1
|
Alam MR, Dobhal V, Singh S. Neuroprotective potential of solanesol against tramadol induced zebrafish model of Parkinson's disease: insights from neurobehavioral, molecular, and neurochemical evidence. Drug Chem Toxicol 2024; 47:1241-1256. [PMID: 38938099 DOI: 10.1080/01480545.2024.2355542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/10/2024] [Indexed: 06/29/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and subsequent depletion of dopamine in the striatum. Solanesol, an alcohol that acts as a precursor to coenzyme Q10, possesses potential applications in managing neurological disorders with antioxidant, anti-inflammatory, and neuromodulatory potential. In this study, a zebrafish model was employed to investigate the effects of solanesol in tramadol induced PD like symptoms. Zebrafish were administered tramadol injections (50 mg/kg) over a 20-day period. Solanesol was administered at doses of 25, 50, and 100 mg/kg, three hours prior to tramadol administration from day 11 to day 20. Behavioral tests assessing motor coordination were conducted on a weekly basis using open field and novel diving tank apparatus. On day 21, the zebrafish were euthanized, and brain tissues were examined for markers of oxidative stress, inflammation, and neurotransmitters level. Chronic tramadol treatment resulted in motor impairment, reduced antioxidant enzyme levels, enhanced release of proinflammatory cytokines in the striatum, and disrupted neurotransmitter balance. However, solanesol administration mitigated these effects and exhibited a neuroprotective effect against neurodegenerative alterations in the zebrafish model of PD. This was evident through improvements in behavior, modulation of biochemical markers, attenuation of neuroinflammation, restoration of neurotransmitters level, and enhancement of mitochondrial activity. The histopathological study also confirmed that solanesol dose dependently restored neuronal cell density which confirmed its neuroprotective potential. Further investigations are required to elucidate the underlying mechanisms of solanesol neuroprotective effects and evaluate its efficacy in human patients.
Collapse
Affiliation(s)
- Md Reyaz Alam
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, India
| | - Vaishali Dobhal
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, India
| | - Shamsher Singh
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, India
| |
Collapse
|
2
|
Okeowo OM, Anadu VE, Ijomone OK, Aschner M, Ijomone OM. Combined Restraint Stress and Metal Exposure Paradigms in Rats: Unravelling Behavioural and Neurochemical Perturbations. Mol Neurobiol 2024:10.1007/s12035-024-04570-1. [PMID: 39443350 DOI: 10.1007/s12035-024-04570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Accumulation of heavy metals (Mn and Ni) and prolonged exposure to stress are associated with adverse health outcomes. Various studies have shown the impacts of stress and metal exposures on brain function. However, no study has examined the effects of co-exposure to stress, Mn, and Ni on the brain. This study addresses this gap by evaluating oxidative and glial responses, apoptotic activity, as well as cognitive processes in a rat model. Adult Wistar rats were exposed to vehicle (control), restraint stress, 25 mg/kg of manganese (Mn) or nickel (Ni), or combined restraint stress plus Mn or Ni. Following treatment, rats were subjected to several behavioural paradigms to assess cognitive function. Enzyme activity, as well as ATPase levels, were evaluated. Thereafter, an immunohistochemical procedure was utilised to evaluate neurochemical markers of glial function, myelination, oxidative stress, and apoptosis in the hippocampus, prefrontal cortex (PFC), and striatum. Results showed that stress and metal exposure increased oxidative stress markers and reduced antioxidant levels. Further, combined stress and metal exposure reduced various forms of learning and memory ability in rats. In addition, there were alterations in Iba1 activity and Nrf2 levels, reduced Olig2 and myelin basic protein (MBP) levels, and increased caspase-3 expression. These neurotoxic outcomes were mostly exacerbated by co-exposure to stress and metals. Overall, our findings establish that stress and metal exposures impaired cognitive performance, induced oxidative stress and apoptosis, and led to demyelination effects which were worsened by combined stress and metal exposure.
Collapse
Affiliation(s)
- Oritoke M Okeowo
- Department of Physiology, School of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
| | - Victor E Anadu
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Olayemi K Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria.
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria.
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Shao X, Wang Y, Geng Z, Liang G, Zhu X, Liu L, Meng M, Duan L, Zhu G. Novel therapeutic targets for major depressive disorder related to oxidative stress identified by integrative multi-omics and multi-trait study. Transl Psychiatry 2024; 14:443. [PMID: 39426956 PMCID: PMC11490649 DOI: 10.1038/s41398-024-03126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
Oxidative stress (OS) is strongly implicated in the pathophysiology of major depressive disorder (MDD) but the molecular mechanisms remain largely unknown. The purpose of this study is to identify genes related to both OS and MDD, and further to evaluate the utility of these genes as diagnostic markers and potential treatment targets. We searched datasets related to MDD from the Gene Expression Omnibus (GEO) database for differentially expressed genes (DEGs) also related to OS according to GeneCards. Bioinformatics analyses and machine learning algorithms were used to identify hub genes mediating OS-MDD interactions. A summary data-based Mendelian randomization (SMR) approach was employed to identify possible causal genes for MDD from blood tissue eQLT data. These investigations identified 32 genes mediating OS-MDD interactions, while SMR analysis identified KCNE1 (OR = 1.057, 95%CI = 1.013-1.102, P value = 0.010), MAPK3 (OR = 1.023, 95%CI = 1.004-1.043, P value = 0.020), and STIP1 (OR = 0.792, 95%CI = 0.641-0.979, P value = 0.031) as OS-related causal genes for MDD. These genes may thus serve as useful diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaojun Shao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yuan Wang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhongli Geng
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Shenyang Mental Health Center, Shenyang, 110168, China
| | | | - Xiaotong Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Department of Psychiatry, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110005, China
| | - Lu Liu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Department of Psychiatry, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110005, China
| | - Ming Meng
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Shenyang Mental Health Center, Shenyang, 110168, China
| | - Li Duan
- Department of Health Management Research, Chengde Medical University, Chengde, 067000, China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
4
|
Kaushal SK, Parul, Tripathi A, Singh DP, Paul A, Alka K, Shukla S, Singh D. IL-33 prevents age-related bone loss and memory impairment by suppression of Th17 response: evidence in a d-galactose-induced aging mouse model. JBMR Plus 2024; 8:ziae101. [PMID: 39224568 PMCID: PMC11365962 DOI: 10.1093/jbmrpl/ziae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are the primary mediators of age-related disorders. The IL-17/IL-10 axis plays a crucial role in bone destruction and neuro-inflammation. Additionally, a new Th2 cytokine-IL-33-has gained attention for its potential implications in aging-associated conditions. However, the involvement of IL-33 in aging-mediated bone loss and memory impairment remains unclear and needs further investigation. This study reveals the impact of IL-33 on various aspects of the immune system, bone health, and neural functions. To induce senescence, we used d-galactose for its convenience and fewer side effects. The experimental design involved treating 20-week-old C57BL/6J mice with d-galactose subcutaneously for 10 weeks to induce aging-like effects. Thereafter, IL-33 recombinant protein was administered intraperitoneally for 15 days to evaluate its impact on various immune, skeletal, and neural parameters. The results demonstrated that d-galactose-induced aging led to bone loss and compromised osteogenic parameters, accompanied by increased oxidative stress and neurodegeneration in specific brain regions. Behavioral activities were also affected. However, supplementation with IL-33 mitigated these effects, elevating osteogenic parameters and reducing senescence markers in osteoblast cells in an aging mouse model and exerted neuroprotective potential. Notably d-galactose-induced aging was characterized by high bone turnover, reflected by altered serum levels of CTX, PTH, beta-galactosidase, and P1NP. IL-33 treatment attenuated these effects, suggesting its role in regulating bone metabolism. Furthermore, d-galactose-induced aging was associated with increased differentiation of Th17 cells and upregulation of associated markers, such as STAT-3 and ROR-γt, while downregulating Foxp3, which antagonizes Th17 cell differentiation. IL-33 treatment countered these effects by suppressing Th17 cell differentiation and promoting IL-10-producing T-regulatory cells. Overall, these findings provide insights into the potential therapeutic implications of IL-33 in addressing aging-induced bone loss and memory impairment.
Collapse
Affiliation(s)
- Saurabh Kumar Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Parul
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Alok Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Devendra Pratap Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ankita Paul
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Kumari Alka
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Shubha Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
5
|
Yu P, Cheng M, Wang N, Wu C, Qiang K. Pubertal maternal presence reduces anxiety and increases adult neurogenesis in Kunming mice offspring. Pharmacol Biochem Behav 2024; 243:173839. [PMID: 39079561 DOI: 10.1016/j.pbb.2024.173839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Puberty is a critical period of emotional development and neuroplasticity. However, most studies have focused on early development, with limited research on puberty, particularly the parental presence. In this study, four groups were established, and pubertal maternal presence (PMP) was assessed until postnatal days 21 (PD21), 28 (PD28), 35 (PD35), and 42 (PD42), respectively. The social interaction and anxiety behaviors, as well as the expression of oxytocin (OT) in the paraventricular nucleus (PVN) and supraoptic nucleus (SON), and the number of new generated neurons and the expression of estrogen receptor alpha (ERα) in the dentate gyrus (DG) were assessed. The results suggest that there is a lot of physical contact between the mother and offspring from 21 to 42 days of age, which reduces anxiety in both female and male offspring in adulthood; for example, the PMP increased the amount of time mice spent in the center area in the open field experiment and in the bright area in the light-dark box experiment. PMP increased OT expression in the PVN and SON and the number of newly generated neurons in the DG. However, there was a sexual difference in ERα, with ERα increasing in females but decreasing in males. In conclusion, PMP reduces the anxiety of offspring in adulthood, increases OT in the PVN and SON, and adult neurogenesis; ERα in the DG may be involved in this process.
Collapse
Affiliation(s)
- Peng Yu
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China.
| | - Miao Cheng
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Na Wang
- College of Life and Geographic Sciences, Kashi University, Kashi 844099, Xinjiang, China
| | - Chendong Wu
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Keju Qiang
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| |
Collapse
|
6
|
Rezaei K, Mastali G, Abbasgholinejad E, Bafrani MA, Shahmohammadi A, Sadri Z, Zahed MA. Cadmium neurotoxicity: Insights into behavioral effect and neurodegenerative diseases. CHEMOSPHERE 2024; 364:143180. [PMID: 39187026 DOI: 10.1016/j.chemosphere.2024.143180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Cadmium (Cd) induced neurotoxicity has become a growing concern due to its potential adverse effects on the Central Nervous System. Cd is a Heavy Metal (HM) that is released into the environment, through several industrial processes. It poses a risk to the health of the community by polluting air, water, and soil. Cd builds up in the brain and other neural tissues, raising concerns about its effect on the nervous system due to its prolonged biological half-life. Cd can enter into the neurons, hence increasing the production of Reactive Oxygen Species (ROS) in them and impairing their antioxidant defenses. Cd disrupts the Calcium (Ca2+) balance in neurons, affects the function of the mitochondria, and triggers cell death pathways. As a result of these pathways, the path to the development of many neurological diseases affected by environmental factors, especially Cd, such as Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS) is facilitated. There are cognitive deficits associated with long exposure to Cd. Memory disorders are present in both animals and humans. Cd alters the brain's function and performance in critical periods. There are lifelong consequences of Cd exposure during critical brain development stages. The susceptibility to neurotoxic effects is increased by interactions with a variety of risk factors. Cd poses risks to neuronal function and behavior, potentially contributing to neurodegenerative diseases like Parkinson's disease (PD) and AD as well as cognitive issues. This article offers a comprehensive overview of Cd-induced neurotoxicity, encompassing risk assessment, adverse effect levels, and illuminating intricate pathways.
Collapse
Affiliation(s)
- Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Ghazaleh Mastali
- Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Elham Abbasgholinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Melika Arab Bafrani
- Multiple Sclerosis Research Center (MSRC), Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Zahra Sadri
- The Department of Biological Science, Molecular and Cell Biology, Dedman College of Humanities and Sciences Southern Methodist University (SMU), Dallas, TX, USA.
| | | |
Collapse
|
7
|
Baek SH, Baek S, Kim G, Chi AS, Kim E, Hwang DH, Ko S, Jang HJ, Lee KP. Possible effect of exercise with anti-fatigue nutrition on ROS-induced depression and suicide risk: a review. Phys Act Nutr 2024; 28:52-58. [PMID: 39097998 PMCID: PMC11298284 DOI: 10.20463/pan.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
PURPOSE Epidemiological evidence shows that physical activity, including continuous stimulus changes and appropriate exercise programs, improves brain degeneration in the hippocampus, prefrontal cortex (PFC), and anterior cingulate cortex (ACC). Therefore, we investigated the possible synergistic effects of physical activity and nutrition in controlling chronic fatigue and reducing oxidative stress in patients at risk for depression and suicide. METHODS We systematically reviewed the literature on various systemic factors related to the effects of 1) suppressing oxidative stress and 2) improving depression through exercise and nutrition. To conduct this review, we searched the PubMed database for papers published until May 1, 2024, using the terms "physical activity OR exercise" and "fatigue" OR "anti-fatigue," "oxidative stress" and "depression" and "suicide." We then reviewed the resulting list of articles related to antioxidant mechanisms. RESULTS Appropriate physical activity and natural product intake can substantially change whole-body homeostasis and provide a way to overcome the threat of depression and suicide by regulating metabolites, scavenging free radicals, and neurotransmitters. CONCLUSION Suicide and depression prevention play crucial roles in improving patients' quality of life. Our review provides evidence supporting the idea that exercise and antioxidant nutrition diminish oxidative stress and fatigue by improving the degeneration of the hippocampus, PFC, and ACC.
Collapse
Affiliation(s)
- Seung Hak Baek
- Research & Development Center, UMUST R&D Corporation, Seoul, Republic of Korea
| | - Suji Baek
- Research & Development Center, UMUST R&D Corporation, Seoul, Republic of Korea
| | - Gyoungmin Kim
- Research and Development Center, UMUST R&D Corporation LA, Los Angeles, USA
| | - Andrew Sik Chi
- Research and Development Center, UMUST R&D Corporation LA, Los Angeles, USA
| | - Erin Kim
- Research and Development Center, UMUST R&D Corporation LA, Los Angeles, USA
| | - Dong Hyeok Hwang
- Research & Development Center, UMUST R&D Corporation, Seoul, Republic of Korea
| | - Sarah Ko
- Research and Development Center, UMUST R&D Corporation LA, Los Angeles, USA
| | - Hyun Joo Jang
- Institute for Artificial Intelligence and Software, Soonchunhyang University, Chungcheongnam-do, Republic of Korea
| | - Kang Pa Lee
- Research & Development Center, UMUST R&D Corporation, Seoul, Republic of Korea
- Research and Development Center, UMUST R&D Corporation LA, Los Angeles, USA
| |
Collapse
|
8
|
Li F, Chen X, Xu X, Wang L, Yan J, Yu Y, Shan X, Zhang R, Xing H, Zhang T, Pan S. Alterations of intestinal mucosal barrier, cecal microbiota diversity, composition, and metabolites of yellow-feathered broilers under chronic corticosterone-induced stress: a possible mechanism underlying the anti-growth performance and glycolipid metabolism disorder. Microbiol Spectr 2024; 12:e0347323. [PMID: 38497712 PMCID: PMC11064513 DOI: 10.1128/spectrum.03473-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
This study aimed to explore alterations in growth performance, glycolipid metabolism disorders, intestinal mucosal barrier, cecal microbiota community, and metabolites in a chronic corticosterone (CORT)-induced stress (CCIS) broiler model. Results showed that compared with control (CON) broilers, in CCIS broilers: (i) the final body weight (BW), BW gain, and average daily gain were significantly reduced. (ii) The glycolipid metabolism disorder and impairement of intestinal immune barrier and physical barrier function were observed. (iii) Diversity and richness of cecal microbiota were obviously increased. From phylum to genus level, the abundances of Firmicutes and Faecalibacterium were significantly decreased, while the abundances of Proteobacteria, RuminococcaceaeUCG-005, and Escherichia coli (Shigella) were significantly increased. Microbial network analysis and function pathways prediction showed that cecal microbiota was mainly concentrated in translation, metabolism, nucleotide metabolism, and endocrine system. (iv) The main differential metabolites identified include steroids and their derivatives, amino acids, fatty acids, and carbohydrates; among which 37 metabolites were significantly upregulated, while 27 metabolites were significantly downregulated. These differential metabolites were mainly enriched in pathways related to steroid hormone biosynthesis and tyrosine metabolism. (v) Correlation between cecal microbiota and glycolipid metabolism indexes showed that BW and total cholesterol (TC) were positively correlated with Christensenellaceae_R.7_group and Escherichia_Shigella, respectively. Furthermore, the downregulated Faecalibacterium and Christensenellaceae were negatively correlated with the upregulated differentially expressed metabolites. These findings suggested that CCIS altered cecal microbiota composition and metabolites, which led to glycolipid metabolism disorder and impaired the nutritional metabolism and immune homeostasis, providing a theoretical basis for efforts to eliminate the harm of chronic stress to human health and animal production. IMPORTANCE The study aimed to determine the influence of altered intestinal mucosal barrier, cecum flora community, and metabolites on anti-growth performance, glycolipid metabolism disorders of chronic corticosterone (CORT)-induced stress (CCIS) broilers. Compared with control (CON) broilers, in CCIS broilers: (i) anti-growth performance, glycolipid metabolism disorder, and impaired intestinal immune barrier and physical barrier function were observed. (ii) From phylum to genus level, the abundances of Firmicutes and Faecalibacterium were decreased; whereas, the abundances of Proteobacteria, RuminococcaceaeUCG-005, and Escherichia coli (Shigella) were increased. (iii) Differential metabolites in cecum were mainly enriched in steroid hormone biosynthesis and tyrosine metabolism. (iv) Body weight (BW) and total cholesterol (TC) were positively correlated with Christensenellaceae_R.7_group and Escherichia_Shigella, respectively, while downregulated Faecalibacterium and Christensenellaceae were negatively correlated with upregulated metabolites. Our findings suggest that CCIS induces anti-growth performance and glycolipid metabolism disorder by altering cecum flora and metabolites, providing a theoretical basis for efforts to eliminate the effect of chronic stress on human health and animal production.
Collapse
Affiliation(s)
- Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yichen Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuemei Shan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tangjie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Animal Science, Washington State University, Pullman, Washington, USA
- Guangling College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Kim DY, Son SR, Kim JY, Min JW, Kong CH, Park K, Jeon M, Kang WC, Jung SY, Choi JH, Jang DS, Ryu JH. Effects of Artemisia annua L. on postmenopausal syndrome in ovariectomized mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116800. [PMID: 37331451 DOI: 10.1016/j.jep.2023.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. (Asteraceae) has been used as an antipyretic and anti-parasitic drug in traditional medicine for more than 2000 years. It has also been prescribed to treat symptoms caused by deficiency of Yin, which might be observed in menopausal state from the point of view of traditional medicine. AIM OF THE STUDY We hypothesized that A. annua might be useful for treating menopausal disorders with less adverse effects than hormone replacement therapy. Thus, the aim of the present study was to investigate effects of A. annua on postmenopausal symptoms of ovariectomized (OVX) mice. MATERIALS AND METHODS OVX mice were employed as a model for postmenopausal disorders. Mice were treated with a water extract of A. annua (EAA; 30, 100 or 300 mg/kg, p.o.) or 17β-estradiol (E2; 0.5 mg/kg, s.c.) for 8 weeks. Open field test (OFT), novel object recognition task (NOR), Y-maze test, elevated plus maze test (EPM), splash test and tail suspension test (TST) were conducted to determine whether EAA could ameliorate postmenopausal symptoms. Phosphorylated levels of extracellular signal-regulated kinase (ERK), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK-3β), β-catenin and expression level of synaptophysin in the cortex and hippocampus were evaluated by Western blot analysis. RESULTS EAA treatment significantly increased the discrimination index in NOR, decreased the time in closed arm than in open arm in EPM, increased grooming time in splash test, and decreased immobility time in TST, as did E2 treatment. In addition, decreased phosphorylation levels of ERK, Akt, GSK-3β, and β-catenin and expression levels of synaptophysin in the cortex and hippocampus after OVX were reversed by administration of EAA and E2. CONCLUSION These results suggest that A. annua can ameliorate postmenopausal symptoms such as cognitive dysfunction, anxiety, anhedonia, and depression by activating ERK, Akt, and GSK-3β/β-catenin signaling pathway and hippocampal synaptic plasticity, and that A. annua would be a novel treatment for postmenopausal symptoms.
Collapse
Affiliation(s)
- Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Youn Kim
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
10
|
Athanassi A, Breton M, Chalençon L, Brunelin J, Didier A, Bath K, Mandairon N. Chronic unpredictable mild stress alters odor hedonics and adult olfactory neurogenesis in mice. Front Neurosci 2023; 17:1224941. [PMID: 37600017 PMCID: PMC10435088 DOI: 10.3389/fnins.2023.1224941] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Experiencing chronic stress significantly increases the risk for depression. Depression is a complex disorder with varied symptoms across patients. However, feeling of sadness and decreased motivation, and diminished feeling of pleasure (anhedonia) appear to be core to most depressive pathology. Odorants are potent signals that serve a critical role in social interactions, avoiding danger, and consummatory behaviors. Diminished quality of olfactory function is associated with negative effects on quality of life leading to and aggravating the symptoms of depression. Odor hedonic value (I like or I dislike this smell) is a dominant feature of olfaction and guides approach or avoidance behavior of the odor source. The neural representation of the hedonic value of odorants is carried by the granule cells in the olfactory bulb, which functions to modulate the cortical relay of olfactory information. The granule cells of the olfactory bulb and those of the dentate gyrus are the two major populations of cells in the adult brain with continued neurogenesis into adulthood. In hippocampus, decreased neurogenesis has been linked to development or maintenance of depression symptoms. Here, we hypothesize that chronic mild stress can alter olfactory hedonics through effects on the olfactory bulb neurogenesis, contributing to the broader anhedonia phenotype in stress-associated depression. To test this, mice were subjected to chronic unpredictable mild stress and then tested on measures of depressive-like behaviors, odor hedonics, and measures of olfactory neurogenesis. Chronic unpredictable mild stress led to a selective effect on odor hedonics, diminishing attraction to pleasant but not unpleasant odorants, an effect that was accompanied by a specific decrease in adult neurogenesis and of the percentage of adult-born cells responding to pleasant odorants in the olfactory bulb.
Collapse
Affiliation(s)
- Anna Athanassi
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Marine Breton
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Laura Chalençon
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Jérome Brunelin
- Centre Hospitalier Le Vinatier, Bron, France
- INSERM, U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Anne Didier
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Kevin Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, United States
- Department of Psychiatry, Columbia University Medical College, New York, NY, United States
| | - Nathalie Mandairon
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| |
Collapse
|
11
|
Wolniczak E, Meyer F, Albrecht A. [The abdominal brain: neuroanatomic perspectives for the abdominal surgeon]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:1037-1045. [PMID: 37142237 DOI: 10.1055/a-2013-7633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The "abdominal brain" does not only consist of a separate enteric nervous system but also of bidirectional connections to the autonomous nerve system with parasympathicus und sympathicus as well as brain and spinal cord. Novel studies have shown that these connections can quickly transfer information on the ingested nutrients to the brain to conduct the feeling of hunger and more complex behaviour, such as "reward-related learning". However, even emotional experience, in particular, stress, has a strong impact onto the gastrointestinal system. The immune system, motility and barrier function of the gastrointestinal tract are modulated by the intestinal microbiota. Local bacteria may directly influence neuronal communication by released metabolic products and neuropeptides as well as may control inflammatory factors. Intensive research over the last 10 years was able to provide evidence that intestinal microbiota may affect emotional and cognitive aspects of our behaviour and, thus, it might be in the focus of numerous neuropsychiatric diseases, such as depressions and anxiety disorders.The presented review is to provide a short summary of the I): anatomic basics of the so-called gut-brain axis and II): modi of the bidirectional regulation. Through indirect connections to the limbic system, gut-brain axis can substantially influence stress and anxiety but also the pain processing. In addition, the role of microbiota is outlined and future paths are shown, e.g., how the (microbiota-)gut-brain axis may alter emotional experience, pain processing and intestinal function. Such associations are relevant for further development of visceral medicine, and, thus, also for the abdominal surgeon to derive future treatment concepts with interdisciplinary orientation.
Collapse
Affiliation(s)
- Erik Wolniczak
- Institut für Anatomie, Otto-von-Guericke-Universität zu Magdeburg, Magdeburg, Deutschland
| | - Frank Meyer
- Klinik für Allgemein-, Viszeral-, Gefäß- und Transplantationschirurgie, Universitätsklinikum Magdeburg A.ö.R., Magdeburg, Deutschland
| | - Anne Albrecht
- Institut für Anatomie, Otto-von-Guericke-Universität zu Magdeburg, Magdeburg, Deutschland
- Center for Behavioral Brain Science (CBBS), Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
12
|
Jiang M, Jang SE, Zeng L. The Effects of Extrinsic and Intrinsic Factors on Neurogenesis. Cells 2023; 12:cells12091285. [PMID: 37174685 PMCID: PMC10177620 DOI: 10.3390/cells12091285] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
In the mammalian brain, neurogenesis is maintained throughout adulthood primarily in two typical niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) of the lateral ventricles and in other nonclassic neurogenic areas (e.g., the amygdala and striatum). During prenatal and early postnatal development, neural stem cells (NSCs) differentiate into neurons and migrate to appropriate areas such as the olfactory bulb where they integrate into existing neural networks; these phenomena constitute the multistep process of neurogenesis. Alterations in any of these processes impair neurogenesis and may even lead to brain dysfunction, including cognitive impairment and neurodegeneration. Here, we first summarize the main properties of mammalian neurogenic niches to describe the cellular and molecular mechanisms of neurogenesis. Accumulating evidence indicates that neurogenesis plays an integral role in neuronal plasticity in the brain and cognition in the postnatal period. Given that neurogenesis can be highly modulated by a number of extrinsic and intrinsic factors, we discuss the impact of extrinsic (e.g., alcohol) and intrinsic (e.g., hormones) modulators on neurogenesis. Additionally, we provide an overview of the contribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to persistent neurological sequelae such as neurodegeneration, neurogenic defects and accelerated neuronal cell death. Together, our review provides a link between extrinsic/intrinsic factors and neurogenesis and explains the possible mechanisms of abnormal neurogenesis underlying neurological disorders.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Human Anatomy, Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Dongguan Campus, Guangdong Medical University, Dongguan 523808, China
| | - Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
13
|
Silva AO, Ribeiro JM, Patrocínio TB, Amorim GE, Pereira-Júnior AA, Ângelo ML, de Araújo Paula FB, de Mello Silva Oliveira N, Ruginsk SG, Antunes-Rodrigues J, Elias LLK, Dias MVS, Torres LH, Ceron CS. Protective Effects of Kefir Against Unpredictable Chronic Stress Alterations in Mice Central Nervous System, Heart, and Kidney. Probiotics Antimicrob Proteins 2023; 15:411-423. [PMID: 36534210 DOI: 10.1007/s12602-022-10031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Kefir is a probiotic mixture with anxiolytic and antioxidant properties. Chronic stress can lead to anxiety disorders and increase oxidative damage in organs such as the heart and kidney. In this study, we examined whether kefir ameliorates the anxiety-like behavior of mice submitted to chronic unpredictable stress (CUS) by modulating brain-derived neurotrophic factor (BDNF) and corticosterone levels and whether kefir modifies the oxidative parameters in the heart and kidney of mice. Male Swiss mice received kefir (0.3 mL/100 g/day) or milk for 30 days (gavage). On the 10th day, the mice were submitted to CUS. Behavioral analysis was performed using the elevated plus maze and forced swimming tests. BDNF levels were analyzed in brain tissues. Heart and kidney superoxide dismutase (SOD), catalase, glutathione (GSH), thiobarbituric acid reactive substances (TBARS), 3-nitrotyrosine, metalloproteinase-2 (MMP-2), and plasma corticosterone were evaluated. Kefir reverted the CUS-induced decrease in the time spent in the open arms, the increase in grooming frequency, and decrease in the head dipping frequency, but not the reduced immobility time. CUS decreased the cerebellum BDNF levels and increased corticosterone levels, which were restored by Kefir. Neither catalase and SOD activities nor GSH, TBARS, 3-nitrotyrosine, and MMP-2 were modified by CUS in the heart. In the kidney, CUS increased 3-nitrotyrosine and MMP-2. Kefir increased the antioxidant defense in the heart and kidney of control and CUS mice. These results suggest that kefir ameliorated CUS-induced anxiety-like behavior by modulating brain BDNF and corticosterone levels. Kefir also increased the antioxidant defense of mice heart and kidney.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Carla Speroni Ceron
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Diogo de Vasconcelos, 122, 35400-000l, Ouro Preto, MG, Brazil.
| |
Collapse
|
14
|
Morello G, La Cognata V, Guarnaccia M, D’Agata V, Cavallaro S. Cracking the Code of Neuronal Cell Fate. Cells 2023; 12:1057. [PMID: 37048129 PMCID: PMC10093029 DOI: 10.3390/cells12071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| |
Collapse
|
15
|
Staab J, Vonhören L, Schwörer H, Meyer T. Association between self-rated depressive symptoms and mucosal expression of NF-κ B in patients with upper gastrointestinal symptoms. Biopsychosoc Med 2023; 17:6. [PMID: 36841844 PMCID: PMC9960167 DOI: 10.1186/s13030-023-00264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 02/07/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Previous clinical studies have reported elevated levels of depressive symptoms in selected samples of patients with gastritis. The objective of this study was to examine the associations of specific biomarkers of inflammation expressed in mucosal tissue from the stomach with mood and anxiety symptoms in adult patients with upper gastrointestinal symptoms. METHODS In this monocentric, observational study, a total of 32 study participants were included who were referred for a routine diagnostic upper endoscopic assessment based on the suspected clinical diagnosis of gastritis. All participants completed the Hospital Anxiety and Depression Scale (HADS) before undergoing gastroscopy. Immunohistochemical stainings from biopsy sections were performed to evaluate the expression level of nuclear factor kappa B (NF-κ B), myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS). RESULTS Our findings confirmed that nearly half of the study cohort (n = 13; 41%) displayed positive HADS depression scores above the clinically relevant cut-off level of ≥ 8. Regression models demonstrated that depressive symptoms were significantly and positively associated with the expression level of NF-κ B in biopsies from the upper gastrointestinal tract. CONCLUSIONS In summary, our study showed a significant association between NF-κ B expression and clinically relevant depressive symptoms in patients with gastritis, as assessed by a self-rated psychometric questionnaire. Further investigations are needed to confirm this relationship and to identify the pathophysiological mechanisms involved.
Collapse
Affiliation(s)
- Julia Staab
- grid.7450.60000 0001 2364 4210Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Göttingen, Georg August University Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Lara Vonhören
- grid.7450.60000 0001 2364 4210Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Göttingen, Georg August University Göttingen, Waldweg 33, 37073 Göttingen, Germany ,grid.411984.10000 0001 0482 5331Department of Paediatric Cardiology and Intensive Care Medicine, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Harald Schwörer
- grid.411984.10000 0001 0482 5331Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Göttingen, Georg August University Göttingen, Waldweg 33, 37073, Göttingen, Germany.
| |
Collapse
|
16
|
Ji N, Lei M, Chen Y, Tian S, Li C, Zhang B. How Oxidative Stress Induces Depression? ASN Neuro 2023; 15:17590914231181037. [PMID: 37331994 DOI: 10.1177/17590914231181037] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Depression increasingly affects a wide range and a large number of people worldwide, both physically and psychologically, which makes it a social problem requiring prompt attention and management. Accumulating clinical and animal studies have provided us with substantial insights of disease pathogenesis, especially central monoamine deficiency, which considerably promotes antidepressant research and clinical treatment. The first-line antidepressants mainly target the monoamine system, whose drawbacks mainly include slow action and treatment resistant. The novel antidepressant esketamine, targeting on central glutamatergic system, rapidly and robustly alleviates depression (including treatment-resistant depression), whose efficiency is shadowed by potential addictive and psychotomimetic side effects. Thus, exploring novel depression pathogenesis is necessary, for seeking more safe and effective therapeutic methods. Emerging evidence has revealed vital involvement of oxidative stress (OS) in depression, which inspires us to pursue antioxidant pathway for depression prevention and treatment. Fully uncovering the underlying mechanisms of OS-induced depression is the first step towards the avenue, thus we summarize and expound possible downstream pathways of OS, including mitochondrial impairment and related ATP deficiency, neuroinflammation, central glutamate excitotoxicity, brain-derived neurotrophic factor/tyrosine receptor kinase B dysfunction and serotonin deficiency, the microbiota-gut-brain axis disturbance and hypothalamic-pituitary-adrenocortical axis dysregulation. We also elaborate on the intricate interactions between the multiple aspects, and molecular mechanisms mediating the interplay. Through reviewing the related research progress in the field, we hope to depict an integral overview of how OS induces depression, in order to provide fresh ideas and novel targets for the final goal of efficient treatment of the disease.
Collapse
Affiliation(s)
- Na Ji
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Mengzhu Lei
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Yating Chen
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Shaowen Tian
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Chuanyu Li
- The School of Public Health, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, China
| | - Bo Zhang
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| |
Collapse
|
17
|
Nowacka-Chmielewska M, Grabowska K, Grabowski M, Meybohm P, Burek M, Małecki A. Running from Stress: Neurobiological Mechanisms of Exercise-Induced Stress Resilience. Int J Mol Sci 2022; 23:13348. [PMID: 36362131 PMCID: PMC9654650 DOI: 10.3390/ijms232113348] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 08/12/2023] Open
Abstract
Chronic stress, even stress of a moderate intensity related to daily life, is widely acknowledged to be a predisposing or precipitating factor in neuropsychiatric diseases. There is a clear relationship between disturbances induced by stressful stimuli, especially long-lasting stimuli, and cognitive deficits in rodent models of affective disorders. Regular physical activity has a positive effect on the central nervous system (CNS) functions, contributes to an improvement in mood and of cognitive abilities (including memory and learning), and is correlated with an increase in the expression of the neurotrophic factors and markers of synaptic plasticity as well as a reduction in the inflammatory factors. Studies published so far show that the energy challenge caused by physical exercise can affect the CNS by improving cellular bioenergetics, stimulating the processes responsible for the removal of damaged organelles and molecules, and attenuating inflammation processes. Regular physical activity brings another important benefit: increased stress robustness. The evidence from animal studies is that a sedentary lifestyle is associated with stress vulnerability, whereas a physically active lifestyle is associated with stress resilience. Here, we have performed a comprehensive PubMed Search Strategy for accomplishing an exhaustive literature review. In this review, we discuss the findings from experimental studies on the molecular and neurobiological mechanisms underlying the impact of exercise on brain resilience. A thorough understanding of the mechanisms underlying the neuroprotective potential of preconditioning exercise and of the role of exercise in stress resilience, among other things, may open further options for prevention and therapy in the treatment of CNS diseases.
Collapse
Affiliation(s)
- Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland
| | - Konstancja Grabowska
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Mateusz Grabowski
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andrzej Małecki
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, 40-065 Katowice, Poland
| |
Collapse
|
18
|
Jin Q, Li J, Chen GY, Wu ZY, Liu XY, Liu Y, Chen L, Wu XY, Liu Y, Zhao X, Song YH. Network and Experimental Pharmacology to Decode the Action of Wendan Decoction Against Generalized Anxiety Disorder. Drug Des Devel Ther 2022; 16:3297-3314. [PMID: 36193286 PMCID: PMC9526509 DOI: 10.2147/dddt.s367871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Qi Jin
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Jie Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Guang-Yao Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Zi-Yu Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, People’s Republic of China
| | - Xiao-Yu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yi Liu
- Humanities School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Lin Chen
- Qihuang School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Xin-Yi Wu
- Qihuang School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Xin Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- Correspondence: Xin Zhao; Yue-Han Song, Email ;
| | - Yue-Han Song
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
19
|
Neuromodulation and Hippocampal Neurogenesis in Depression: A Scoping Review. Brain Res Bull 2022; 188:92-107. [PMID: 35853529 DOI: 10.1016/j.brainresbull.2022.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The 'neurogenesis hypothesis of depression' emphasizes the importance of upregulated hippocampal neurogenesis for the efficacy of antidepressant treatment. Neuromodulation is a promising therapeutic method that stimulates neural circuitries to treat neuropsychiatric illnesses. We conducted a scoping review on the neurogenic and antidepressant outcomes of neuromodulation in animal models of depression. PubMed, Web of Science, and PsycInfo were comprehensively searched for full-text English articles from inception to October 5, 2021. Data screening and extraction were conducted independently by two researchers. Seventeen eligible studies were included in this review. The majority of studies used non-invasive neuromodulation (n = 14) and assessed neurogenesis using neural proliferation (n = 16) and differentiation markers (n = 9). Limited reports (n = 2) used neurogenic inhibitors to evaluate the role of neurogenesis on the depressive-like behavioral outcomes. Overall, neuromodulation substantially effectuated both hippocampal cell proliferation and antidepressant-like behavior in animal models of depression, with some providing evidence for enhanced neuronal differentiation and maturation. The proposed neurogenic-related mechanisms mediating the neuromodulation efficacies included neurotrophic processes, anti-apoptotic pathways, and normalization of HPA axis functions. Further research is warranted to explore the role of neuromodulation-induced neurogenic effects on treatment efficacies and to elucidate the underlying molecular mechanisms.
Collapse
|
20
|
Manohar S, Chen GD, Ding D, Liu L, Wang J, Chen YC, Chen L, Salvi R. Unexpected Consequences of Noise-Induced Hearing Loss: Impaired Hippocampal Neurogenesis, Memory, and Stress. Front Integr Neurosci 2022; 16:871223. [PMID: 35619926 PMCID: PMC9127992 DOI: 10.3389/fnint.2022.871223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Noise-induced hearing loss (NIHL), caused by direct damage to the cochlea, reduces the flow of auditory information to the central nervous system, depriving higher order structures, such as the hippocampus with vital sensory information needed to carry out complex, higher order functions. Although the hippocampus lies outside the classical auditory pathway, it nevertheless receives acoustic information that influence its activity. Here we review recent results that illustrate how NIHL and other types of cochlear hearing loss disrupt hippocampal function. The hippocampus, which continues to generate new neurons (neurogenesis) in adulthood, plays an important role in spatial navigation, memory, and emotion. The hippocampus, which contains place cells that respond when a subject enters a specific location in the environment, integrates information from multiple sensory systems, including the auditory system, to develop cognitive spatial maps to aid in navigation. Acute exposure to intense noise disrupts the place-specific firing patterns of hippocampal neurons, "spatially disorienting" the cells for days. More traumatic sound exposures that result in permanent NIHL chronically suppresses cell proliferation and neurogenesis in the hippocampus; these structural changes are associated with long-term spatial memory deficits. Hippocampal neurons, which contain numerous glucocorticoid hormone receptors, are part of a complex feedback network connected to the hypothalamic-pituitary (HPA) axis. Chronic exposure to intense intermittent noise results in prolonged stress which can cause a persistent increase in corticosterone, a rodent stress hormone known to suppress neurogenesis. In contrast, a single intense noise exposure sufficient to cause permanent hearing loss produces only a transient increase in corticosterone hormone. Although basal corticosterone levels return to normal after the noise exposure, glucocorticoid receptors (GRs) in the hippocampus remain chronically elevated. Thus, NIHL disrupts negative feedback from the hippocampus to the HPA axis which regulates the release of corticosterone. Preclinical studies suggest that the noise-induced changes in hippocampal place cells, neurogenesis, spatial memory, and glucocorticoid receptors may be ameliorated by therapeutic interventions that reduce oxidative stress and inflammation. These experimental results may provide new insights on why hearing loss is a risk factor for cognitive decline and suggest methods for preventing this decline.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Lijie Liu
- Department of Physiology, Medical College, Southeast University, Nanjing, China
| | - Jian Wang
- School of Communication Science and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Auditory Research Laboratory, University of Science and Technology of China, Hefei, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
21
|
Li F, Wang Y, Wang X, Zhao Y, Xie F, Qian LJ. Dynamic effects of chronic unpredictable mild stress on the hippocampal transcriptome in rats. Mol Med Rep 2022; 25:110. [PMID: 35119083 PMCID: PMC8845063 DOI: 10.3892/mmr.2022.12626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 11/06/2022] Open
Abstract
Stress causes extensive changes in hippocampal genomic expression, leading to changes in hippocampal structure and function. The dynamic changes in hippocampal gene expression caused by stress of different durations are still unknown. mRNA sequencing was used to analyze the hippocampal transcriptome of rats subjected to chronic unpredictable mild stress (CUMS) of different durations. Compared with the control, 501, 442 and 235 differentially expressed genes (DEGs) were detected in the hippocampus of rats subjected to CUMS for 3 days and 2 and 6 weeks, respectively. Gene Ontology (GO) analysis was used to determine the potential mechanism underlying the dynamic harmful effects of stress on the hippocampus; Certain GO terms of the down‑regulated DEGs in CUMS (3 days) rats were also found in the up‑regulated DEGs in CUMS (6 weeks) rats. These results showed opposing regulation patterns of DEGs between CUMS at 3 days and 6 weeks, which suggested a functional change from adaptation to damage in during the early and late stages of chronic stress. GO analysis for upregulated genes in rats subjected to CUMS for 3 days and 2 weeks suggested significant changes in 'extracellular matrix' and 'wound healing'. Upregulated genes in rats subjected to CUMS for 2 weeks were involved in changes associated with visual function. GO analysis of DEGs in rats subjected to CUMS for 6 weeks revealed increased expression of genes associated with 'apoptotic process' and 'aging' and decreased expression of those associated with inhibition of cell proliferation and cell structure. These results suggest that the early and middle stages of chronic stress primarily promote adaptive regulation and damage repair in the organism, while the late stage of chronic stress leads to damage in the hippocampus.
Collapse
Affiliation(s)
- Feng Li
- Department of Military Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, P.R. China
| | - Ying Wang
- Department of Military Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, P.R. China
| | - Xue Wang
- Department of Military Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, P.R. China
| | - Yun Zhao
- Department of Military Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, P.R. China
| | - Fang Xie
- Department of Military Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, P.R. China
| | - Ling-Jia Qian
- Department of Military Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100039, P.R. China
| |
Collapse
|
22
|
Chen L, Jiang H, Bao T, Wang Y, Meng H, Sun Y, Liu P, Quan S, Li W, Qi S, Ren X. Acupuncture Ameliorates Depressive Behaviors by Modulating the Expression of Hippocampal Iba-1 and HMGB1 in Rats Exposed to Chronic Restraint Stress. Front Psychiatry 2022; 13:903004. [PMID: 35733802 PMCID: PMC9207245 DOI: 10.3389/fpsyt.2022.903004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
The antidepressant mechanism of acupuncture has not been fully elucidated recently. Thus, the objective of the present study is to investigate the antidepressant mechanism of acupuncture of modulating the neuroinflammation induced by high mobility group box-1 (HMGB1) in rats subjected to chronic restraint stress (CRS). Forty-four male Sprague Dawley rats were randomly divided into control, model, escitalopram, and acupuncture group. Except for rats in the control group, all rats were exposed to CRS for 21 days continuously. Rats in the escitalopram group were subjected to a suspension of escitalopram and saline. One hour before CRS procedures, acupuncture was performed at Baihui (GV20) and Yintang (GV29) for rats in the acupuncture group, 20 min per day for 21 days. All rats in each group were conducted to detect the body weight, sucrose preference test at 0, 7, 14, 21 days to evaluate the depression-like behaviors. The expression of microglial activation and HMGB1 in the hippocampus was detected by immunofluorescence. The expression of hippocampal interleukin-10 (IL-10) was detected by western blot. And the content of serum tumor necrosis factor-α (TNF-α) was detected by the enzyme-linked immunosorbent assay method. CRS-exposed rats showed obviously decreased body weight and sucrose preference when compared with the control group, which was reversed by acupuncture. The results have also shown that acupuncture ameliorated the CRS-induced activation of microglia and HMGB1 in the hippocampus CA1 region. Furthermore, acupuncture reduced the stress-induced upregulation of TNF-α in serum. Collectively, the current study highlights the role of acupuncture in alleviating depressive behavior associated with stress-induced neuroinflammation mediated by HMGB1 in the CRS model of depression.
Collapse
Affiliation(s)
- Lu Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Huili Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.,Research Center of Mental and Neurological Disorders, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tuya Bao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.,Research Center of Mental and Neurological Disorders, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong Meng
- School of Science, Beijing Technology and Business University, Beijing, China
| | - Yang Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.,Research Center of Mental and Neurological Disorders, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Songxiao Quan
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Wenshan Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Simin Qi
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiujun Ren
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|