1
|
Zou B, Zhang Q, Gan H, Qin Y, Zhou Y, Zhai X, Liang P. Long Noncoding RNA GAS5-Involved Progression of Neonatal Hydrocephalus and Inflammatory Responses. Mol Biotechnol 2025; 67:661-672. [PMID: 38429624 DOI: 10.1007/s12033-024-01077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/15/2024] [Indexed: 03/03/2024]
Abstract
Intraventricular hemorrhage results in posthemorrhagic hydrocephalus (PHH). Neonatal hydrocephalus remains a challenging disease due to the high failure rate of all management strategies. We evaluated long noncoding RNA growth arrest-specific 5 (GAS5)-mediated network in neonatal hydrocephalus, providing a new direction for the treatment of hydrocephalus. The PHH model was constructed in neonatal rats after intracerebroventricular injection with GAS5, miR-325-3p, and chaperonin containing T-complex protein 1, subunit 8 (CCT8) plasmids, or oligonucleotides. Next, behavioral tests, measurement of serum inflammation, observation of brain tissue pathology, and calculation of hemoglobin and brain water contents were implemented. GAS5, miR-325-3p, and CCT8 expression, in combination with their interactions, was checked. As the results reported, collagenase infusion induced hydrocephalus, impairing neurological function, enhancing inflammation and neuronal apoptosis, and increasing hemoglobin and brain water contents. GAS5 and CCT8 were up-regulated, while miR-325-3p was down-regulated in hydrocephalic rats. Downregulating GAS5/CCT8 or upregulating miR-325-3p could inhibit inflammatory response and improve neurological function in young hydrocephalic rats. GAS5 promotes CCT8 expression through sponge adsorption of miR-325-3p. GAS5 silencing-mediated protections against hydrocephalus were counteracted by CCT8 overexpression. In summary, GAS5 aggravates neonatal hydrocephalus and inflammatory responses in a way of leasing miR-325-3p-involved regulation of CCT8.
Collapse
Affiliation(s)
- Bin Zou
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, No. 20, Jinyu Avenue, Yubei District, Chongqing City, 401122, China
| | - Qin Zhang
- Department of Cardiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing City, 401122, China
| | - Hui Gan
- Chongqing Medical University, Chongqing City, 400016, China
| | - Yue Qin
- Chongqing Medical University, Chongqing City, 400016, China
| | - Yudong Zhou
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, No. 20, Jinyu Avenue, Yubei District, Chongqing City, 401122, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, No. 20, Jinyu Avenue, Yubei District, Chongqing City, 401122, China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, No. 20, Jinyu Avenue, Yubei District, Chongqing City, 401122, China.
| |
Collapse
|
2
|
Huang LX, Sun T, Sun J, Wu ZM, Ling C, Zhang BY, Chen C, Wang H. Non-Coding RNA in Schwann Cell and Peripheral Nerve Injury: A Review. Adv Biol (Weinh) 2025; 9:e2400357. [PMID: 39185790 DOI: 10.1002/adbi.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/28/2024] [Indexed: 08/27/2024]
Abstract
Peripheral nerve injury (PNI) can result in severe disabilities, profoundly impacting patients' quality of life and potentially endangering their lives. Therefore, understanding the potential molecular mechanisms that facilitate the regeneration of damaged nerves is crucial. Evidence indicates that Schwann cells (SCs) play a pivotal role in repairing peripheral nerve injuries. Previous studies have shown that RNA, particularly non-coding RNA (ncRNA), plays a crucial role in nerve regeneration, including the proliferation and dedifferentiation of SCs. In this review, the individual roles of ncRNA in SCs and PNI are analyzed. This review not only enhances the understanding of ncRNA's role in nerve injury repair but also provides a significant theoretical foundation and inspiration for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Li-Xin Huang
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Tao Sun
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Jun Sun
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Zhi-Min Wu
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Bao-Yu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| |
Collapse
|
3
|
Qian J, Jiang M, Ding Z, Gu D, Bai H, Cai M, Yao D. Role of Long Non-coding RNA in Nerve Regeneration. Int J Neurosci 2025; 135:18-31. [PMID: 37937941 DOI: 10.1080/00207454.2023.2280446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Nerve injury can be caused by a variety of factors. It often takes a long time to repair a nerve injury and severe nerve injury is even difficult to heal. Therefore, increasing attention has focused on nerve injury and repair. Long non-coding RNA (lncRNA) is a newly discovered non-coding RNA with a wide range of biological activities. Numerous studies have shown that a variety of lncRNAs undergo changes in expression after nerve injury, indicating that lncRNAs may be involved in various biological processes of nerve repair and regeneration. Herein, we summarize the biological roles of lncRNAs in neurons, glial cells and other cells during nerve injury and regeneration, which will help lncRNAs to be better applied in nerve injury and regeneration in the future.
Collapse
Affiliation(s)
- Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Min Cai
- Medical School of Nantong University, Nantong, P.R. China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| |
Collapse
|
4
|
López-Royo T, Moreno-Martínez L, Zaragoza P, García-Redondo A, Manzano R, Osta R. Differentially expressed lncRNAs in SOD1 G93A mice skeletal muscle: H19, Myhas and Neat1 as potential biomarkers in amyotrophic lateral sclerosis. Open Biol 2024; 14:240015. [PMID: 39406341 PMCID: PMC11479763 DOI: 10.1098/rsob.240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 10/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease characterized by progressive motor function and muscle mass loss. Despite extensive research in the field, the underlying causes of ALS remain incompletely understood, contributing to the absence of specific diagnostic and prognostic biomarkers and effective therapies. This study investigates the expression of long-non-coding RNAs (lncRNAs) in skeletal muscle as a potential source of biomarkers and therapeutic targets for the disease. The expression profiles of 12 lncRNAs, selected from the literature, were evaluated across different disease stages in tissue and muscle biopsies from the SOD1G93A transgenic mouse model of ALS. Nine out of the 12 lncRNAs were differentially expressed, with Pvt1, H19 and Neat1 showing notable increases in the symptomatic stages of the disease, and suggesting their potential as candidate biomarkers to support diagnosis and key players in muscle pathophysiology in ALS. Furthermore, the progression of Myhas and H19 RNA levels across disease stages correlated with longevity in the SOD1G93A animal model, effectively discriminating between long- and short-term survival individuals, thereby highlighting their potential as prognostic indicators. These findings underscore the involvement of lncRNAs, especially H19 and Myhas, in ALS pathophysiology, offering novel insights for diagnostic, prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Tresa López-Royo
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Laura Moreno-Martínez
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Pilar Zaragoza
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Alberto García-Redondo
- Neurology Department, ALS Unit, Hospital 12 de Octubre Health Research Institute (i+12), CIBERER U-723 (Instituto de Salud Carlos III), Avenida Córdoba, s/n, 28041 Madrid, Spain
| | - Raquel Manzano
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
5
|
Wu W, Li Y, He J, Yang J, Liu Y. Resveratrol shields against cisplatin-induced ototoxicity through epigenetic lncRNA GAS5 modulation of miR-455-5p/PTEN pathway. Int Immunopharmacol 2024; 138:112464. [PMID: 38917526 DOI: 10.1016/j.intimp.2024.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Our previous research demonstrated that resveratrol counters DDP-induced ototoxicity by upregulating miR-455-5p, which targets PTEN. This study aimed to elucidate the underlying mechanisms involving GAS5 and DNA methyltransferase 1 (DNMT1) in resveratrol's protective action. METHODS A luciferase reporter assay and RNA immunoprecipitation (RIP) assay were employed to study the binding between GAS5 and miR-455-5p, as well as between miR-455-5p and PTEN. HEI-OC1 cells treated with DDP were transfected with vectors for GAS5, si-GAS5, DNMT1, si-DNMT1, and miR-455-5p mimics, as well as PTEN. Subsequently, they were treated with resveratrol and exposed to DDP, both separately and in combination. The distribution of CpG islands in the GAS5 promoter was identified using MethyPrimer, and methylation-specific PCR (MSP) was conducted to determine the methylation levels of GAS5. Chromatin immunoprecipitation (ChIP) was utilized to examine the interaction between DNMT1 and GAS5. The viability of HEI-OC1 cells, catalase (CAT) activity, apoptosis, and ROS levels were assessed using the CCK-8 assay, CAT assay, TUNEL staining, and flow cytometry, respectively. An in vivo mouse model was developed to measure auditory brainstem response (ABR) thresholds, while RT-qPCR and Western blot analysis were employed to evaluate molecular levels. RESULTS Our study discovered that GAS5 acts as a sponge for miR-455-5p, thereby increasing PTEN expression in DDP-treated HEI-OC1 cells. This process was reversed upon treatment with resveratrol. Importantly, DNMT1 promoted the methylation of the GAS5 promoter, leading to the suppression of GAS5 expression. This suppression enhanced the effectiveness of resveratrol in combating DDP-induced apoptosis and ROS in HEI-OC1 cells and amplified its protective effect against DDP's ototoxicity in vivo. CONCLUSIONS Our research emphasizes the significance of the DNMT1/GAS5/miR-455-5p/PTEN axis as a promising new route to boost resveratrol's effectiveness against DDP-induced ototoxicity.
Collapse
Affiliation(s)
- Wenjin Wu
- Department of Otorhinolaryngology-Head& Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yingru Li
- Department of Otorhinolaryngology-Head& Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jingchun He
- Department of Otorhinolaryngology-Head& Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Yang
- Department of Otorhinolaryngology-Head& Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yupeng Liu
- Department of Otorhinolaryngology-Head& Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
6
|
Xu LL, Xie JQ, Shen JJ, Ying MD, Chen XZ. Neuron-derived exosomes mediate sevoflurane-induced neurotoxicity in neonatal mice via transferring lncRNA Gas5 and promoting M1 polarization of microglia. Acta Pharmacol Sin 2024; 45:298-311. [PMID: 37803140 PMCID: PMC10789735 DOI: 10.1038/s41401-023-01173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023] Open
Abstract
Sevoflurane exposure during rapid brain development induces neuronal apoptosis and causes memory and cognitive deficits in neonatal mice. Exosomes that transfer genetic materials including long non-coding RNAs (lncRNAs) between cells play a critical role in intercellular communication. However, the lncRNAs found in exosomes derived from neurons treated with sevoflurane and their potential role in promoting neurotoxicity remain unknown. In this study, we investigated the role of cross-talk of newborn mouse neurons with microglial cells in sevoflurane-induced neurotoxicity. Mouse hippocampal neuronal HT22 cells were exposed to sevoflurane, and then co-cultured with BV2 microglial cells. We showed that sevoflurane treatment markedly increased the expression of the lncRNA growth arrest-specific 5 (Gas5) in neuron-derived extracellular vesicles, which inhibited neuronal proliferation and induced neuronal apoptosis by promoting M1 polarization of microglia and the release of inflammatory cytokines. We further revealed that the exosomal lncRNA Gas5 significantly upregulated Foxo3 as a competitive endogenous RNA of miR-212-3p in BV2 cells, and activated the NF-κB pathway to promote M1 microglial polarization and the secretion of inflammatory cytokines, thereby exacerbating neuronal damage. In neonatal mice, intracranial injection of the exosomes derived from sevoflurane-treated neurons into the bilateral hippocampi significantly increased the proportion of M1 microglia, inhibited neuronal proliferation and promoted apoptosis, ultimately leading to neurotoxicity. Similar results were observed in vitro in BV2 cells treated with the CM from HT22 cells after sevoflurane exposure. We conclude that sevoflurane induces the transfer of lncRNA Gas5-containing exosomes from neurons, which in turn regulates the M1 polarization of microglia and contributes to neurotoxicity. Thus, modulating the expression of lncRNA Gas5 or the secretion of exosomes could be a strategy for addressing sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Li-Li Xu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Jia-Qian Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jian-Jun Shen
- Department of Anesthesia, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Mei-Dan Ying
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Xin-Zhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
7
|
Zeng M, Zhang T, Lin Y, Lin Y, Wu Z. The Common LncRNAs of Neuroinflammation-Related Diseases. Mol Pharmacol 2023; 103:113-131. [PMID: 36456192 DOI: 10.1124/molpharm.122.000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Spatio-temporal specific long noncoding RNAs (lncRNAs) play important regulatory roles not only in the growth and development of the brain but also in the occurrence and development of neurologic diseases. Generally, the occurrence of neurologic diseases is accompanied by neuroinflammation. Elucidation of the regulatory mechanisms of lncRNAs on neuroinflammation is helpful for the clinical treatment of neurologic diseases. This paper focuses on recent findings on the regulatory effect of lncRNAs on neuroinflammatory diseases and selects 10 lncRNAs that have been intensively studied to analyze their mechanism action. The clinical treatment status of lncRNAs as drug targets is also reviewed. SIGNIFICANCE STATEMENT: Gene therapies such as clustered regularly interspaced short palindrome repeats technology, antisense RNA technology, and RNAi technology are gradually applied in clinical treatment, and the development of technology is based on a large number of basic research investigations. This paper focuses on the mechanisms of lncRNAs regulation of neuroinflammation, elucidates the beneficial or harmful effects of lncRNAs in neurosystemic diseases, and provides theoretical bases for lncRNAs as drug targets.
Collapse
Affiliation(s)
- Meixing Zeng
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Ting Zhang
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yongluan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Zhuomin Wu
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| |
Collapse
|
8
|
Chen Y, Dong Y, Zhang Z, Han J, Chen F, Tong X, Ma H. Fra-1 induces apoptosis and neuroinflammation by targeting S100A8 to modulate TLR4 pathways in spinal cord ischemia/reperfusion injury. Brain Pathol 2023; 33:e13113. [PMID: 36634215 PMCID: PMC9836372 DOI: 10.1111/bpa.13113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Spinal cord ischemia/reperfusion injury (SCII) is a severe complication driven by apoptosis and neuroinflammation. An increase in the expression of c-Fos, a member of the AP-1 family, is known as a neuronal activation marker in SCII. The AP-1 family is composed of Jun, Fos, and is associated with the regulation of cytokines expression and apoptosis. Fra-1 is a member of the Fos family, however, the contribution of Fra-1 to SCII is still unclear. In our study, Fra-1 was highly upregulated especially in neurons and microglia and promoted apoptosis by changing the expression of Bax/Bcl-2 after SCII. Furthermore, we found that Fra-1 directly regulated the transcription expression of S100A8. We demonstrated that knockdown of Fra-1 alleviated S100A8 mediated neuronal apoptosis and inflammatory factor release, thus improved motor function after SCII. Interestingly, we showed that administration of TAK-242, the TLR4 inhibitor, to the ischemia/reperfusion (I/R) injury induced rats suppressed the activation of the ERK and NF-κB pathways, and further reduced Fra-1 expression. In conclusion, we found that Fra-1-targeted S100A8 was expressed the upstream of Fra-1, and the Fra-1/S100A8 interaction formed a feedback loop in the signaling pathways activated by SCII.
Collapse
Affiliation(s)
- Ying Chen
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Yan Dong
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Zai‐Li Zhang
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Jie Han
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Feng‐Shou Chen
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Xiang‐Yi Tong
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Hong Ma
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
9
|
Gao H, Zhang X, Tang F, Chen L, Tian Z, Xiao D, Li X. Knockdown of lncRNA MEG3 protects against sepsis-induced acute lung injury in mice through miR-93-5p-dependent inhibition of NF‑κB signaling pathway. Pathol Res Pract 2022; 239:154142. [DOI: 10.1016/j.prp.2022.154142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022]
|
10
|
Wang Z, Long R, Yang Z, Feng C. lncRNA HOTAIR Inhibition by Regulating HMGB1/ROS/NF- κB Signal Pathway Promotes the Recovery of Spinal Cord Function. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4955982. [PMID: 35799628 PMCID: PMC9256348 DOI: 10.1155/2022/4955982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Spinal cord ischemia-reperfusion injury (SCII) is one of the most serious complications of clinical aortic aneurysm and vascular malformation surgery. Long noncoding RNA (lncRNA) is involved in the progression of SCII, whereas long noncoding RNA HOX transcript antisense RNA (lncRNA HOTAIR) is unclear in SCII. This study is aimed at confirming the role and related mechanism of HOTAIR in SCII. Later on, a model of SCII was established by clamping the aortic arch for 14 minutes. RNA expression of HOTAIR was detected via qRT-PCR at 12 h, 24 h, 36 h, and 48 h after SCII. The Tarlov scoring system and TUNEL assay were used to evaluate neurological function and neuronal apoptosis. Oxidative stress factor levels were assessed according to the instructions of the kit. Inflammatory cytokines were assessed by ELISA. Western blot was used to detect levels of p65, p-p65, I-κBα, and p-I-κBα. We found HOTAIR was raised in SCII rats. si-HOTAIR was able to reverse SCII-induced oxidative stress in SCII rats. The HMGB1 expression was upregulated in SCII tissues and negatively correlated with HOTAIR. HMGB1 was able to partially reverse si-HOTAIR inhibition of oxidative stress, inflammatory injury, and neuronal cell apoptosis in SCII. In addition, the ROS/NF-κB signaling pathway is involved in HOTAIR/HMGB1 regulation of SCII. In a word, HOTAIR inhibition is able to inhibit oxidative stress, inflammatory injury, and neuronal apoptosis in SCII through downregulation of the high mobility group protein B1(HMGB1), which is achieved by inhibiting the ROS/NF-κB signaling pathway. The HOTAIR/HMGB1/ROS/NF-κB molecular pathway may be a new mechanism for the treatment of SCII.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang Hangzhou 311200, China
| | - Ruchao Long
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang Hangzhou 311200, China
| | - Zhihua Yang
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang Hangzhou 311200, China
| | - Chunzhi Feng
- Department of Orthopaedics, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang Hangzhou 311200, China
| |
Collapse
|
11
|
Zhao CS, Liu DX, Fan YH, Wu JK. LncRNA GAS5 promotes epilepsy progression through the epigenetic repression of miR-219, in turn affecting CaMKIIγ/NMDAR pathway. J Neurogenet 2022; 36:32-42. [PMID: 35642561 DOI: 10.1080/01677063.2022.2067536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has been widely reported that dysregulated long-chain noncoding RNAs (lncRNAs) are closely associated with epilepsy. This study aimed to probe the function of lncRNA growth arrest-specific 5 (GAS5), microRNA (miR)-219 and Calmodulin-dependent protein kinase II (CaMKII)γ/N-methyl-D-aspartate receptor (NMDAR) pathway in epilepsy. Epileptic cell and animal models were constructed using magnesium deficiency treatment and diazepam injection, respectively. GAS5 and miR-219 expressions in epileptic cell and animal models were determined using qRT-PCR assay. The protein levels of CaMKIIγ, NMDAR and apoptosis-related proteins levels were assessed by western blot. Cell counting kit-8 (CCK-8) assay was employed to determine cell proliferation. Besides, TNFα, IL-1β, IL-6 and IL-8 levels were analyzed using enzyme-linked immunosorbent assay (ELISA). Furthermore, cell apoptosis was evaluated using TUNEL staining and flow cytometric analysis. Finally, the binding relationship between GAS5 and EZH2 was verified using RIP and ChIP assay. Our results revealed that GAS5 was markedly upregulated in epileptic cell and animal models, while miR-219 was down-regulated. GAS5 knockdown dramatically increased cell proliferation of epileptic cells, whereas suppressed inflammation and the apoptosis. Furthermore, our results showed that GAS5 epigenetically suppressed transcriptional miR-219 expression via binding to EZH2. miR-219 mimics significantly enhanced cell proliferation of epileptic cells, while inhibited inflammation and the apoptosis, which was neutralized by CaMKIIγ overexpression. Finally, miR-219 inhibition reversed the effects of GAS5 silence on epileptic cells, which was eliminated by CaMKIIγ inhibition. In conclusion, GAS5 affected inflammatory response and cell apoptosis of epilepsy via inhibiting miR-219 and further regulating CaMKIIγ/NMDAR pathway (See graphic summary in Supplementary Material).
Collapse
Affiliation(s)
- Chen-Sheng Zhao
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| | - Dong-Xing Liu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| | - Yan-Huai Fan
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| | - Jian-Kun Wu
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, P. R. China
| |
Collapse
|
12
|
Dong Y, Jiang X, Chen F, Wang D, Zhang Z. Inhibiting the aberrant PACT-p53 axis activation ameliorates spinal cord ischaemia-reperfusion injury in rats. Int Immunopharmacol 2022; 108:108745. [PMID: 35421805 DOI: 10.1016/j.intimp.2022.108745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Spinal cord ischaemia-reperfusion injury (SCII) induces multiple molecular and cellular changes, resulting in dyskinesia. Recently, it is reported that the p53 network plays a vital role in SCII. However, the roles of the PACT/PRKRA (interferon-inducible double-stranded RNA-dependent protein kinase activator A)-p53 axis in SCII are still unclear. The aim of this study was to elucidate the roles of the PACT-p53 axis in SCII. A Sprague-Dawley rat model of SCII was established by subjecting rats to a 14-min occlusion of the aortic arch. The Tarlov criteria, Western blotting, double immunofluorescence staining, haematoxylin and eosin (HE) staining, and transferase dUTP nick end labelling (TUNEL) assay were performed after SCII. Here, spinal cord ischaemia-reperfusion (SCI) caused hindlimb motor functional deficits as assessed by the Tarlov criteria. The protein expression of PACT was substantially upregulated at 48 h after SCII. Increased PACT fluorescence was mainly localized to neurons. Si-PACT pretreatment improved hindlimb motor function, ameliorated histological changes, and attenuated cell apoptosis after SCII. Si-PACT pretreatment reduced the protein expression of PACT, p53, Caspase-8 and IL-1β and the number of double-labelled PACT and p53. Taken together, inhibiting the aberrant PACT-p53 axis activation by si-PACT pretreatment ameliorates SCI-induced neuroapoptosis and neuroinflammation in rats. Silencing PACT expression is promising new therapeutic strategy for SCII.
Collapse
Affiliation(s)
- Yan Dong
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China
| | - Xuan Jiang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China
| | - Fengshou Chen
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China
| | - Dan Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China
| | - Zaili Zhang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Nanjingbei Street 155#, Shenyang 110001, Liaoning Province, China.
| |
Collapse
|
13
|
Depleted Long Noncoding RNA GAS5 Relieves Intervertebral Disc Degeneration via microRNA-17-3p/Ang-2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1792412. [PMID: 35340210 PMCID: PMC8941580 DOI: 10.1155/2022/1792412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Intervertebral disc degeneration (IVDD) remains a clinical challenge and requires more effective therapeutic targets. Long noncoding RNAs (lncRNAs) have emerged as critical modulators of multiple biological processes, such as cell proliferation and extracellular matrix (ECM) remodeling. Accordingly, the current study sets out to explore the influence of the lncRNA growth arrest-specific 5 (GAS5) on IVDD and investigate the possible involvement of microRNA-17-3p (miR-17-3p)/Angiopoietin-2 (Ang-2) axis. Firstly, the expression patterns of GAS5, miR-17-3p, and Ang-2 were characterized by RNA quantification from the isolated human degenerative nucleus pulposus (NP) tissues. miR-17-3p was found to express at an abnormal low level while GAS5 and Ang-2 expressed at aberrant high level in the human degenerative NP tissues. Utilizing dual-luciferase reporter, RNA immunoprecipitation, and pull-down assays, GAS5 was found to competitively bound to miR-17-3p and further upregulate the expression of Ang-2, a target gene of miR-17-3p. Employing gain- and loss-of-function approaches, their expressions were altered in human degenerative nucleus pulposus cells (NPCs), followed by IL-1β treatment, in order to identify their roles in NP cell proliferation, apoptosis, and ECM metabolism. Silencing of GAS5 expression restrained the levels of cleaved caspase-3, cleaved caspase-7, cleaved caspase-9, MMP3, MMP13, ADAMTS4, and ADAMTS5 and increased collagen II and aggrecan levels. In vitro experiments also revealed that GAS5 depletion inhibited apoptosis and ECM degradation in HDNPCs, while elevating the proliferation through downregulation of Ang-2 by increasing miR-17-3p. Furthermore, in vivo data further validated that either GAS5 silencing or miR-17-3p reexpression alleviated IVDD degree with the help of IVDD mouse models. Altogether, our findings substantiated that downregulation of GAS5 reduced NPC apoptosis and promoted ECM remodeling, ultimately ameliorating the IVDD via miR-17-3p-dependent inhibition of Ang-2. We hope our discoveries offer a fresh molecular insight that can aid the development of novel therapies against IVDD.
Collapse
|
14
|
Ginsenoside Rg1 Reduced Microglial Activation and Mitochondrial Dysfunction to Alleviate Depression-Like Behaviour Via the GAS5/EZH2/SOCS3/NRF2 Axis. Mol Neurobiol 2022; 59:2855-2873. [PMID: 35230663 PMCID: PMC9016007 DOI: 10.1007/s12035-022-02740-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/07/2022] [Indexed: 12/31/2022]
Abstract
Ginsenoside Rg1 is the principal active ingredient in ginseng. The antidepressant effects of Rg1 have been validated; however, the specific underlying mechanism of this effect needs further research. Rats were subjected to the chronic restraint stress (CRS) depression model. Rg1, or a positive control drug, was administered to the rats. Depression-like behaviours were evaluated through behavioural experiments. Cytokine, mRNA, protein, ATP, and mitochondria DNA levels were detected using the indicated methods. Lentivirus-packaged plasmids were injected into the rat brain for GAS5 overexpression or knockdown. In vitro mitochondrial dysfunction was evaluated by detecting mitochondrial reactive oxygen species and mitochondrial membrane potential. Direct interaction between GAS5 and EZH2 was validated by RNA immunoprecipitation and RNA pull-down assay. The enrichment of EZH2 and H3K27me3 was evaluated through chromatin immunoprecipitation quantitative real-time PCR. Rg1 treatment alleviated depression-like behaviours, microglial activation, and mitochondrial dysfunction in CRS rats. Similarly, GAS5 knockdown revealed a similar protective effect of Rg1 treatment. GAS5 overexpression in the rat brain compromised the protective effect of Rg1 treatment. Moreover, Rg1 treatment or GAS5 knockdown attenuated microglial activation and mitochondrial dysfunction in vitro. Mechanically, GAS5 was suppressed SOCS3 and NRF2 expression by facilitating EZH2-mediated transcriptional repression. Rg1 attenuated microglial activation and improved mitochondrial dysfunction in depression by downregulating GAS5 expression. Mechanically, GAS5 might regulate microglial activation and mitochondrial dysfunction via the epigenetic suppression of NRF2 and SOCS3.
Collapse
|
15
|
Zhang ZL, Wang D, Chen FS. MicroRNA-101a-3p mimic ameliorates spinal cord ischemia/reperfusion injury. Neural Regen Res 2022; 17:2022-2028. [PMID: 35142692 PMCID: PMC8848611 DOI: 10.4103/1673-5374.335164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
miR-101a-3p is expressed in a variety of organs and tissues and plays a regulatory role in many diseases, but its role in spinal cord ischemia/reperfusion injury remains unclear. In this study, we established a rat model of spinal cord ischemia/reperfusion injury by clamping the aortic arch for 14 minutes followed by reperfusion for 24 hours. Results showed that miR-101a-3p expression in L4–L6 spinal cord was greatly decreased, whereas MYCN expression was greatly increased. Dual-luciferase reporter assay results showed that miR-101a-3p targeted MYCN. MYCN immunoreactivity, which was primarily colocalized with neurons in L4–L6 spinal tissue, greatly increased after spinal cord ischemia/reperfusion injury. However, intrathecal injection of an miR-101a-3p mimic within 24 hours before injury decreased MYCN, p53, caspase-9 and interleukin-1β expression, reduced p53 immunoreactivity, reduced the number of MYCN/NeuN-positive cells and the number of necrotic cells in L4–L6 spinal tissue, and increased Tarlov scores. These findings suggest that the miR-101a-3p mimic improved spinal ischemia/reperfusion injury-induced nerve cell apoptosis and inflammation by inhibiting MYCN and the p53 signaling pathway. Therefore, miR-101a-3p mimic therapy may be a potential treatment option for spinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zai-Li Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Dan Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Feng-Shou Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
16
|
Wu J, Qin Y, Li Z, Li J, Li L, Tao S, Liu D. Comprehensive analysis of lncRNA and miRNA expression profiles and ceRNA network construction in negative pressure wound therapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1383. [PMID: 34733935 PMCID: PMC8506533 DOI: 10.21037/atm-21-3626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022]
Abstract
Background This study aims to explore the molecular mechanism of negative pressure wound therapy (NPWT) at the transcriptome level through whole transcriptome sequencing and biometric analysis. Methods A rat skin defect model was constructed and randomly divided into a NPWT group and a gauze group. The tissue in the center of the wound was used for whole transcriptome sequencing, and differentially expressed messenger RNAs (DEmRNAs), long noncoding RNAs (DElncRNAs), and microRNAs (DEmiRNAs) were identified between the two groups. Quantitative real time-polymerase chain reaction (qRT-PCR) analysis was used to verify the sequencing results. Functional enrichment analysis, pathway analysis, and protein-protein interaction (PPI) network analysis of DEmRNAs were conducted. Through bioinformatics analysis, a lncRNA-associated competing endogenous RNA (ceRNA) network was identified and constructed. Results We detected 896 DEmRNAs, 1,471 DElncRNAs, and 20 DEmiRNAs between the two groups. qRT-PCR verified the sequencing results. Functional analysis showed that DEmRNAs were mainly enriched in immune system processes and the Notch signaling pathway. Protein tyrosine phosphatase receptor type C (PTPRC) and signal transducer and activator of transcription 1 (STAT1) were the central hub nodes in the PPI analysis. The ceRNA network contained 11 mRNAs, 15 lncRNAs, and 4 miRNAs. Conclusions We identified several DEmRNAs, DElncRNAs, and DEmiRNAs between the NPWT treatment group and the control group. These findings may provide new insights into the pathophysiological mechanism of NPWT and wound healing.
Collapse
Affiliation(s)
- Jie Wu
- Department of Orthopedics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Qin
- Department of Orthopedics, Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Zhirui Li
- Department of Orthopedics, Hainan Hospital of PLA General Hospital, Sanya, China.,Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Jiantao Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Litao Li
- Department of Orthopedics, The Eighth Medical Center of PLA General Hospital, Beijing, China.,Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Sheng Tao
- Department of Orthopedics, The Eighth Medical Center of PLA General Hospital, Beijing, China.,Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Daohong Liu
- Department of Orthopedics, The Eighth Medical Center of PLA General Hospital, Beijing, China.,Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|
17
|
Chen Z, Wu H, Zhang M. Long non-coding RNA: An underlying bridge linking neuroinflammation and central nervous system diseases. Neurochem Int 2021; 148:105101. [PMID: 34139298 DOI: 10.1016/j.neuint.2021.105101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
Central nervous system (CNS) diseases are responsible for a large proportion of morbidity and mortality worldwide. CNS diseases caused by intrinsic and extrinsic stimuli stimulate the resident immune cells including microglia and astrocyte, resulting in neuroinflammation that exacerbates the progression of diseases. Recent evidence reveals the aberrant expression patterns of long non-coding RNAs (lncRNAs) in the damaged tissues following CNS diseases. It was also proposed that lncRNAs possessed immune-modulatory activities by directly or indirectly affecting various effector proteins including transcriptional factor, acetylase, protein kinase, phosphatase, etc. In addition, lncRNAs can form a sophisticated network by interacting with other molecules to regulate the expression or activation of downstream immune response pathways. However, the major roles of lncRNAs in CNS pathophysiologies are still elusive, especially in neuroinflammation. Herein, we tend to review some potential roles of lncRNAs in modulating neuroinflammation based on current evidence in various CNS diseases, in order to provide novel explanations for the initiation and progression of CNS diseases and help to establish therapeutic strategies targeting neuroinflammation.
Collapse
Affiliation(s)
- Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haiyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|