1
|
Almeida-Souza TH, Silva RS, Franco HS, Santos LM, Melo JEC, Oliveira E Silva AMD, Menezes ECD, Santos JRD, Teixeira-Silva F, Goes TC, Marchioro M. Involvement of the serotonergic, GABAergic and glutamatergic systems of the rostral anterior cingulate cortex in the trait and state anxiety of adult male Wistar rats. Behav Brain Res 2025; 477:115298. [PMID: 39433219 DOI: 10.1016/j.bbr.2024.115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Despite significant advancements to understand of the neural circuitry involved in anxiety, the neurobiology of trait anxiety remains unclear. The rostral anterior cingulate cortex (rACC) and various pathways have been implicated in its regulation, making it a key to trait anxiety. The present study aimed to investigate the role of these neurotransmitter systems in the rACC in trait anxiety. Since trait anxiety is known to modulate state anxiety, we further investigated this relationship. Specifically, in Experiment I, we used animals with high trait anxiety; in Experiment II, we used animals with low trait anxiety; and in Experiment III, we used animals with medium trait anxiety. Before each behavioral assessment, drugs that either increased or decreased serotonergic (Fluoxetine or WAY-100635), GABAergic (Muscimol or Bicuculline), and glutamatergic (NMDA or Ketamine) neurotransmission in the rACC were administered, along with their respective controls. Additionally, in Experiment IV, all animals from the previous experiments were subjected to the Elevated Plus Maze (EPM) and Hole board (HB) test and evaluated without taking into account their trait anxiety levels. The results of the present study showed that, in Exp I, the modulation of the serotonergic, GABAergic and glutamatergic systems in the rACC decreased trait anxiety in highly anxious rats, while by submitting the animals to HB, the administration of fluoxetine increased state anxiety. In Exp II, the modulation of all systems increased trait anxiety in rats with low trait anxiety, whereas, in HB, state anxiety levels were increased with the administration of NMDA. In Exp III, only the modulation of the glutamatergic system, with NMDA, increased both trait and state anxiety levels. However, none of the evaluated neurotransmitter systems altered the state anxiety modeled in the EPM. Overall, the results of the present study provide new insights into the role of the neurotransmitter systems in the rACC in the regulation of trait anxiety and state anxiety.
Collapse
Affiliation(s)
- Thiago Henrique Almeida-Souza
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Department of Nutrition, Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
| | - Rodolfo Santos Silva
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Heitor Santos Franco
- Department of Biosciences, Federal University of Sergipe, Itabaiana, Sergipe, Brazil
| | | | | | | | - Edênia Cunha de Menezes
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Department of Child and Adolescent Psychiatry at NYU Grossman School of Medicine, New York University, New York, United States
| | | | - Flavia Teixeira-Silva
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Tiago Costa Goes
- Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Murilo Marchioro
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| |
Collapse
|
2
|
Sun J, Zhang C, Wang Y, Xiao S, Sun H, Bian Z, Shen Z, He X, Fang J, Shao X. Electroacupuncture Alleviates Hyperalgesia and Anxiety-Like Behaviors in Pain Memory Model Rats Through Activation of GABAergic Neurons and GABA Receptor in the Rostral Anterior Cingulate Cortex. Mol Neurobiol 2024; 61:6613-6627. [PMID: 38329679 PMCID: PMC11338974 DOI: 10.1007/s12035-024-03986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Recent studies have confirmed that pain memory is often accompanied by negative emotions. Electroacupuncture (EA) can block the retrieval of painful memories, thereby alleviating the associated negative behaviors. However, the underlying mechanism is poorly understood. This study revealed that the effect of EA on pain memory-induced negative behaviors is related to the mediation of GABAergic neuron activity and GABA receptor expression in the rostral anterior cingulate cortex (rACC). Previous studies have shown that the rACC is a crucial area for regulating nociceptive behaviors and negative emotions in pain memory models. The GABAergic neurons and receptors in the rACC are largely involved in pain sensation and related effects. However, the relationships among pain memory, GABAergic neurons and receptors in the rACC have not been investigated. In this study, we established a pain memory model via secondary plantar cross-injection of carrageenan and EA treatment. Using chemogenetic methods and behavioral assessments of pain and negative emotion, we found that early excitation of GABAergic neurons in the rACC blocked the recall of pain memories and reduced anxiety-like behaviors in pain memory model rats. Furthermore, pharmacological methods revealed that excitation of GABAA and GABAB receptors in the rACC blocks hyperpathia associated with pain memory and pain-induced anxiety-like behaviors, while inhibition of GABAA and GABAB receptors reverses these effects. These results suggest that EA may alleviate pain and associated anxiety-like behaviors related to pain memories through the activation of GABAergic neurons and excitation of GABAA and GABAB receptors in the rACC.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifang Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Siqi Xiao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Haiju Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyuan Bian
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Wu Y, Chen Y, Xu Y, Ni W, Lin C, Shao X, Shen Z, He X, Wang C, Fang J. Proteomic Analysis of the Amygdala Reveals Dynamic Changes in Glutamate Transporter-1 During Progression of Complete Freund's Adjuvant-Induced Pain Aversion. Mol Neurobiol 2023; 60:7166-7184. [PMID: 37541967 PMCID: PMC10657795 DOI: 10.1007/s12035-023-03415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/31/2023] [Indexed: 08/06/2023]
Abstract
Pain sufferer usually show an aversion to the environment associated with pain, identified as pain aversion. The amygdala, an almond-shaped limbic structure in the medial temporal lobe, exerts a critical effect on emotion and pain formation. However, studies on inflammatory pain-induced aversion are still relatively limited, and the available evidence is not enough to clarify its inherent mechanisms. Proteomics is a high-throughput, comprehensive, and objective study method that compares the similarities and differences of protein expression under different conditions to screen potential targets. The current study aimed to identify potential pivotal proteins in the amygdala of rats after complete Freund's adjuvant (CFA)-induced pain aversion via proteomics analysis. Immunohistochemistry was performed to confirm the expression of glutamate transporter-1 (GLT-1) in the amygdala during different periods of pain aversion. Thirteen proteins were found to be different between the day 2 and day 15 groups. Among the 13 differentially expressed proteins, Q8R64 denotes GLT-1, which utilises synaptic glutamate to remain optimal extracellular glutamic levels, thereby preventing accumulation in the synaptic cleft and consequent excitotoxicity. The variation in GLT-1 expression was correlated with the variation tendency of pain aversion, which implies a potential link between the modulation of pain aversion and the excitability of glutamatergic neurons. This study demonstrated that exposure to inflammatory pain results in aversion induced from pain, leading to extensive biological changes in the amygdala.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuerong Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunyun Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenqin Ni
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chalian Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chao Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Li X, Xiong M, Gao Y, Xu X, Ke C. Upregulation of Calhm2 in the anterior cingulate cortex contributes to the maintenance of bilateral mechanical allodynia and comorbid anxiety symptoms in inflammatory pain conditions. Brain Res Bull 2023; 204:110808. [PMID: 37926398 DOI: 10.1016/j.brainresbull.2023.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Peripheral inflammation-induced chronic pain tends to evoke concomitant anxiety disorders. It's common knowledge that the anterior cingulate cortex (ACC) plays a vital role in maintaining pain modulation and negative emotions. However, the potential mechanisms of chronic inflammation pain and pain-related anxiety remain elusive. Here, it was reported that injecting complete Freund's adjuvant (CFA) unilaterally resulted in bilateral mechanical allodynia and anxiety-like symptoms in mice via behavioral tests. In addition, CFA induced the bilateral upregulation and activation of calcium homeostasis modulator 2 (Calhm2) in ACC pyramidal neurons by quantitative analysis and double immunofluorescence staining. The knockdown of Calhm2 in the bilateral ACC by a lentiviral vector harboring ribonucleic acid (RNA) interference sequence reversed CFA-induced pain behaviors and neuronal sensitization. Furthermore, the modulating of ACC pyramidal neuronal activities via a designer receptor exclusively activated by designer drugs (DREADD)-hM4D(Gi) greatly changed Calhm2 expression, mechanical paw withdrawal thresholds (PWTs) and comorbid anxiety symptoms. Moreover, it was found that Calhm2 regulates inflammation pain promoting the upregulation of N-methyl-D-aspartic acid (NMDA) receptor 2B (NR2B) subunits. Calhm2 knockdown in ACC exhibited a significant decrease in NR2B expression. These results demonstrated that Calhm2 in ACC pyramidal neurons modulates chronic inflammation pain and pain-related anxiety symptoms, which provides a novel underlying mechanism for the development of inflammation pain.
Collapse
Affiliation(s)
- Xiaohui Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province 442000, PR China.
| | - Mengyuan Xiong
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province 442000, PR China.
| | - Yan Gao
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province 442000, PR China.
| | - Xueqin Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province 442000, PR China.
| | - Changbin Ke
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province 442000, PR China.
| |
Collapse
|
5
|
Chen Y, Zhang Y, Lin W, Tang Y, Chen L, Gao Y, Gao G, Luo X, Chen A, Lin C. Role of magnesium-L-Threonate in alleviating skin/muscle incision and retraction induced mechanical allodynia and anxiodepressive-like behaviors in male rats. Brain Res 2023; 1817:148476. [PMID: 37406874 DOI: 10.1016/j.brainres.2023.148476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Chronic postsurgical pain (CPSP) and its emotional comorbidities poses health burden to patients who have received the surgical treatment. However, its underlying mechanism remains unclear. Emerging studies indicate that magnesium deficiency is associated with neurological diseases, and magnesium supplement confers protection under these disease conditions. In this study, we examined the role and mechanism of magnesium deficiency in the pathology of surgery-induced allodynia and negative emotion using a rat model of skin/muscle incision and retraction (SMIR) and investigated the therapeutic effects of magnesium supplementation by oral magnesium-L-Threonate (L-TAMS) in SMIR-injured rats. In the SMIR model, rats developed mechanical allodynia and anxiodepressive-like behaviors. Further, SMIR caused microglia and astrocyte activation and enhanced expression of pro-inflammatory cytokine (TNF-α, IL-1β and IL-6) in the anterior cingulate cortex (ACC). Importantly, magnesium ion (Mg2+) levels decreased in the serum and cerebrospinal fluid (CSF) of SMIR-injured rats, which exhibited high correlation with pain and emotion behavioral phenotypes in these rats. Repeated oral administration of L-TAMS increased serum and CSF levels of Mg2+ in SMIR-injured rats. Notably, L-TAMS administration reversed SMIR-induced mechanical allodynia and anxiodepressive-like behaviors but did not affect pain and emotional behaviors in sham rats. Moreover, L-TAMS administration suppressed SMIR-caused glial activation and proinflammatory cytokine expression in the ACC but had no such effect in sham rats. Together, our study demonstrates the contributing role of magnesium deficiency in the pathology of surgery-induced chronic pain and negative emotion. Moreover, we suggest that L-TAMS might be a novel approach to treat CPSP and its emotional comorbidities.
Collapse
Affiliation(s)
- Yu Chen
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China
| | - Yimeng Zhang
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China
| | - Wei Lin
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China; Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, China
| | - Ying Tang
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China
| | - Liang Chen
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China
| | - Ying Gao
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China
| | - Guangcheng Gao
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China
| | - Xin Luo
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, China.
| | - Aiqin Chen
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China.
| | - Chun Lin
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, China; Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, China.
| |
Collapse
|
6
|
Journée SH, Mathis VP, Fillinger C, Veinante P, Yalcin I. Janus effect of the anterior cingulate cortex: Pain and emotion. Neurosci Biobehav Rev 2023; 153:105362. [PMID: 37595650 DOI: 10.1016/j.neubiorev.2023.105362] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Over the past 20 years, clinical and preclinical studies point to the anterior cingulate cortex (ACC) as a site of interest for several neurological and psychiatric conditions. The ACC plays a critical role in emotion, autonomic regulation, pain processing, attention, memory and decision making. An increasing number of studies have demonstrated the involvement of the ACC in the emotional component of pain and its comorbidity with emotional disorders such as anxiety and depression. Thanks to the development of animal models combined with state-of-the-art technologies, we now have a better mechanistic understanding of the functions of the ACC. Hence, the primary aim of this review is to compile the most recent preclinical studies on the role of ACC in the emotional component and consequences of chronic pain. Herein, we thus thoroughly describe the pain-induced electrophysiological, molecular and anatomical alterations in the ACC and in its related circuits. Finally, we discuss the next steps that are needed to strengthen our understanding of the involvement of the ACC in emotional and pain processing.
Collapse
Affiliation(s)
- Sarah H Journée
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Victor P Mathis
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Clémentine Fillinger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre Veinante
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
7
|
Liu M, Li X, Wang J, Ji Y, Gu J, Wei Y, Peng L, Tian C, Lv P, Wang P, Liu X, Li W. Identification and validation of Rab11a in Rat orofacial inflammatory pain model induced by CFA. Neurochem Int 2023:105550. [PMID: 37268020 DOI: 10.1016/j.neuint.2023.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/29/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023]
Abstract
Orofacial pain (OFP) is a clinically very common and the most troubling condition; however, there is few effective way to relieve OFP. Rab11a, a small molecule guanosine triphosphate enzyme, is one of the Rab member family playing a vital role in intracellular endocytosis and the pain process. Therefore, we investigated the hub genes of rat OFP model induced by Complete Freund's Adjuvant (CFA) via re-analyzing microarray data (GSE111160). We found that Rab11a acted as a key hub gene in the process of OFP. During the validation of Rab11a, the OFP model was established by peripheral injection of CFA, which decreased the head withdrawal threshold (HWT) and head withdrawal lantency (HWL). Rab11a was observed in NeuN of Sp5C instead of GFAP/IBA-1, and double-IF of Rab11a and Fos positive cells were increased on the 7th day after CFA modeling statistically. Rab11a protein expression in TG and Sp5C of CFA group was also significantly increased. Interestingly, injection of Rab11a-targeted short hairpin RNA (Rab11a-shRNA) into Sp5C could reverse the decrease in HWT and HWL and reduce the expression level of Rab11a. Electrophysiological recording further demonstrated that the activity of Sp5C neuron was improved in CFA group, while Rab11a-shRNA considerably decreased the enhancement of Sp5C neuronal activity. Finally, we detected the expression level of p-PI3K, p-AKT, and p-mTOR in Sp5C of rats after injecting the Rab11a-shRNA virus. To our surprise, CFA upregulated the phosphorylation of PI3K, AKT and mTOR in Sp5C, and Rab11a-shRNA downregulated these molecules' expression. Our data suggest that CFA activates the PI3K/AKT signaling pathway through up-regulating Rab11a expression, which can induce OFP hyperalgesia development furtherly. Targeting Rab11a may be a novel treatment strategy for OFP.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Li
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, Shandong, China
| | - Jian Wang
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuanyuan Ji
- Department of Anatomy, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Junxiang Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Wei
- Department of Anatomy, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Liwei Peng
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chao Tian
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peiyuan Lv
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peng Wang
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Liu
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, Shandong, China.
| | - Weixin Li
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Jesús Trujillo M, Ilarraz C, Kasanetz F. Plasticity of cortico-striatal neurons of the caudal anterior cingulate cortex during experimental neuropathic pain. Neuroscience 2023:S0306-4522(23)00230-0. [PMID: 37236391 DOI: 10.1016/j.neuroscience.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Maladaptive neuronal plasticity is a main mechanism for the development and maintenance of pathological pain. Affective, motivational and cognitive deficits that are comorbid with pain involve cellular and synaptic modifications in the anterior cingulate cortex (ACC), a major brain mediator of pain perception. Here we use a model of neuropathic pain (NP) in male mice and ex-vivo electrophysiology to investigate whether layer 5 caudal ACC (cACC) neurons projecting to the dorsomedial striatum (DMS), a critical region for motivational regulation of behavior, are involved in aberrant neuronal plasticity. We found that while the intrinsic excitability of cortico-striatal cACC neurons (cACC-CS) was preserved in NP animals, excitatory postsynaptic potentials (EPSP) induced after stimulation of distal inputs were enlarged. The highest synaptic responses were evident both after single stimuli and in each of the EPSP that compose responses to trains of stimuli, and were accompanied by increased synaptically-driven action potentials. EPSP temporal summation was intact in ACC-CS neurons from NP mice, suggesting that the plastic changes were not due to alterations in dendritic integration but rather through synaptic mechanisms. These results demonstrate for the first time that NP affects cACC neurons that project to the DMS and reinforce the notion that maladaptive plasticity of the cortico-striatal pathway may be a key factor in sustaining pathological pain.
Collapse
Affiliation(s)
- María Jesús Trujillo
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Buenos Aires, Argentina
| | - Constanza Ilarraz
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Buenos Aires, Argentina
| | - Fernando Kasanetz
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Buenos Aires, Argentina.
| |
Collapse
|