1
|
Lin Y, Cheng L, Chen Y, Li W, Guo Q, Miao Y. TFEB signaling promotes autophagic degradation of NLRP3 to attenuate neuroinflammation in diabetic encephalopathy. Am J Physiol Cell Physiol 2024; 327:C1481-C1496. [PMID: 39437446 DOI: 10.1152/ajpcell.00322.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Diabetic encephalopathy (DE), a neurological complication of diabetes mellitus, has an unclear etiology. Shreds of evidence show that the nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome-induced neuroinflammation and transcription factor EB (TFEB)-mediated autophagy impairment may take part in DE development. The cross talk between these two pathways and their contribution to DE remains to be explored. A mouse model of type 2 diabetes mellitus (T2DM) exhibiting cognitive dysfunction was created, along with high-glucose (HG) cultured BV2 cells. Following, 3-methyladenine (3-MA) and rapamycin were used to modulate autophagy. To evaluate the potential therapeutic benefits of TFEB in DE, we overexpressed and knocked down TFEB in both mice and cells. Autophagy impairment and NLRP3 inflammasome activation were noticed in T2DM mice and HG-cultured BV2 cells. The inflammatory response caused by NLRP3 inflammasome activation was decreased by rapamycin-induced autophagy enhancement, while 3-MA treatment further deteriorated it. Nuclear translocation and expression of TFEB were hampered in HG-cultured BV2 cells and T2DM mice. Exogenous TFEB overexpression boosted NLRP3 degradation via autophagy, which in turn alleviated microglial activation as well as ameliorated cognitive deficits and neuronal damage. In addition, TFEB knockdown exacerbated neuroinflammation by decreasing autophagy-mediated NLRP3 degradation. Our findings have unraveled the pathogenesis of a previously underappreciated disease, implying that the activation of NLRP3 inflammasome and impairment of autophagy in microglia are significant etiological factors in the DE. The TFEB-mediated autophagy pathway can reduce neuroinflammation by enhancing NLRP3 degradation. This could potentially serve as a viable and innovative treatment approach for DE.NEW & NOTEWORTHY This article delves into the intricate connections between inflammation, autophagy, diabetes, and neurodegeneration, with a particular focus on a disease that is not yet fully understood-diabetic encephalopathy (DE). TFEB emerges as a pivotal regulator in balancing autophagy and inflammation in DE. Our findings highlight the crucial function of the TFEB-mediated autophagy pathway in mitigating inflammatory damage in DE, suggesting a new treatment strategy.
Collapse
Affiliation(s)
- Yijia Lin
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lizhen Cheng
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Chen
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihao Guo
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Miao
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Ri-Wen, Yang YH, Zhang TN, Liu CF, Yang N. Targeting epigenetic and post-translational modifications regulating pyroptosis for the treatment of inflammatory diseases. Pharmacol Res 2024; 203:107182. [PMID: 38614373 DOI: 10.1016/j.phrs.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Inflammatory diseases, including infectious diseases, diabetes-related diseases, arthritis-related diseases, neurological diseases, digestive diseases, and tumor, continue to threaten human health and impose a significant financial burden despite advancements in clinical treatment. Pyroptosis, a pro-inflammatory programmed cell death pathway, plays an important role in the regulation of inflammation. Moderate pyroptosis contributes to the activation of native immunity, whereas excessive pyroptosis is associated with the occurrence and progression of inflammation. Pyroptosis is complicated and tightly controlled by various factors. Accumulating evidence has confirmed that epigenetic modifications and post-translational modifications (PTMs) play vital roles in the regulation of pyroptosis. Epigenetic modifications, which include DNA methylation and histone modifications (such as methylation and acetylation), and post-translational modifications (such as ubiquitination, phosphorylation, and acetylation) precisely manipulate gene expression and protein functions at the transcriptional and post-translational levels, respectively. In this review, we summarize the major pathways of pyroptosis and focus on the regulatory roles and mechanisms of epigenetic and post-translational modifications of pyroptotic components. We also illustrate these within pyroptosis-associated inflammatory diseases. In addition, we discuss the effects of novel therapeutic strategies targeting epigenetic and post-translational modifications on pyroptosis, and provide prospective insight into the regulation of pyroptosis for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ri-Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
3
|
Li N, Ma Y, Li C, Sun M, Qi F. Dexmedetomidine alleviates sevoflurane-induced neuroinflammation and neurocognitive disorders by suppressing the P2X4R/NLRP3 pathway in aged mice. Int J Neurosci 2024; 134:511-521. [PMID: 36066545 DOI: 10.1080/00207454.2022.2121921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Microglia-mediated inflammation is associated with perioperative neurocognitive disorders (PNDs) caused by sevoflurane. Dexmedetomidine has been reported to protect against sevoflurane-induced cognitive impairment. In this study, we investigated the effects and underlying mechanisms of dexmedetomidine on sevoflurane-induced microglial neuroinflammation and PNDs. METHODS Wild-type and purinergic ionotropic 4 receptor (P2X4R) overexpressing C57/BL6 mice were intraperitoneally injected with 20 μg/kg dexmedetomidine or an equal volume of normal saline 2 h prior to sevoflurane exposure. The Morris water maze (MWM) test was performed to assess cognitive function. Immunofluorescence staining was employed to detect microglial activation. The expression levels of proinflammatory cytokines were measured by real-time quantitative PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The protein levels of P2X4R and NOD-like receptor protein 3 (NLRP3) were detected by Western Blotting. RESULTS Sevoflurane increased the number of microglia, upregulated the levels of proinflammatory cytokines, elevated the protein levels of P2X4R and NLRP3 in the hippocampus and induced cognitive decline, while pretreatment with dexmedetomidine downregulated the protein levels of P2X4R and NLRP3, alleviated sevoflurane-induced microglial neuroinflammation and improved cognitive dysfunction. Moreover, overexpression of P2X4R weakened the neuroprotective effect of dexmedetomidine. CONCLUSIONS Dexmedetomidine protected against sevoflurane-induced neuroinflammation and neurocognitive disorders by suppressing the P2X4R/NLRP3 pathway.
Collapse
Affiliation(s)
- Ning Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, China
| | - Yufeng Ma
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, China
| | - Chuangang Li
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, China
| | - Manyi Sun
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, China
| | - Feng Qi
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Chen Y, Chen J, Xing Z, Peng C, Li D. Autophagy in Neuroinflammation: A Focus on Epigenetic Regulation. Aging Dis 2024; 15:739-754. [PMID: 37548945 PMCID: PMC10917535 DOI: 10.14336/ad.2023.0718-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Neuroinflammation, characterized by the secretion of abundant inflammatory mediators, pro-inflammatory polarization of microglia, and the recruitment of infiltrating myeloid cells to foci of inflammation, drives or exacerbates the pathological processes of central nervous system disorders, especially in neurodegenerative diseases. Autophagy plays an essential role in neuroinflammatory processes, and the underlaying physiological mechanisms are closely correlated with neuroinflammation-related signals. Inhibition of mTOR and activation of AMPK and FOXO1 enhance autophagy and thereby suppress NLRP3 inflammasome activity and apoptosis, leading to the relief of neuroinflammatory response. And autophagy mitigates neuroinflammation mainly manifested by promoting the polarization of microglia from a pro-inflammatory to an anti-inflammatory state, reducing the production of pro-inflammatory mediators, and up-regulating the levels of anti-inflammatory factors. Notably, epigenetic modifications are intimately associated with autophagy and the onset and progression of various brain diseases. Non-coding RNAs, including microRNAs, circular RNAs and long noncoding RNAs, and histone acetylation have been reported to adjust autophagy-related gene and protein expression to alleviate inflammation in neurological diseases. The present review primarily focuses on the role and mechanisms of autophagy in neuroinflammatory responses, as well as epigenetic modifications of autophagy in neuroinflammation to reveal potential therapeutic targets in central nervous system diseases.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Kodi T, Sankhe R, Gopinathan A, Nandakumar K, Kishore A. New Insights on NLRP3 Inflammasome: Mechanisms of Activation, Inhibition, and Epigenetic Regulation. J Neuroimmune Pharmacol 2024; 19:7. [PMID: 38421496 PMCID: PMC10904444 DOI: 10.1007/s11481-024-10101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 03/02/2024]
Abstract
Inflammasomes are important modulators of inflammation. Dysregulation of inflammasomes can enhance vulnerability to conditions such as neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Among various inflammasomes, Nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is the best-characterized inflammasome related to inflammatory and neurodegenerative diseases. NLRP3 is an intracellular sensor that recognizes pathogen-associated molecular patterns and damage-associated patterns resulting in the assembly and activation of NLRP3 inflammasome. The NLRP3 inflammasome includes sensor NLRP3, adaptor apoptosis-associated speck-like protein (ASC), and effector cysteine protease procaspase-1 that plays an imperative role in caspase-1 stimulation which further initiates a secondary inflammatory response. Regulation of NLRP3 inflammasome ameliorates NLRP3-mediated diseases. Much effort has been invested in studying the activation, and exploration of specific inhibitors and epigenetic mechanisms controlling NLRP3 inflammasome. This review gives an overview of the established NLRP3 inflammasome assembly, its brief molecular mechanistic activations as well as a current update on specific and non-specific NLRP3 inhibitors that could be used in NLRP3-mediated diseases. We also focused on the recently discovered epigenetic mechanisms mediated by DNA methylation, histone alterations, and microRNAs in regulating the activation and expression of NLRP3 inflammasome, which has resulted in a novel method of gaining insight into the mechanisms that modulate NLRP3 inflammasome activity and introducing potential therapeutic strategies for CNS disorders.
Collapse
Affiliation(s)
- Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Adarsh Gopinathan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Bai I, Keyser C, Zhang Z, Rosolia B, Hwang JY, Zukin RS, Yan J. Epigenetic regulation of autophagy in neuroinflammation and synaptic plasticity. Front Immunol 2024; 15:1322842. [PMID: 38455054 PMCID: PMC10918468 DOI: 10.3389/fimmu.2024.1322842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Autophagy is a conserved cellular mechanism that enables the degradation and recycling of cellular organelles and proteins via the lysosomal pathway. In neurodevelopment and maintenance of neuronal homeostasis, autophagy is required to regulate presynaptic functions, synapse remodeling, and synaptic plasticity. Deficiency of autophagy has been shown to underlie the synaptic and behavioral deficits of many neurological diseases such as autism, psychiatric diseases, and neurodegenerative disorders. Recent evidence reveals that dysregulated autophagy plays an important role in the initiation and progression of neuroinflammation, a common pathological feature in many neurological disorders leading to defective synaptic morphology and plasticity. In this review, we will discuss the regulation of autophagy and its effects on synapses and neuroinflammation, with emphasis on how autophagy is regulated by epigenetic mechanisms under healthy and diseased conditions.
Collapse
Affiliation(s)
- Isaac Bai
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Cameron Keyser
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Ziyan Zhang
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Breandan Rosolia
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Jee-Yeon Hwang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - R. Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Jingqi Yan
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
7
|
Feng Q, Lu Y, Zhang R, Li Y, Zhao Z, Zhou H. Identification of differentially expressed exosome proteins in serum as potential biomarkers for cognitive impairments in cerebral small vessel disease. Neurosci Lett 2024; 822:137631. [PMID: 38211879 DOI: 10.1016/j.neulet.2024.137631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Cognitive impairment arising from cerebral small vessel disease (CSVD) represents a critical subtype of vascular cognitive impairments (VCI) and is the primary cause of vascular dementia. However, identifying reliable clinical and laboratory indicators for this disease remain elusive. We hypothesize that plasma exosome proteins hold the potential to serve as biomarkers for the onset of cognitive dysfunction associated with cerebrovascular diseases. METHODS We employed TMT-based proteomics to discern variations in serum exosome proteomes between individuals with cognitive impairments due to CSVD and healthy volunteers. RESULTS Each group comprised 18 subjects, and through differential expression analysis, we identified 22 down-regulated and 8 up-regulated proteins between the two groups. Our research revealed 30 differentially expressed plasma exosome proteins, including histone, proteasome, clusterin and coagulation factor XIII, in individuals with cognitive impairments caused by CSVD. CONCLUSION The 30 differentially expressed plasma exosome proteins identified in our study are promising as biomarkers for diagnosing cognitive impairments resulting from CSVD. These findings may help us better understand the underlying pathological mechanisms involved in the diseases.
Collapse
Affiliation(s)
- Qian Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yanjing Lu
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ruyang Zhang
- Department of Neurology, Suzhou Wuzhong People's Hospital, Suzhou, China
| | - Yifan Li
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhong Zhao
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Hua Zhou
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| |
Collapse
|
8
|
Ma Y, Wang W, Liu S, Qiao X, Xing Y, Zhou Q, Zhang Z. Epigenetic Regulation of Neuroinflammation in Alzheimer's Disease. Cells 2023; 13:79. [PMID: 38201283 PMCID: PMC10778497 DOI: 10.3390/cells13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease and clinically manifests with cognitive decline and behavioral disabilities. Over the past years, mounting studies have demonstrated that the inflammatory response plays a key role in the onset and development of AD, and neuroinflammation has been proposed as the third major pathological driving factor of AD, ranking after the two well-known core pathologies, amyloid β (Aβ) deposits and neurofibrillary tangles (NFTs). Epigenetic mechanisms, referring to heritable changes in gene expression independent of DNA sequence alterations, are crucial regulators of neuroinflammation which have emerged as potential therapeutic targets for AD. Upon regulation of transcriptional repression or activation, epigenetic modification profiles are closely involved in inflammatory gene expression and signaling pathways of neuronal differentiation and cognitive function in central nervous system disorders. In this review, we summarize the current knowledge about epigenetic control mechanisms with a focus on DNA and histone modifications involved in the regulation of inflammatory genes and signaling pathways in AD, and the inhibitors under clinical assessment are also discussed.
Collapse
Affiliation(s)
- Yajing Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Sufang Liu
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA;
| | - Xiaomeng Qiao
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.W.); (Y.X.)
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Zhijian Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| |
Collapse
|
9
|
Verrillo L, Di Palma R, de Bellis A, Drongitis D, Miano MG. Suberoylanilide Hydroxamic Acid (SAHA) Is a Driver Molecule of Neuroplasticity: Implication for Neurological Diseases. Biomolecules 2023; 13:1301. [PMID: 37759701 PMCID: PMC10526795 DOI: 10.3390/biom13091301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroplasticity is a crucial property of the central nervous system to change its activity in response to intrinsic or extrinsic stimuli. This is mainly achieved through the promotion of changes in the epigenome. One of the epi-drivers priming this process is suberoylanilide hydroxamic acid (SAHA or Vorinostat), a pan-histone deacetylase inhibitor that modulates and promotes neuroplasticity in healthy and disease conditions. Knowledge of the specific molecular changes induced by this epidrug is an important area of neuro-epigenetics for the identification of new compounds to treat cognition impairment and/or epilepsy. In this review, we summarize the findings obtained in cellular and animal models of various brain disorders, highlighting the multiple mechanisms activated by SAHA, such as improvement of memory, learning and behavior, and correction of faulty neuronal functioning. Supporting this evidence, in vitro and in vivo data underline how SAHA positively regulates the expression of neuronal genes and microtubule dynamics, induces neurite outgrowth and spine density, and enhances synaptic transmission and potentiation. In particular, we outline studies regarding neurodevelopmental disorders with pharmaco-resistant seizures and/or severe cognitive impairment that to date lack effective drug treatments in which SAHA could ameliorate defective neuroplasticity.
Collapse
Affiliation(s)
- Lucia Verrillo
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy; (L.V.); (R.D.P.)
| | - Rosita Di Palma
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy; (L.V.); (R.D.P.)
| | - Alberto de Bellis
- A.O.R.N. S. Anna and S. Sebastiano Hospital, Division of Neurosurgery, 81100 Caserta, Italy;
- Maria Rosaria Maglione Foundation Onlus, 80122 Naples, Italy
| | - Denise Drongitis
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy; (L.V.); (R.D.P.)
- Maria Rosaria Maglione Foundation Onlus, 80122 Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, 80131 Naples, Italy; (L.V.); (R.D.P.)
| |
Collapse
|
10
|
Prolonged anesthesia induces neuroinflammation and complement-mediated microglial synaptic elimination involved in neurocognitive dysfunction and anxiety-like behaviors. BMC Med 2023; 21:7. [PMID: 36600274 PMCID: PMC9814183 DOI: 10.1186/s12916-022-02705-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) with a high incidence frequently occur in elderly surgical patients closely associated with prolonged anesthesia-induced neurotoxicity. The neuromorphopathological underpinnings of anesthesia-induced neurotoxicity have remained elusive. METHODS Prolonged anesthesia with sevoflurane was used to establish the sevoflurane-induced neurotoxicity (SIN) animal model. Morris water maze, elevated plus maze, and open field test were employed to track SIN rats' cognitive behavior and anxiety-like behaviors. We investigated the neuropathological basis of SIN through techniques such as transcriptomic, electrophysiology, molecular biology, scanning electron microscope, Golgi staining, TUNEL assay, and morphological analysis. Our work further clarifies the pathological mechanism of SIN by depleting microglia, inhibiting neuroinflammation, and C1q neutralization. RESULTS This study shows that prolonged anesthesia triggers activation of the NF-κB inflammatory pathway, neuroinflammation, inhibition of neuronal excitability, cognitive dysfunction, and anxiety-like behaviors. RNA sequencing found that genes of different types of synapses were downregulated after prolonged anesthesia. Microglial migration, activation, and phagocytosis were enhanced. Microglial morphological alterations were also observed. C1qa, the initiator of the complement cascade, and C3 were increased, and C1qa tagging synapses were also elevated. Then, we found that the "Eat Me" complement pathway mediated microglial synaptic engulfment in the hippocampus after prolonged anesthesia. Afterward, synapses were remarkably lost in the hippocampus. Furthermore, dendritic spines were reduced, and their genes were also downregulated. Depleting microglia ameliorated the activation of neuroinflammation and complement and rescued synaptic loss, cognitive dysfunction, and anxiety-like behaviors. When neuroinflammatory inhibition or C1q neutralization occurred, complement was also decreased, and synaptic elimination was interrupted. CONCLUSIONS These findings illustrated that prolonged anesthesia triggered neuroinflammation and complement-mediated microglial synaptic engulfment that pathologically caused synaptic elimination in SIN. We have demonstrated the neuromorphopathological underpinnings of SIN, which have direct therapeutic relevance for PND patients.
Collapse
|
11
|
Li J, Li L, He J, Xu J, Bao F. The NLRP3 inflammasome is a potential mechanism and therapeutic target for perioperative neurocognitive disorders. Front Aging Neurosci 2023; 14:1072003. [PMID: 36688154 PMCID: PMC9845955 DOI: 10.3389/fnagi.2022.1072003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are frequent complications associated with cognitive impairment during the perioperative period, including acute postoperative delirium and long-lasting postoperative cognitive dysfunction. There are some risk factors for PNDs, such as age, surgical trauma, anesthetics, and the health of the patient, but the underlying mechanism has not been fully elucidated. Pyroptosis is a form of programmed cell death that is mediated by the gasdermin protein and is involved in cognitive dysfunction disorders. The canonical pathway induced by nucleotide oligomerization domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasomes contributes to PNDs, which suggests that targeting NLRP3 inflammasomes may be an effective strategy for the treatment of PNDs. Therefore, inhibiting upstream activators and blocking the assembly of the NLRP3 inflammasome may attenuate PNDs. The present review summarizes recent studies and systematically describes the pathogenesis of NLRP3 activation and regulation and potential therapeutics targeting NLRP3 inflammasomes in PNDs patients.
Collapse
Affiliation(s)
- Jiayue Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Li Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Jiannan He
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Jianhong Xu
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Fangping Bao
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China,Department of Anesthesiology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Fangping Bao,
| |
Collapse
|
12
|
The Role of Epigenetics in Neuroinflammatory-Driven Diseases. Int J Mol Sci 2022; 23:ijms232315218. [PMID: 36499544 PMCID: PMC9740629 DOI: 10.3390/ijms232315218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of central and/or peripheral nervous system neurons. Within this context, neuroinflammation comes up as one of the main factors linked to neurodegeneration progression. In fact, neuroinflammation has been recognized as an outstanding factor for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). Interestingly, neuroinflammatory diseases are characterized by dramatic changes in the epigenetic profile, which might provide novel prognostic and therapeutic factors towards neuroinflammatory treatment. Deep changes in DNA and histone methylation, along with histone acetylation and altered non-coding RNA expression, have been reported at the onset of inflammatory diseases. The aim of this work is to review the current knowledge on this field.
Collapse
|
13
|
Su Y, Lian J, Chen S, Zhang W, Deng C. Epigenetic histone acetylation modulating prenatal Poly I:C induced neuroinflammation in the prefrontal cortex of rats: a study in a maternal immune activation model. Front Cell Neurosci 2022; 16:1037105. [DOI: 10.3389/fncel.2022.1037105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction: Neuroinflammation in the central nervous system, particularly the prefrontal cortex (PFC), plays a role in the pathogenesis of schizophrenia, which has been found to be associated with maternal immune activation (MIA). Recent evidence suggests that epigenetic regulation involves in the MIA-induced neurodevelopmental disturbance. However, it is not well-understood how epigenetic modulation is involved in the neuroinflammation and pathogenesis of schizophrenia.Methods: This study explored the modulation of histone acetylation in both neuroinflammation and neurotransmission using an MIA rat model induced by prenatal polyriboinosinic-polyribocytidylic acid (Poly I:C) exposure, specifically examining those genes that were previously observed to be impacted by the exposure, including a subunit of nuclear factor kappa-B (Rela), Nod-Like-Receptor family Pyrin domain containing 3 (Nlrp3), NMDA receptor subunit 2A (Grin2a), 5-HT2A (Htr2a), and GABAA subunit β3 (Gabrb3).Results: Our results revealed global changes of histone acetylation on H3 (H3ace) and H4 (H4ace) in the PFC of offspring rats with prenatal Poly I:C exposure. In addition, it revealed enhancement of both H3ace and H4ace binding on the promoter region of Rela, as well as positive correlations between Rela and genes encoding histone acetyltransferases (HATs) including CREB-binding protein (CBP) and E1A-associated protein p300 (EP300). Although there was no change in H3ace or H4ace enrichment on the promoter region of Nlrp3, a significant enhancement of histone deacetylase 6 (HDAC6) binding on the promoter region of Nlrp3 and a positive correlation between Nlrp3 and Hdac6 were also observed. However, prenatal Poly I:C treatment did not lead to any specific changes of H3ace and H4ace on the promoter region of the target genes encoding neurotransmitter receptors in this study.Discussion: These findings demonstrated that epigenetic modulation contributes to NF-κB/NLRP3 mediated neuroinflammation induced by prenatal Poly I:C exposure via enhancement of histone acetylation of H3ace and H4ace on Rela and HDAC6-mediated NLRP3 transcriptional activation. This may further lead to deficits in neurotransmissions and schizophrenia-like behaviors observed in offspring.
Collapse
|
14
|
Liu R, Tang W, Wang W, Xu F, Fan W, Zhang Y, Zhang C. NLRP3 Influences Cognitive Function in Schizophrenia in Han Chinese. Front Genet 2021; 12:781625. [PMID: 34956329 PMCID: PMC8702823 DOI: 10.3389/fgene.2021.781625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
It has been proposed that immune abnormalities may be implicated with pathophysiology of schizophrenia. The nod-like receptor pyrin domain-contraining protein 3 (NLRP3) can trigger immune-inflammatory cascade reactions. In this study, we intended to identify the role of gene encoding NLRP3 (NLRP3) in susceptibility to schizophrenia and its clinical features. For the NLRP3 mRNA expression analysis, 53 drug-naïve patients with first-episode schizophrenia and 56 healthy controls were enrolled. For the genetic study, a total of 823 schizophrenia patients and 859 controls were recruited. Among them, 239 drug-naïve patients with first-episode schizophrenia were enrolled for clinical evaluation. There is no significant difference in NLRP3 mRNA levels between patients with schizophrenia and healthy controls (p = 0.07). We did not observe any significant differences in allele and genotype frequencies of rs10754558 polymorphism between the schizophrenia and control groups. We noticed significant differences in the scores of RBANS attention and total scores between the patients with different genotypes of rs10754558 polymorphism (p = 0.001 and p < 0.01, respectively). Further eQTL analysis presented a significant association between the rs10754558 polymorphism and NLRP3 in frontal cortex (p = 0.0028, p = 0.028 after Bonferroni correction). Although our findings did not support NLRP3 confer susceptibility to schizophrenia, NLRP3 may be a risk factor for cognitive impairment, especially attention deficit in this disorder.
Collapse
Affiliation(s)
- Ruimei Liu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiping Wang
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, China
| | - Feikang Xu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, China
| | - Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
(-)-Methyl-Oleocanthal, a New Oleocanthal Metabolite Reduces LPS-Induced Inflammatory and Oxidative Response: Molecular Signaling Pathways and Histones Epigenetic Modulation. Antioxidants (Basel) 2021; 11:antiox11010056. [PMID: 35052558 PMCID: PMC8772879 DOI: 10.3390/antiox11010056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
The antioxidant and anti-inflammatory responses of (−)-methyl-oleocanthal (met-OLE), a new metabolite of the extra virgin olive oil (EVOO) phenolic oleocanthal (OLE), were explored in lipopolysaccharide (LPS)-induced murine peritoneal macrophages. Possible signaling pathways and epigenetic modulation of histones were studied. Met-OLE inhibited LPS-induced intracellular reactive oxygen species (ROS) and nitrite (NO) production and decreased the overexpression of the pro-inflammatory enzymes COX-2, mPGES-1 and iNOS in murine macrophages. In addition, met-OLE was able to significantly decrease the activation of p38, JNK, and ERK mitogen-activated protein kinases (MAPKs) and blocked canonical and non-canonical inflammasome signaling pathways. On the contrary, met-OLE upregulated haem oxigenase 1 (HO-1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) expression in treated cells. Finally, met-OLE pretreated spleen cells counteracted LPS induction, preventing H3K18 acetylation or H3K9 and H3K27 demethylation. Overall, these results provide novel mechanistic insights into the beneficial effects of met-OLE regarding the regulation of the immune–inflammatory response through epigenetic changes in histone markers. This revealing evidence suggests that the methylated metabolite of OLE may contribute significantly to the beneficial effects that are associated with the secoiridoid-related compound and the usual consumption of EVOO.
Collapse
|
16
|
Li G, Wang Y, Cao F, Wang D, Zhou L, Jin Y. Sevoflurane Promotes Neurodegeneration Through Inflammasome Formation in APP/PS1 Mice. Front Neurosci 2021; 15:647136. [PMID: 34924922 PMCID: PMC8678053 DOI: 10.3389/fnins.2021.647136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Sevoflurane (SEVO) is a highly fluorinated methyl isopropyl ether used as an inhalational anesthetic for general anesthesia. Previous studies have shown that SEVO may induce impaired memory and recognition ability and may be associated with neurodegenerative disease, e.g., Alzheimer’s disease (AD). However, the underlying mechanism remains unknown. Here, we used a mouse AD model, APP/PS1, to study the effects of SEVO on neurodegeneration occurring in AD. We found that SEVO exposure significantly impaired the spatial reference memory, sensorimotor, and cognitive function of the mice. Mechanistically, we found that SEVO induced formation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and its downstream caspase 1-mediated production of IL-1β and IL-18, which subsequently deactivated brain-derived neurotrophic factor (BDNF) to promote neurodegeneration. Together, these data suggest that NLRP3 inflammasome is essential for SEVO-induced AD.
Collapse
Affiliation(s)
- Guohua Li
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Yu Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Fang Cao
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Dawei Wang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Limin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Yanwu Jin
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
17
|
An Epigenetic Insight into NLRP3 Inflammasome Activation in Inflammation-Related Processes. Biomedicines 2021; 9:biomedicines9111614. [PMID: 34829842 PMCID: PMC8615487 DOI: 10.3390/biomedicines9111614] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Aberrant NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome activation in innate immune cells, triggered by diverse cellular danger signals, leads to the production of inflammatory cytokines (IL-1β and IL-18) and cell death by pyroptosis. These processes are involved in the pathogenesis of a wide range of diseases such as autoimmune, neurodegenerative, renal, metabolic, vascular diseases and cancer, and during physiological processes such as aging. Epigenetic dynamics mediated by changes in DNA methylation patterns, chromatin assembly and non-coding RNA expression are key regulators of the expression of inflammasome components and its further activation. Here, we review the role of the epigenome in the expression, assembly, and activation of the NLRP3 inflammasome, providing a critical overview of its involvement in the disease and discussing how targeting these mechanisms by epigenetic treatments could be a useful strategy for controlling NLRP3-related inflammatory diseases.
Collapse
|