numbers available in the literature regarding mortality and long-term consequences may not accurately represent the actual situation. Indeed, the real extent of this phenomenon remains poorly known. Research question Delineating the spectrum of acute and chronic consequences of boxing-related traumatic brain injuries (TBI). Material and methods Narrative review of the literature concerning acute and chronic boxing-related TBI. Keywords such as mortality, boxing, subdural hematoma were used to search in PubMed and Google scholar. An updated analysis of the Velazquez fatalities collection in boxing was undertaken. Results The Velazquez collection includes 2076 fatalities from 1720 to the present with a death rate of 10 athletes per year. More than half of the deaths (N = 1354, 65.2%) occurred after a knock-out, and nearly 75% happened during professional bouts. In Australia, from 1832 to 2020, 163 fatalities were recorded (75% professional). In Japan, from 1952 to 2016, 38 deaths were recorded with a mean age of 23.9 years. Up to 40% of retired professional boxers in the United States were diagnosed with symptoms of chronic brain injury. Clinical dementia is far more prevalent among professional boxers than in amateurs with an incidence of 20%. Discussion and conclusions A concerted effort to raise awareness and shed light on boxing-related neuro-trauma is required. Similar considerations can be made for other combat sports or contact sports. A call to action to address this knowledge gap, decrease and prevent this phenomenon is advocated.
Collapse
Affiliation(s)
- Michele Da Broi
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Abdullah Al Awadhi
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Voruz
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Switzerland
| | - Aria Nouri
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Xu H, Xu C, Gu P, Hu Y, Guo Y, Bai G. Neuroanatomical restoration of salience network links reduced headache impact to cognitive function improvement in mild traumatic brain injury with posttraumatic headache. J Headache Pain 2023; 24:43. [PMID: 37081382 PMCID: PMC10120179 DOI: 10.1186/s10194-023-01579-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Neuroanatomical alterations have been associated with cognitive deficits in mild traumatic brain injury (MTBI). However, most studies have focused on the abnormal gray matter volume in widespread brain regions using a cross-sectional design in MTBI. This study investigated the neuroanatomical restoration of key regions in salience network and the outcomes in MTBI. METHODS Thirty-six MTBI patients with posttraumatic headache (PTH) and 34 matched healthy controls were enrolled in this study. All participants underwent magnetic resonance imaging scans and were assessed with clinical measures during the acute and subacute phases. Surface-based morphometry was conducted to get cortical thickness (CT) and cortical surface area (CSA) of neuroanatomical regions which were defined by the Desikan atlas. Then mixed analysis of variance models were performed to examine CT and CSA restoration in patients from acute to subacute phase related to controls. Finally, mediation effects models were built to explore the relationships between neuroanatomical restoration and symptomatic improvement in patients. RESULTS MTBI patients with PTH showed reduced headache impact and improved cognitive function from the acute to subacute phase. Moreover, patients experienced restoration of CT of the left caudal anterior cingulate cortex (ACC) and left insula and cortical surface area of the right superior frontal gyrus from acute to subacute phase. Further mediation analysis found that CT restoration of the ACC and insula mediated the relationship between reduced headache impact and improved cognitive function in patients. CONCLUSIONS These results showed that neuroanatomical restoration of key regions in salience network correlated reduced headache impact with cognitive function improvement in MTBI with PTH, which further substantiated the vital role of salience network and provided an alternative clinical target for cognitive improvement in MTBI patients with PTH.
Collapse
Affiliation(s)
- Hui Xu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, 100 West 5Th Street, Hamilton, ON, L8P 3R2, Canada.
| | - Cheng Xu
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton/McMaster University, 100 West 5Th Street, Hamilton, ON, L8P 3R2, Canada
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Pengpeng Gu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yike Hu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yunyu Guo
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
7
|
Wilson RJ, Bell MR, Giordano KR, Seyburn S, Kozlowski DA. Repeat subconcussion in the adult rat gives rise to behavioral deficits similar to a single concussion but different depending upon sex. Behav Brain Res 2023; 438:114206. [PMID: 36356721 DOI: 10.1016/j.bbr.2022.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Although concussions are a popular focus of neurotrauma research, subconcussions occur with higher frequency but are less well-studied. A subconcussion is an impact to the head that does not result in immediately diagnosable concussion but can result in later neurological consequences. Repeat subconcussions can produce behavioral impairments and neuropathology that is similar to or worse than those seen following a single concussion. The current study modified a previously established closed head injury model of concussion to create a subconcussion model and examines sex differences in behavioral responses to repeated subconcussion in the adult rat. Rats received a single concussion, single or repeat subconcussions, or no impact and behavior was monitored from 2 h through 31 days post-injury. A single concussion or repeat subconcussion resulted in deficits in locomotion, righting reflexes, and recognition memory. The degree of deficit induced by repeat subconcussions were either similar (righting reflexes) or greater/more persistent (locomotor deficits and recognition memory) than that of a concussion. Single subconcussion resulted in acute deficits that were mild and limited to righting reflexes and locomotion. Sex differences were observed in responses to repeat subconcussion: females showed greater deficits in righting reflexes, locomotion, and vestibular function, while males showed greater alterations in anxiety and depressive-like behavior. This study established a model of subconcussive impact where a single subconcussive impact resulted in minimal behavioral deficits but repeat subconcussions resulted in deficits similar to or worse than a single concussion. Our data also suggest sex differences in behavioral responses to both concussive and subconcussive impacts.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| | - Margaret R Bell
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA; Department of Health Sciences, DePaul University, 1110 W. Belden, Chicago, IL, USA.
| | - Katherine R Giordano
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| | - Serena Seyburn
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| | - Dorothy A Kozlowski
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA; Neuroscience Program, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| |
Collapse
|
8
|
Nozari A, Sharma A, Wang Z, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Wiklund L, Sharma HS. Co-administration of Nanowired Oxiracetam and Neprilysin with Monoclonal Antibodies to Amyloid Beta Peptide and p-Tau Thwarted Exacerbation of Brain Pathology in Concussive Head Injury at Hot Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:271-313. [PMID: 37480464 DOI: 10.1007/978-3-031-32997-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Environmental temperature adversely affects the outcome of concussive head injury (CHI)-induced brain pathology. Studies from our laboratory showed that animals reared at either cold environment or at hot environment exacerbate brain pathology following CHI. Our previous experiments showed that nanowired delivery of oxiracetam significantly attenuated CHI-induced brain pathology and associated neurovascular changes. Military personnel are the most susceptible to CHI caused by explosion, blasts, missile or blunt head trauma leading to lifetime functional and cognitive impairments affecting the quality of life. Severe CHI leads to instant death and/or lifetime paralysis. Military personnel engaged in combat operations are often subjected to extreme high or low environmental temperature zones across the globe. Thus, further exploration of novel therapeutic agents at cold or hot ambient temperatures following CHI are the need of the hour. CHI is also a major risk factor for developing Alzheimer's disease by enhancing amyloid beta peptide deposits in the brain. In this review, effect of hot environment on CHI-induced brain pathology is discussed. In addition, whether nanodelivery of oxiracetam together with neprilysin and monoclonal antibodies (mAb) to amyloid beta peptide and p-tau could lead to superior neuroprotection in CHI is explored. Our results show that co-administration of oxiracetam with neprilysin and mAb to AβP and p-tau significantly induced superior neuroprotection following CHI in hot environment, not reported earlier.
Collapse
Affiliation(s)
- Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Clay AM, Carr R, Dubien J, To F. Short-term behavioral and histological changes in a rodent model of mild traumatic brain injury. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Abstract
OBJECTIVE Parkinson's disease (PD) is a neurodegenerative movement disorder that is a result of dopamine depletion in the basal ganglia. Individuals with a PD diagnosis experience motor symptoms (e.g., tremors) and nonmotor symptoms (e.g., cognitive decline). Previous studies suggest that progression of cognitive dysfunction in other neurologic populations can be predicted by cumulative head injuries. The study examined the association between lifelong number of head injuries and nonmotor outcomes (cognitive complaints, depression, and quality of life). METHODS Participants consisted of 3,483 individuals with PD diagnoses who were enrolled in the Fox Insight study. Participants completed a self-report questionnaire to quantify the number of head injuries experienced throughout life. Participants also completed measures of nonmotor outcomes (cognitive complaints, depression, and quality of life) every 6 months over a 3-year period. RESULTS Cognitive complaints were more common among those experiencing more head injuries. Further, more severe depression and greater difficulties in quality of life were reported among individuals experiencing a greater number of head injuries. Additional analyses revealed the effect between cognitive complaints and number of head injuries was driven by individuals who experienced five or more head injuries in their lifetime. CONCLUSIONS Among individuals with PD, a patient report of past head injuries may have prognostic implications for important nonmotor outcomes. Report of multiple head injuries may be particularly concerning.
Collapse
Affiliation(s)
- Jacob D Jones
- Center on Aging, Department of Psychology, California State University San Bernardino, San Bernardino
| | - Holly Timblin
- Center on Aging, Department of Psychology, California State University San Bernardino, San Bernardino
| | - Fawn Baxter
- Center on Aging, Department of Psychology, California State University San Bernardino, San Bernardino
| |
Collapse
|
11
|
Jacob D, Unnsteinsdóttir Kristensen IS, Aubonnet R, Recenti M, Donisi L, Ricciardi C, Svansson HÁR, Agnarsdóttir S, Colacino A, Jónsdóttir MK, Kristjánsdóttir H, Sigurjónsdóttir HÁ, Cesarelli M, Eggertsdóttir Claessen LÓ, Hassan M, Petersen H, Gargiulo P. Towards defining biomarkers to evaluate concussions using virtual reality and a moving platform (BioVRSea). Sci Rep 2022; 12:8996. [PMID: 35637235 PMCID: PMC9151646 DOI: 10.1038/s41598-022-12822-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Current diagnosis of concussion relies on self-reported symptoms and medical records rather than objective biomarkers. This work uses a novel measurement setup called BioVRSea to quantify concussion status. The paradigm is based on brain and muscle signals (EEG, EMG), heart rate and center of pressure (CoP) measurements during a postural control task triggered by a moving platform and a virtual reality environment. Measurements were performed on 54 professional athletes who self-reported their history of concussion or non-concussion. Both groups completed a concussion symptom scale (SCAT5) before the measurement. We analyzed biosignals and CoP parameters before and after the platform movements, to compare the net response of individual postural control. The results showed that BioVRSea discriminated between the concussion and non-concussion groups. Particularly, EEG power spectral density in delta and theta bands showed significant changes in the concussion group and right soleus median frequency from the EMG signal differentiated concussed individuals with balance problems from the other groups. Anterior-posterior CoP frequency-based parameters discriminated concussed individuals with balance problems. Finally, we used machine learning to classify concussion and non-concussion, demonstrating that combining SCAT5 and BioVRSea parameters gives an accuracy up to 95.5%. This study is a step towards quantitative assessment of concussion.
Collapse
Affiliation(s)
- Deborah Jacob
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - Romain Aubonnet
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - Marco Recenti
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - Leandro Donisi
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Carlo Ricciardi
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Halldór Á R Svansson
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - Sólveig Agnarsdóttir
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - Andrea Colacino
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- Department of Computer Engineering, Electrical and Applied Mathematics, University of Salerno, Salerno, Italy
| | - María K Jónsdóttir
- Department of Psychology, School of Social Sciences, Reykjavik University, Reykjavik, Iceland
- Landspitali National University Hospital of Iceland, Reykjavik, Iceland
| | - Hafrún Kristjánsdóttir
- Department of Psychology, School of Social Sciences, Reykjavik University, Reykjavik, Iceland
- Physical Activity, Physical Education, Sport and Health (PAPESH) Research Centre, Sports Science Department, School of Social Sciences, Reykjavik University, Reykjavik, Iceland
| | - Helga Á Sigurjónsdóttir
- Landspitali National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Mario Cesarelli
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
- Department of Information Technology and Electrical Engineering, University of Naples, Naples, Italy
| | - Lára Ósk Eggertsdóttir Claessen
- Landspitali National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Mahmoud Hassan
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
- MINDig, 35000, Rennes, France
| | - Hannes Petersen
- Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Akureyri Hospital, Akureyri, Iceland
| | - Paolo Gargiulo
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland.
- Department of Science, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland.
| |
Collapse
|
12
|
Abdulla E, Ahmed N, Al-Salihi MM, Rahman R, E Ferdousse SN, Rahman S, Rahman MM. Letter: Blood Biomarkers and Structural Imaging Correlations Post-Traumatic Brain Injury: A Systematic Review. Neurosurgery 2022; 91:e24-e25. [PMID: 35482296 DOI: 10.1227/neu.0000000000002010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ebtesam Abdulla
- Department of Neurosurgery, Salmaniya Medical Complex, Manama, Bahrain
| | - Nazmin Ahmed
- Department of Neurosurgery, Ibrahim Cardiac Hospital and Research Institute (A Centre for Cardiovascular, Neuroscience and Organ Transplant Units), Dhaka, Bangladesh
| | | | - Raphia Rahman
- Rowan School of Osteopathic Medicine, Stratford, New Jersey, USA
| | | | - Sabrina Rahman
- Department of Public Health, Independent University-Bangladesh, Dhaka, Bangladesh
| | - Md Moshiur Rahman
- Department of Neurosurgery, Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| |
Collapse
|
13
|
Lavender AP, Georgieva J, Takechi R. A Suggested New Term and Definition to Describe the Cumulative Physiological and Functional Effects of Non-injurious Head Impacts. Front Neurol 2022; 13:799884. [PMID: 35432181 PMCID: PMC9009409 DOI: 10.3389/fneur.2022.799884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Andrew P. Lavender
- School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
- Curtin School of Allied Health, Curtin University, Perth, WA, Australia
- *Correspondence: Andrew P. Lavender
| | - Julia Georgieva
- Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin School of Population Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
14
|
Abstract
The developing brain is remarkably plastic as it changes in response to a wide range of experiences including sensory and motor experience, psychoactive drugs, peer relationships, parent-infant interactions, gonadal hormones, intestinal flora, diet, and injury. There are sensitive periods for many of these experiences, including cerebral injury. Comparisons across mammalian species (humans, monkeys, cats, rats, mice) show a sensitive period for good outcomes from cerebral injury around the time of intense synaptogenesis. This period is postnatal in humans, cats, and rats, but prenatal in monkeys, reflecting the differences in neuronal development at birth across species. In addition, there appears to be a sensitive period prenatally during the time of maximum cortical neurogenesis and possibly during adolescence as well, although these periods are not as well studied as the period related to synaptogenesis and to date only examined in rats. Here we review the evidence for sensitive periods related to brain injury across species and propose mechanisms that may underlie the plasticity during these periods.
Collapse
Affiliation(s)
- Bryan Kolb
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
15
|
Jansen AE, McGrath M, Samorezov S, Johnston J, Bartsch A, Alberts J. Characterizing Head Impact Exposure in Men and Women During Boxing and Mixed Martial Arts. Orthop J Sports Med 2021; 9:23259671211059815. [PMID: 34901294 PMCID: PMC8664317 DOI: 10.1177/23259671211059815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Background: The accumulation of subconcussive impacts has been implicated in permanent neurological impairment. A gap in understanding the relationship between head impacts and neurological function is the lack of precise characterization and quantification of forces that individuals experience during sports training and competition. Purpose: To characterize impact exposure during training and competition among male and female athletes participating in boxing and mixed martial arts (MMA) via an instrumented custom-fit Impact Monitoring Mouthguard (IMM). Study Design: Cross-sectional study; Level of evidence, 3. Methods: Twenty-three athletes (n = 4 women) were provided a custom-fit IMM. The IMM monitored impacts during sparring and competition. All training and competition sessions were videotaped. Video and IMM data were synchronized for post hoc data verification of true positives and substantiation of impact location. IMM data were collected from boxing and MMA athletes at a collaborating site. For each true-positive impact, peak linear acceleration and peak angular acceleration were calculated. Wilcoxon rank sum tests were used to evaluate potential differences in sport, activity type, and sex with respect to each outcome. Differences in impact location were assessed via Kruskal-Wallis tests. Results: IMM data were collected from 53 amateur training sessions and 6 competitions (session range, 5-20 minutes). A total of 896 head impacts (men, n = 786; women, n = 110) were identified using IMM data and video verification: 827 in practice and 69 during competition. MMA and boxers experienced a comparable number of impacts per practice session or competition. In general, MMA impacts produced significantly higher peak angular acceleration than did boxing impacts (P < .001) and were more varied in impact location on the head during competitions. In terms of sex, men experienced a greater number of impacts than women per practice session. However, there was no significant difference between men and women in terms of impact magnitude. Conclusion: Characteristic profiles of head impact exposure differed between boxing and MMA athletes; however, the impact magnitudes were not significantly different for male and female athletes.
Collapse
Affiliation(s)
- A Elizabeth Jansen
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Morgan McGrath
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sergey Samorezov
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joshua Johnston
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Jay Alberts
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA.,Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Kieffer EE, Brolinson PG, Maerlender AE, Smith EP, Rowson S. In-Season Concussion Symptom Reporting in Male and Female Collegiate Rugby Athletes. Neurotrauma Rep 2021; 2:503-511. [PMID: 34901945 PMCID: PMC8655811 DOI: 10.1089/neur.2021.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Symptom inventories are generally only collected after a suspected concussion, but regular in-season monitoring may allude to clinical symptoms associated with repetitive subconcussive impacts and potential undiagnosed concussions. Despite sex-specific differences in symptom presentation and outcome of concussion, no return-to-play protocol takes sex into account. The objective of this study was to monitor a cohort of contact-sport athletes and compare the frequency and severity of in-season concussion-like symptom reporting between sexes. Graded symptom checklists from 144 female and 104 male athlete-seasons were administered weekly to quantify the effect of subconcussive impacts on frequency and severity of in-season symptom reporting. In-season, mean symptom severity score (SSS) (p = 0.026, mean difference of 1.8), mean number of symptoms (p = 0.044, mean difference of 0.9), max SSS (p < 0.001, mean difference of 19.2), and max number of symptoms (p < 0.001, mean difference of 6.8) were higher in the females. The females' survey results showed differences between elevated and concussed SSS (p < 0.005, mean difference of 28.1) and number of symptoms reported (p = 0.001, mean difference of 6.6). The males did not have a difference in SSS (p = 0.97, mean difference of 1.12) nor in number of symptoms (p = 0.35, mean difference of 1.96) from elevated to concussed athletes. Rugby players report concussion-like symptoms in the absence of a diagnosed concussion in-season. Female athletes reported elevated symptom frequencies with greater severities than the males, but both sexes reported considerable levels throughout the season.
Collapse
Affiliation(s)
- Emily E Kieffer
- School of Biomedical Engineering and Sciences and Virginia Tech, Blacksburg, Virginia, USA
| | | | - Arthur E Maerlender
- Center for Brain, Biology and Behavior, University of Nebraska at Lincoln, Lincoln, Nebraska, USA
| | - Eric P Smith
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
| | - Steven Rowson
- School of Biomedical Engineering and Sciences and Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
17
|
Mental Health and Wellbeing of Retired Elite and Amateur Rugby Players and Non-contact Athletes and Associations with Sports-Related Concussion: The UK Rugby Health Project. Sports Med 2021; 52:1419-1431. [PMID: 34792798 PMCID: PMC9124647 DOI: 10.1007/s40279-021-01594-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Background Concerns have intensified over the health and wellbeing of rugby union and league players, and, in particular, about the longer-term effects of concussion. The purpose of this study was to investigate whether there were differences in mental health, sleep and alcohol use between retired elite and amateur rugby code players and non-contact athletes, and to explore associations with sports-related concussion. Methods 189 retired elite (ER, n = 83) and amateur (AR, n = 106) rugby code players (rugby union n = 145; rugby league n = 44) and 65 former non-contact athletes (NC) were recruited to the UK Rugby Health Project between 2016 and 2018. Details on sports participation and concussion history were obtained by questionnaire, which also included questions on mental health, anger, sleep, mood, alcohol use, social connections and retirement from injury. Data were compared between sports groups (ER, AR and NC), between exposure of three or more or five or more concussions and for years in sport. Results ER reported more concussions than AR (5.9 ± 6.3 vs. 3.7 ± 6.3, p = 0.022) and NC (0.4 ± 1.0, p < 0.001). ER had a higher overall negative mental health score (indicating poor mental health) than AR (10.4 ± 6.3 vs. 7.4 ± 6.5, d = 0.47, p = 0.003) and NC (7.1 ± 4.8, d = 0.57, p = 0.006) and a lower overall positive score (indicating good mental health) than NC (8.9 ± 4.1 vs. 10.7 ± 3.4, d = 0.46, p = 0.021). Negative scores were highest and positive scores lowest in those reporting three or more concussions (d = 0.36, p = 0.008; d = 0.28, p = 0.040, respectively) or five or more concussions (d = 0.56, p < 0.001; d = 0.325, p = 0.035, respectively). Reported symptoms for sleep disruption were more prevalent in ER than NC, and in former athletes with three or more concussions (d = 0.41–0.605, p < 0.05). There were no significant differences in alcohol score (p = 0.733). Global anger score and covert anger expression was higher in former athletes with five or more concussions (d = 0.32, p = 0.035; d = 0.37, p = 0.016). AR reported greater attachment to friends than NC (d = 0.46, p = 0.033) and 20% of ER reported that they would not turn to anyone if they had a problem or felt upset about anything. Conclusion There was a significantly higher prevalence of adverse mental health and sleep disruption in ER and in former athletes who reported a higher number of concussions. Anger and irritability were more prevalent in former athletes with a history of five or more concussions. Strategies are needed to address mental health and sleep disturbance in elite rugby code athletes, who are also less likely to seek help should they need it. Further research is needed to elucidate causation, and the neurobiological connection between concussion, sub-concussions and longer-term psychological health and wellbeing. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-021-01594-8.
Collapse
|
18
|
Follmer B, Varga AA, Herrmann KB, Sun Y, Zehr EP. Effects of chronic exposure to head impacts on the balance function of combat sports athletes. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bruno Follmer
- Rehabilitation Neuroscience Laboratory University of Victoria Victoria British Columbia Canada
- School of Exercise Science, Physical and Health Education University of Victoria Victoria British Columbia Canada
- Human Discovery Science International Collaboration on Repair Discoveries (ICORD) Vancouver British Columbia Canada
| | - Aaron Alexander Varga
- Rehabilitation Neuroscience Laboratory University of Victoria Victoria British Columbia Canada
| | - Konrad Byron Herrmann
- Rehabilitation Neuroscience Laboratory University of Victoria Victoria British Columbia Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory University of Victoria Victoria British Columbia Canada
- School of Exercise Science, Physical and Health Education University of Victoria Victoria British Columbia Canada
- Human Discovery Science International Collaboration on Repair Discoveries (ICORD) Vancouver British Columbia Canada
| | - E. Paul Zehr
- Rehabilitation Neuroscience Laboratory University of Victoria Victoria British Columbia Canada
- School of Exercise Science, Physical and Health Education University of Victoria Victoria British Columbia Canada
- Human Discovery Science International Collaboration on Repair Discoveries (ICORD) Vancouver British Columbia Canada
- Centre for Biomedical Research University of Victoria Victoria British Columbia Canada
- Division of Medical Sciences University of Victoria Victoria British Columbia Canada
| |
Collapse
|
19
|
Chen A, Zhang Z, Cao C, Lu J, Wu S, Ma S, Feng Y, Wang S, Xu G, Song J. Altered Attention Network in Paratroopers Exposed to Repetitive Subconcussion: Evidence Based on Behavioral and Event-Related Potential Results. J Neurotrauma 2021; 38:3306-3314. [PMID: 34549595 DOI: 10.1089/neu.2021.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Cognitive impairment caused by repetitive subconcussion has received increasing attention in recent years. Although the dysfunction of attention has been confirmed by neuropsychological research using scales, there is no event-related potentials (ERPs) research. The Attention Network Test (ANT) has been widely used to evaluate the three separate components of attention processing (alerting, orienting, and executive control). Twenty-seven paratroopers exposed to repetitive subconcussion (subconcussion group) and 25 matched healthy control participants (HCs group) were enrolled, and all of them performed the ANT test while continuous scalp electroencephalography data were recorded. On the behavioral performance level, the subconcussion group showed a slower task response, with an especially significant slower reaction time in alerting. Concerning ERP results, reduction amplitudes of cue-N1 in the alerting network were observed, indicating that this group was less able to make efficient use of cues and maintain an alerting state for incoming information. For the orienting network, no difference in N1 amplitude was observed between the two groups. Moreover, there was a reduced P3 amplitude in the executive control network in the subconcussion group compared with the HCs group, suggesting a dysfunction of attentional resource allocation and inhibition control in the former group. This study is, to our knowledge, the first analysis of the altered attention network caused by repetitive subconcussion from the perspectives of behavioral and neuropsychology levels. These preliminary results revealed the possible damage of the alerting and executive control networks and provided a reference for further research on subconcussion cognitive impairment.
Collapse
Affiliation(s)
- Aobo Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Zhihao Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Chenglong Cao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China.,Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jinjiang Lu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Shukai Wu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Shenghui Ma
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China.,Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Feng
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China.,Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shuochen Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Guozheng Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Jian Song
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| |
Collapse
|
20
|
Karantali E, Kazis D, McKenna J, Chatzikonstantinou S, Petridis F, Mavroudis I. Neurofilament light chain in patients with a concussion or head impacts: a systematic review and meta-analysis. Eur J Trauma Emerg Surg 2021; 48:1555-1567. [PMID: 34003313 DOI: 10.1007/s00068-021-01693-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Traumatic brain injury is one of the leading causes of disability worldwide. Mild traumatic brain injury (TBI) is the most common and benign form of TBI, usually referred to by the medical term "concussion". The purpose of our systematic review and meta-analysis was to explore the role of serum and CSF neurofilament light chain (NfL) as a potential biomarker in concussion. METHODS We systematically searched PubMed, Web of Science, and Cochrane databases using specific keywords. As the primary outcome, we assessed CSF or serum NfL levels in patients with concussion and head impacts versus controls. The role of NfL in patients with concussion and head impacts compared to healthy controls was also assessed, as well as in sports-related and military-related conditions. RESULTS From the initial 617 identified studies, we included 24 studies in our qualitative analysis and 14 studies in our meta-analysis. We found a statistically significant increase of serum NfL in patients suffering from a concussion or head impacts compared to controls (p = 0.0023), highlighting its potential role as a biomarker. From our sub-group analyses, sports-related concussion and mild TBI were mostly correlated with increased serum NfL values. Compared to controls, sports-related concussion was significantly associated with higher NfL levels (p = 0.0015), while no association was noted in patients suffering from head impacts or military-related TBI. CONCLUSION Serum NfL levels are higher in all patients suffering from concussion compared to healthy controls. The sports-related concussion was specifically associated with higher levels of NfL. Further studies exploring the use of NfL as a diagnostic and prognostic biomarker in mild TBI and head impacts are needed.
Collapse
Affiliation(s)
- Eleni Karantali
- Third Neurological Department, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Dimitrios Kazis
- Third Neurological Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jack McKenna
- Department of Neurosciences, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Fivos Petridis
- Third Neurological Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Mavroudis
- Department of Neurosciences, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
21
|
Hiles-Murison B, Lavender AP, Hackett MJ, Armstrong JJ, Nesbit M, Rawlings S, McGonigle T, Warnock A, Lam V, Mamo JCL, Fitzgerald M, Takechi R. Blood-brain barrier disruption and ventricular enlargement are the earliest neuropathological changes in rats with repeated sub-concussive impacts over 2 weeks. Sci Rep 2021; 11:9261. [PMID: 33927338 PMCID: PMC8084989 DOI: 10.1038/s41598-021-88854-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/19/2021] [Indexed: 01/27/2023] Open
Abstract
Repeated sub-concussive impact (e.g. soccer ball heading), a significantly lighter form of mild traumatic brain injury, is increasingly suggested to cumulatively alter brain structure and compromise neurobehavioural function in the long-term. However, the underlying mechanisms whereby repeated long-term sub-concussion induces cerebral structural and neurobehavioural changes are currently unknown. Here, we utilised an established rat model to investigate the effects of repeated sub-concussion on size of lateral ventricles, cerebrovascular blood-brain barrier (BBB) integrity, neuroinflammation, oxidative stress, and biochemical distribution. Following repeated sub-concussion 3 days per week for 2 weeks, the rats showed significantly enlarged lateral ventricles compared with the rats receiving sham-only procedure. The sub-concussive rats also presented significant BBB dysfunction in the cerebral cortex and hippocampal formation, whilst neuromotor function assessed by beamwalk and rotarod tests were comparable to the sham rats. Immunofluorescent and spectroscopic microscopy analyses revealed no significant changes in neuroinflammation, oxidative stress, lipid distribution or protein aggregation, within the hippocampus and cortex. These data collectively indicate that repeated sub-concussion for 2 weeks induce significant ventriculomegaly and BBB disruption, preceding neuromotor deficits.
Collapse
Affiliation(s)
- Bailey Hiles-Murison
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Andrew P Lavender
- School of Science, Psychology and Sport, Federation University Australia, Mount Helen, VIC, Australia
- School of Allied Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Mark J Hackett
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Joshua J Armstrong
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Samuel Rawlings
- School of Allied Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Terrence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Ryu Takechi
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
22
|
Li AY, Schupper AJ, Quinones A, Shuman WH, Ali M, Hannah TC, Durbin JR, Dreher N, Spiera Z, Marayati NF, Gometz A, Lovell MR, Choudhri TF. Sport Contact Level Affects Post-Concussion Neurocognitive Performance in Young Athletes. Arch Clin Neuropsychol 2021; 37:19-29. [PMID: 33829227 DOI: 10.1093/arclin/acab021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Contact level affects the incidence of sports-related concussion. However, the effects of contact level on injury severity and recovery are less clear and are the focus of this study. METHOD Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) for athletes aged 12-22 was performed at baseline (n = 10,907 for 7,058 athletes), after suspected concussion determined by physicians or athletic trainers (n = 5,062 for 4,419 athletes), and during follow-up visits (n = 3,264 for 2,098 athletes). Athletes played contact/collision (CC), limited contact (LC), and noncontact (NC) sports. Injury incidence, severity, and recovery were measured using raw and change from baseline neurocognitive test scores. Comparisons between groups used univariate analysis and multivariable regression controlling for demographic variables. RESULTS Compared to CC athletes, LC and NC athletes showed decreased suspected concussion incidence. At initial post-injury testing, all neurocognitive test scores were similar between groups except changes from baseline for processing speed were improved for LC compared to CC athletes. Upon follow-up testing, raw neurocognitive scores were better for NC compared to the contact collision athletes in verbal memory, processing speed, total symptom score, migraine cluster, cognitive cluster, and neuropsychiatric cluster scores. For change from baseline scores, LC athletes exhibited better performance on verbal memory, processing speed, and reaction time but also showed higher neuropsychiatric scores than CC athletes. CONCLUSION Neurocognitive scores between contact levels were similar at the first post-injury test. However, follow up showed many improved scores and symptoms for limited and NC sports compared to CC sports, which may indicate faster recovery.
Collapse
Affiliation(s)
- Adam Y Li
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander J Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Addison Quinones
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William H Shuman
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Muhammad Ali
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Theodore C Hannah
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John R Durbin
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nickolas Dreher
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zachary Spiera
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Naoum Fares Marayati
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex Gometz
- Concussion Management of New York, New York, NY, USA
| | - Mark R Lovell
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tanvir F Choudhri
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|