1
|
Tian L, Liu Q, Wang X, Chen S, Li Y. Fighting ferroptosis: Protective effects of dexmedetomidine on vital organ injuries. Life Sci 2024; 354:122949. [PMID: 39127318 DOI: 10.1016/j.lfs.2024.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Vital organ injury is one of the leading causes of global mortality and socio-economic burdens. Current treatments have limited efficacy, and new strategies are needed. Dexmedetomidine (DEX) is a highly selective α2-adrenergic receptor that protects multiple organs by reducing inflammation and preventing cell death. However, its exact mechanism is not yet fully understood. Understanding the underlying molecular mechanisms of its protective effects is crucial as it could provide a basis for designing highly targeted and more effective drugs. Ferroptosis is the primary mode of cell death during organ injury, and recent studies have shown that DEX can protect vital organs from this process. This review provides a detailed analysis of preclinical in vitro and in vivo studies and gains a better understanding of how DEX protects against vital organ injuries by inhibiting ferroptosis. Our findings suggest that DEX can potentially protect vital organs mainly by regulating iron metabolism and the antioxidant defense system. This is the first review that summarizes all evidence of ferroptosis's role in DEX's protective effects against vital organ injuries. Our work aims to provide new insights into organ therapy with DEX and accelerate its translation from the laboratory to clinical settings.
Collapse
Affiliation(s)
- Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong, China
| | - Xing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Suheng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Wang K, Wang Y, Zhang T, Chang B, Fu D, Chen X. The Role of Intravenous Anesthetics for Neuro: Protection or Toxicity? Neurosci Bull 2024:10.1007/s12264-024-01265-4. [PMID: 39153174 DOI: 10.1007/s12264-024-01265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/15/2024] [Indexed: 08/19/2024] Open
Abstract
The primary intravenous anesthetics employed in clinical practice encompass dexmedetomidine (Dex), propofol, ketamine, etomidate, midazolam, and remimazolam. Apart from their established sedative, analgesic, and anxiolytic properties, an increasing body of research has uncovered neuroprotective effects of intravenous anesthetics in various animal and cellular models, as well as in clinical studies. However, there also exists conflicting evidence pointing to the potential neurotoxic effects of these intravenous anesthetics. The role of intravenous anesthetics for neuro on both sides of protection or toxicity has been rarely summarized. Considering the mentioned above, this work aims to offer a comprehensive understanding of the underlying mechanisms involved both in the central nerve system (CNS) and the peripheral nerve system (PNS) and provide valuable insights into the potential safety and risk associated with the clinical use of intravenous anesthetics.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Bingcheng Chang
- The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550003, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
3
|
Li L, Jin M, Tan J, Xiao B. NcRNAs: A synergistically antiapoptosis therapeutic tool in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14476. [PMID: 37735992 PMCID: PMC11017435 DOI: 10.1111/cns.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
AIMS The aim of this review is to systematically summarize and analyze the noncoding RNAs (ncRNAs), especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the cell apoptosis among Alzheimer's disease (AD) in recent years to demonstrate their value in the diagnosis and treatment of AD. METHODS We systematically summarized in vitro and in vivo studies focusing on the ncRNAs in the regulation of cell apoptosis among AD in PubMed, ScienceDirect, and Google Scholar. RESULTS We discover three patterns of ncRNAs (including 'miRNA-mRNA', 'lncRNA-miRNA-mRNA', and 'circRNA-miRNA-mRNA') form the ncRNA-based regulatory networks in regulating cell apoptosis in AD. CONCLUSIONS This review provides a future diagnosis and treatment strategy for AD patients based on ncRNAs.
Collapse
Affiliation(s)
- Liangxian Li
- Laboratory of Respiratory DiseaseAffiliated Hospital of Guilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Mingyue Jin
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
| | - Bo Xiao
- Laboratory of Respiratory DiseaseAffiliated Hospital of Guilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinChina
- Key Laboratory of Respiratory DiseasesEducation Department of Guangxi Zhuang Autonomous RegionGuilinChina
| |
Collapse
|
4
|
Talebi Taheri A, Golshadi Z, Zare H, Alinaghipour A, Faghihi Z, Dadgostar E, Tamtaji Z, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. The Potential of Targeting Autophagy-Related Non-coding RNAs in the Treatment of Alzheimer's and Parkinson's Diseases. Cell Mol Neurobiol 2024; 44:28. [PMID: 38461204 PMCID: PMC10924707 DOI: 10.1007/s10571-024-01461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024]
Abstract
Clearance of accumulated protein aggregates is one of the functions of autophagy. Recently, a clearer understanding of non-coding RNAs (ncRNAs) functions documented that ncRNAs have important roles in several biological processes associated with the development and progression of neurodegenerative disorders. Subtypes of ncRNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), are commonly dysregulated in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Dysregulation of these non-coding RNAs has been associated with inhibition or stimulation of autophagy. Decreased miR-124 led to decreased/increased autophagy in experimental model of Alzheimer and Parkinson diseases. Increased BACE1-AS showed enhanced autophagy in Alzheimer disease by targeting miR-214-3p, Beclin-1, LC3-I/LC3-II, p62, and ATG5. A significant increase in NEAT1led to stimulated autophagy in experimental model of PD by targeting PINK1, LC3-I, LC3-II, p62 and miR-374c-5p. In addition, increased BDNF-AS and SNHG1 decreased autophagy in MPTP-induced PD by targeting miR-125b-5p and miR-221/222, respectively. The upregulation of circNF1-419 and circSAMD4A resulted in an increased autophagy by regulating Dynamin-1 and miR-29c 3p, respectively. A detailed discussion of miRNAs, circRNAs, and lncRNAs in relation to their autophagy-related signaling pathways is presented in this study.
Collapse
Affiliation(s)
- Abdolkarim Talebi Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zakieh Golshadi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Faghihi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Omid Reza Tamtaji
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| | - Fatemeh Nabavizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
5
|
Lian X, Zhang X, Chen W, Xue F, Wang G. Dexmedetomidine mitigates neuroinflammation in an Alzheimer's disease mouse model via the miR-204-3p/FBXL7 signaling axis. Brain Res 2024; 1822:148612. [PMID: 37778649 DOI: 10.1016/j.brainres.2023.148612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by neuroinflammation. Dexmedetomidine (Dex) is known for its neuroprotective properties in clinical settings. In this study, we investigated the potential of Dex in protecting against neuroinflammation in an AD mouse model induced by amyloid-beta (Aβ) injection. First, in the AD mouse model, Aβ injection were administered, and the model was confirmed through behavioral tests, including the Morris water maze and Y-maze. Neuroinflammatory states in Aβ-injected mice were assessed using hematoxylin and eosin staining and enzyme-linked immunosorbent assay. Expression levels of microRNA (miR)-204-3p and F-box/LRR-repeat protein 7 (FBXL7) in mouse tissues were determined through real-time quantitative polymerase chain reaction and Western blot. The binding interaction between miR-204-3p and FBXL7 was elucidated using dual-luciferase analysis. Aβ-injected mice exhibited cognitive impairment, neuroinflammation, and downregulated miR-204-3p. Upregulation of miR-204-3p reduced inflammatory infiltration and mitigated neuroinflammation in Aβ-injected mice. Dex treatment reduced inflammation in hippocampal tissues of Aβ-injected mice. Dex treatment upregulated miR-204-3p, leading to suppressed FBXL7 expression in tissues. Inhibition of miR-204-3p or overexpression of FBXL7 reversed the alleviating effect of Dex on neuroinflammation in Aβ-injected mice. Overall, Dex increased miR-204-3p expression, resulting in the inhibition of FBXL7, and subsequently alleviated neuroinflammation in Aβ-injected mice.
Collapse
Affiliation(s)
- Xia Lian
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaomin Zhang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenchao Chen
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fang Xue
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Gaiqing Wang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Neurology, Sanya Central Hospital (Hainan Third People's Hospital), Hainan Medical University, Sanya, Hainan 572000, China.
| |
Collapse
|
6
|
Hua R, Chu Q, Guo F, Chen Q, Li M, Zhou X, Zhu Y. DNM3OS Enhances the Apoptosis and Senescence of Spermatogonia Associated with Nonobstructive Azoospermia by Providing miR-214-5p and Decreasing E2F2 Expression. Anal Cell Pathol (Amst) 2023; 2023:1477658. [PMID: 38152068 PMCID: PMC10752680 DOI: 10.1155/2023/1477658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Background Nonobstructive azoospermia (NOA) is a complex disease characterized by the spermatogenic dysfunction of testicular tissues. The roles played by long noncoding RNAs (lncRNAs) in NOA pathogenesis have not been extensively studied. Methods Microarray assays were performed on samples of testicular biopsy tissue obtained from patients with NOA for the purpose of identifying differentially expressed lncRNAs and messenger RNA (mRNA) transcripts, and the results were verified by quantitative real-time polymerase chain reaction. Mouse-derived GC-1 spermatogonia (spg) cells undergoing treatment with Adriamycin (ADR) were used to investigate the biological functions of the selected lncRNAs in vitro. The target microRNAs (miRNAs) of lncRNAs and the target mRNAs of miRNAs were predicted by a bioinformatics analysis. Functional studies performed using the CCK-8 assay, EdU incorporation assay, apoptosis detection, and senescence-associated β-galactosidase (SA-β-Gal) staining were conducted using GC-1 spg cells. Results Totals of 2,652 lncRNAs and 2,625 mRNAs were found to be differentially expressed in the testicular tissue of NOA patients when compared with patients in a control group. Dynamin 3 opposite strand (DNM3OS) was a provider of pe-miR-214-5p that positively regulates miR-214-5p expression in GC-1 spg cells. The E2 factor (E2F) family of transcription factor 2 (E2F2) was initially predicted and subsequently verified to be a downstream gene of miR-214-5p. E2F2 expression was upregulated after DNM3OS knockdown in ADR-treated GC-1 spg cells. Moreover, knockdown of either DNM3OS or miR-214-5p significantly alleviated ADR-induced decreases in cellular activity and proliferation, as well as increases in apoptosis and senescence of mouse spermatogonial GC-1 spg cells. Conclusions DNM3OS was found to regulate the apoptosis and senescence of spermatogonia by providing miR-214-5p and decreasing E2F2 expression, suggesting it as a novel target for gene therapy of male infertility.
Collapse
Affiliation(s)
- Rui Hua
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingjun Chu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feiyan Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinjie Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Maocai Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongtong Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Tan Q, Liu L, Wang S, Wang Q, Sun Y. Dexmedetomidine Promoted HSPB8 Expression via Inhibiting the lncRNA SNHG14/UPF1 Axis to Inhibit Apoptosis of Nerve Cells in AD : The Role of Dexmedetomidine in AD. Neurotox Res 2023; 41:471-480. [PMID: 37656385 DOI: 10.1007/s12640-023-00653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 09/02/2023]
Abstract
Dexmedetomidine (Dex) is reported to play a neuroprotective role in Alzheimer's disease (AD). However, the specific mechanism remains unclear. Figure out the underlying molecular mechanism of Dex regulating nerve cell apoptosis in the AD model. The AD model in vitro was established after SH-SY5Y cells were treated with Aβ1 - 42 at (10 μM) for 24 h. The interaction among UPF1, lncRNA SNHG14, and HSPB8 was verified by RIP assay. Cell viability, apoptosis, the level of genes, and proteins were detected by CCK-8 assay, flow cytometry, Western blot, and qRT-PCR, respectively. Dex downregulated lncRNA SNHG14 level and inhibited apoptosis of nerve cells. LncRNA SNHG14 overexpression reversed the inhibitory effect of Dex on nerve cell apoptosis in the AD model. LncRNA SNHG14 attenuated HSPB8 mRNA stability by recruiting UPF1. HSPB8 overexpression inhibited apoptosis of nerve cells in the AD model. Moreover, HSPB8 knockdown reversed the inhibitory effect of Dex on nerve cell apoptosis in the AD model. Our study demonstrated that Dex promoted HSPB8 expression via inhibiting the lncRNA SNHG14/UPF1 axis to inhibit nerve cell apoptosis in AD.
Collapse
Affiliation(s)
- QingYun Tan
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No.348, dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang Province, People's Republic of China
| | - LiLi Liu
- Department of Anesthesiology, Second Department of Jiamusi Central Hospital, Jiamusi, 154002, Heilongjiang Province, People's Republic of China
| | - Shuo Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No.348, dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang Province, People's Republic of China
| | - QingDong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No.348, dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang Province, People's Republic of China.
| | - Yu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, No.348, dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
8
|
Abyadeh M, Yadav VK, Kaya A. Common molecular signatures between coronavirus infection and Alzheimer's disease reveal targets for drug development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544970. [PMID: 37398415 PMCID: PMC10312734 DOI: 10.1101/2023.06.14.544970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cognitive decline has been reported as a common consequence of COVID-19, and studies have suggested a link between COVID-19 infection and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. To shed light on this link, we conducted an integrated genomic analysis using a novel Robust Rank Aggregation method to identify common transcriptional signatures of the frontal cortex, a critical area for cognitive function, between individuals with AD and COVID-19. We then performed various analyses, including the KEGG pathway, GO ontology, protein-protein interaction, hub gene, gene-miRNA, and gene-transcription factor interaction analyses to identify molecular components of biological pathways that are associated with AD in the brain also show similar changes in severe COVID-19. Our findings revealed the molecular mechanisms underpinning the association between COVID-19 infection and AD development and identified several genes, miRNAs, and TFs that may be targeted for therapeutic purposes. However, further research is needed to investigate the diagnostic and therapeutic applications of these findings.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Vijay K. Yadav
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| |
Collapse
|
9
|
Abyadeh M, Yadav VK, Kaya A. Common Molecular Signatures Between Coronavirus Infection and Alzheimer's Disease Reveal Targets for Drug Development. J Alzheimers Dis 2023; 95:995-1011. [PMID: 37638446 DOI: 10.3233/jad-230684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Cognitive decline is a common consequence of COVID-19, and studies suggest a link between COVID-19 and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. OBJECTIVE To understand the potential molecular mechanisms underlying the association between COVID-19 and AD development, and identify the potential genetic targets for pharmaceutical approaches to reduce the risk or delay the development of COVID-19-related neurological pathologies. METHODS We analyzed transcriptome datasets of 638 brain samples using a novel Robust Rank Aggregation method, followed by functional enrichment, protein-protein, hub genes, gene-miRNA, and gene-transcription factor (TF) interaction analyses to identify molecular markers altered in AD and COVID-19 infected brains. RESULTS Our analyses of frontal cortex from COVID-19 and AD patients identified commonly altered genes, miRNAs and TFs. Functional enrichment and hub gene analysis of these molecular changes revealed commonly altered pathways, including downregulation of the cyclic adenosine monophosphate (cAMP) signaling and taurine and hypotaurine metabolism, alongside upregulation of neuroinflammatory pathways. Furthermore, gene-miRNA and gene-TF network analyses provided potential up- and downstream regulators of identified pathways. CONCLUSION We found that downregulation of cAMP signaling pathway, taurine metabolisms, and upregulation of neuroinflammatory related pathways are commonly altered in AD and COVID-19 pathogenesis, and may make COVID-19 patients more susceptible to cognitive decline and AD. We also identified genetic targets, regulating these pathways that can be targeted pharmaceutically to reduce the risk or delay the development of COVID-19-related neurological pathologies and AD.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Common wealth University, Richmond, VA, USA
| | - Vijay K Yadav
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Common wealth University, Richmond, VA, USA
| |
Collapse
|
10
|
MicroRNA-17-5p Protects against Propofol Anesthesia-Induced Neurotoxicity and Autophagy Impairment via Targeting BCL2L11. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6018037. [PMID: 35799645 PMCID: PMC9256336 DOI: 10.1155/2022/6018037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Background. Propofol (PPF) has been shown in studies to cause cognitive impairment and neuronal cell death in developing animals. PPF has been demonstrated to decrease the expression of microRNA-17-5p (miR-17-5p) in a recent study. Nonetheless, the function of miR-17-5p in PPF-induced neurotoxicity and related mechanisms is uncharacterized. Methods. After the induction of neurotoxicity by treating the SH-SY5Y cells with PPF, qRT-PCR was conducted to evaluate the level of miR-17-5p. Using MTT and flow cytometry, cell viability and apoptosis rate were assessed, respectively. Interaction between miR-17-5p and BCL2 like 11 was (BCL2L11) studied using a Luciferase reporter assay. With the help of western blot analysis, we determined the level of proteins of apoptosis-related genes and autophagy-related markers. Results. In SH-SY5Y cells, PPF treatment induced neurotoxicity and downregulated miR-17-5p expression. In SH-SY5Y cells post-PPF exposure, overexpression of miR-17-5p increased cell viability and decreased apoptosis. Consistently, miR-17-5p mimics mitigated PPF-generated autophagy via inhibition of Atg5, Beclin1, and LC3II/I level and elevation of p62 protein expression. In addition, BCL2L11, which was highly expressed in PPF-treated SH-SY5Y cells, was directly targeted by miR-17-5p. Further, in PPF-treated SH-SY5Y cells, overexpressed BCL2L11 counteracted the suppressing behavior of miR-17-5p elevation on PPF-induced apoptosis. Conclusion. Overexpressed miR-17-5p alleviates PPF exposure-induced neurotoxicity and autophagy in SH-SY5Y cells via binding to BCL2L11, suggesting the possibility that miR-17-5p can serve as a candidate in the treatment of neurotoxicity (caused by PPF).
Collapse
|
11
|
Burlacu CC, Neag MA, Mitre AO, Sirbu AC, Badulescu AV, Buzoianu AD. The Role of miRNAs in Dexmedetomidine's Neuroprotective Effects against Brain Disorders. Int J Mol Sci 2022; 23:5452. [PMID: 35628263 PMCID: PMC9141783 DOI: 10.3390/ijms23105452] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
There are limited neuroprotective strategies for various central nervous system conditions in which fast and sustained management is essential. Neuroprotection-based therapeutics have become an intensively researched topic in the neuroscience field, with multiple novel promising agents, from natural products to mesenchymal stem cells, homing peptides, and nanoparticles-mediated agents, all aiming to significantly provide neuroprotection in experimental and clinical studies. Dexmedetomidine (DEX), an α2 agonist commonly used as an anesthetic adjuvant for sedation and as an opioid-sparing medication, stands out in this context due to its well-established neuroprotective effects. Emerging evidence from preclinical and clinical studies suggested that DEX could be used to protect against cerebral ischemia, traumatic brain injury (TBI), spinal cord injury, neurodegenerative diseases, and postoperative cognitive disorders. MicroRNAs (miRNAs) regulate gene expression at a post-transcriptional level, inhibiting the translation of mRNA into functional proteins. In vivo and in vitro studies deciphered brain-related miRNAs and dysregulated miRNA profiles after several brain disorders, including TBI, ischemic stroke, Alzheimer's disease, and multiple sclerosis, providing emerging new perspectives in neuroprotective therapy by modulating these miRNAs. Experimental studies revealed that some of the neuroprotective effects of DEX are mediated by various miRNAs, counteracting multiple mechanisms in several disease models, such as lipopolysaccharides induced neuroinflammation, β-amyloid induced dysfunction, brain ischemic-reperfusion injury, and anesthesia-induced neurotoxicity models. This review aims to outline the neuroprotective mechanisms of DEX in brain disorders by modulating miRNAs. We address the neuroprotective effects of DEX by targeting miRNAs in modulating ischemic brain injury, ameliorating the neurotoxicity of anesthetics, reducing postoperative cognitive dysfunction, and improving the effects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Codrin-Constantin Burlacu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandru-Constantin Sirbu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andrei-Vlad Badulescu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Yasmeen N, Datta M, Kumar V, Alshehri FS, Almalki AH, Haque S. Deciphering the Link Between ERUPR Signaling and MicroRNA in Pathogenesis of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:880167. [PMID: 35615589 PMCID: PMC9126300 DOI: 10.3389/fnagi.2022.880167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative proteinopathic disease. The deposits of misfolded Amyloid β and Tau proteins in the brain of patients with AD suggest an imbalance in endoplasmic reticulum (ER) proteostasis. ER stress is due to accumulation of aberrant proteins in the ER lumen, which then leads to activation of three sensor protein pathways that ultimately evokes the adaptive mechanism of the unfolded protein response (UPR). The UPR mechanism operates via adaptive UPR and the apoptotic UPR. Adaptive UPR tries to restore imbalance in ER hemostasis by decreasing protein production, enhanced chaperone involvement to restore protein folding, misfolded protein decay by proteasome, and suppression of ribosomal translation ultimately relieving the excessive protein load in the ER. Subsequently, apoptotic UPR activated under severe ER stress conditions triggers cell death. MicroRNAs (miRNAs) are small non-coding protein causing dysregulated translational of mRNAs in a sequential manner. They are considered to be critical elements in the maintenance of numerous cellular activities, hemostasis, and developmental processes. Therefore, upregulation or downregulation of miRNA expression is implicated in several pathogenic processes. Evidence from scientific studies suggest a strong correlation between ERUPR signaling and miRNA dysregulation but the research done is still dormant. In this review, we summarized the cross-talk between ER stress, and the UPR signaling processes and their role in AD pathology by scrutinizing and collecting information from original research and review articles.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
- *Correspondence: Vikram Kumar, ;
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Atiah H. Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| |
Collapse
|
13
|
Zhao S, Wu W, Lin X, Shen M, Yang Z, Yu S, Luo Y. Protective effects of dexmedetomidine in vital organ injury: crucial roles of autophagy. Cell Mol Biol Lett 2022; 27:34. [PMID: 35508984 PMCID: PMC9066865 DOI: 10.1186/s11658-022-00335-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Vital organ injury is one of the leading causes of global deaths. Accumulating studies have demonstrated that dexmedetomidine (DEX) has an outstanding protective effect on multiple organs for its antiinflammatory and antiapoptotic properties, while the underlying molecular mechanism is not clearly understood. Autophagy, an adaptive catabolic process, has been found to play a crucial role in the organ-protective effects of DEX. Herein, we present a first attempt to summarize all the evidence on the proposed roles of autophagy in the action of DEX protecting against vital organ injuries via a comprehensive review. We found that most of the relevant studies (17/24, 71%) demonstrated that the modulation of autophagy was inhibited under the treatment of DEX on vital organ injuries (e.g. brain, heart, kidney, and lung), but several studies suggested that the level of autophagy was dramatically increased after administration of DEX. Albeit not fully elucidated, the underlying mechanisms governing the roles of autophagy involve the antiapoptotic properties, inhibiting inflammatory response, removing damaged mitochondria, and reducing oxidative stress, which might be facilitated by the interaction with multiple associated genes (i.e., hypoxia inducible factor-1α, p62, caspase-3, heat shock 70 kDa protein, and microRNAs) and signaling cascades (i.e., mammalian target of rapamycin, nuclear factor-kappa B, and c-Jun N-terminal kinases pathway). The authors conclude that DEX hints at a promising strategy in the management of vital organ injuries, while autophagy is crucially involved in the protective effect of DEX.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Weizhou Wu
- Department of Urology, Maoming People's Hospital, Maoming, 525000, Guangdong, China
| | - Xuezheng Lin
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Zhenyu Yang
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Sicong Yu
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Yu Luo
- Department of Anesthesia Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China.
| |
Collapse
|