1
|
Cleland BT, Giffhorn M, Jayaraman A, Madhavan S. Understanding corticomotor mechanisms for activation of non-target muscles during unilateral isometric contractions of leg muscles after stroke. Int J Neurosci 2024; 134:1332-1341. [PMID: 37750212 PMCID: PMC10963339 DOI: 10.1080/00207454.2023.2263817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Muscle activation often occurs in muscles ipsilateral to a voluntarily activated muscle and to a greater extent after stroke. In this study, we measured muscle activation in non-target, ipsilateral leg muscles and used transcranial magnetic stimulation (TMS) to provide insight into whether corticomotor pathways contribute to involuntary activation. MATERIALS AND METHODS Individuals with stroke performed unilateral isometric ankle dorsiflexion, ankle plantarflexion, knee extension, and knee flexion. To quantify involuntary muscle activation in non-target muscles, muscle activation was measured during contractions from the ipsilateral tibialis anterior (TA), medial gastrocnemius (MG), rectus femoris (RF), and biceps femoris (BF) and normalized to resting muscle activity. To provide insight into mechanisms of involuntary non-target muscle activation, TMS was applied to the contralateral hemisphere, and motor evoked potentials (MEPs) were recorded. RESULTS We found significant muscle activation in nearly every non-target muscle during isometric unilateral contractions. MEPs were frequently observed in non-target muscles, but greater non-target MEP amplitude was not associated with greater non-target muscle activation. CONCLUSIONS Our results suggest that non-target muscle activation occurs frequently in individuals with chronic stroke. The lack of association between non-target TMS responses and non-target muscle activation suggests that non-target muscle activation may have a subcortical or spinal origin. Non-target muscle activation has important clinical implications because it may impair torque production, out-of-synergy movement, and muscle activation timing.
Collapse
Affiliation(s)
- Brice T Cleland
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences University of Illinois Chicago, Chicago, IL, USA
| | - Matt Giffhorn
- Max Nader Center for Rehabilitation Technologies & Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Arun Jayaraman
- Max Nader Center for Rehabilitation Technologies & Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Hyde C, Fuelscher I, Rosch KS, Seymour KE, Crocetti D, Silk T, Singh M, Mostofsky SH. Subtle motor signs in children with ADHD and their white matter correlates. Hum Brain Mapp 2024; 45:e70002. [PMID: 39365253 PMCID: PMC11451263 DOI: 10.1002/hbm.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 10/05/2024] Open
Abstract
Subtle motor signs are a common feature in children with attention-deficit/hyperactivity disorder (ADHD). It has long been suggested that white matter abnormalities may be involved in their presentation, though no study has directly probed this question. The aim of this study was to investigate the relationship between white matter organization and the severity of subtle motor signs in children with and without ADHD. Participants were 92 children with ADHD aged between 8 and 12 years, and 185 typically developing controls. Subtle motor signs were examined using the Physical and Neurological Examination for Soft Signs (PANESS). Children completed diffusion MRI, and fixel-based analysis was performed after preprocessing. Tracts of interest were delineated using TractSeg including the corpus callosum (CC), the bilateral corticospinal tracts (CST), superior longitudinal fasciculus, and fronto-pontine tracts (FPT). Fiber cross-section (FC) was calculated for each tract. Across all participants, lower FC in the CST was associated with higher PANESS Total score (greater motor deficits). Within the PANESS, similar effects were observed for Timed Left and Right maneuvers of the hands and feet, with lower FC of the CST, CC, and FPT associated with poorer performance. No significant group differences were observed in FC in white matter regions associated with PANESS performance. Our data are consistent with theoretical accounts implicating white matter organization in the expression of motor signs in childhood. However, rather than contributing uniquely to the increased severity of soft motor signs in those with ADHD, white matter appears to contribute to these symptoms in childhood in general.
Collapse
Affiliation(s)
- C. Hyde
- School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - I. Fuelscher
- School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - K. S. Rosch
- Center for Neurodevelopmental and Imaging ResearchKennedy Krieger InstituteBaltimoreMarylandUSA
- Department of NeuropsychologyKennedy Krieger InstituteBaltimoreMarylandUSA
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - K. E. Seymour
- Center for Neurodevelopmental and Imaging ResearchKennedy Krieger InstituteBaltimoreMarylandUSA
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - D. Crocetti
- Center for Neurodevelopmental and Imaging ResearchKennedy Krieger InstituteBaltimoreMarylandUSA
| | - T. Silk
- School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - M. Singh
- School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - S. H. Mostofsky
- Center for Neurodevelopmental and Imaging ResearchKennedy Krieger InstituteBaltimoreMarylandUSA
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
3
|
Borjon JI, Abney DH, Yu C, Smith LB. Infant vocal productions coincide with body movements. Dev Sci 2024; 27:e13491. [PMID: 38433472 PMCID: PMC11161311 DOI: 10.1111/desc.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Producing recognizable words is a difficult motor task; a one-syllable word can require the coordination of over 80 muscles. Thus, it is not surprising that the development of word productions in infancy lags considerably behind receptive language and is a known limiting factor in language development. A large literature has focused on the vocal apparatus, its articulators, and language development. There has been limited study of the relations between non-speech motor skills and the quality of early speech productions. Here we present evidence that the spontaneous vocalizations of 9- to 24-month-old infants recruit extraneous, synergistic co-activations of hand and head movements and that the temporal precision of the co-activation of vocal and extraneous muscle groups tightens with age and improved recognizability of speech. These results implicate an interaction between the muscle groups that produce speech and other body movements and provide new empirical pathways for understanding the role of motor development in language acquisition. RESEARCH HIGHLIGHTS: The spontaneous vocalizations of 9- to 24-month-old infants recruit extraneous, synergistic co-activations of hand and head movements. The temporal precision of these hand and head movements during vocal production tighten with age and improved speech recognition. These results implicate an interaction between the muscle groups producing speech with other body movements. These results provide new empirical pathways for understanding the role of motor development in language acquisition.
Collapse
Affiliation(s)
- Jeremy I. Borjon
- Department of Psychology, University of Houston, Houston, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, USA
- Texas Center for Learning Disorders, University of Houston, Houston, USA
| | - Drew H. Abney
- Department of Psychology, University of Georgia, Athens, USA
| | - Chen Yu
- Department of Psychology, University of Texas, Austin, USA
| | - Linda B. Smith
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA
| |
Collapse
|
4
|
Quattrone A, Latorre A, Magrinelli F, Mulroy E, Rajan R, Neo RJ, Quattrone A, Rothwell JC, Bhatia KP. A Reflection on Motor Overflow, Mirror Phenomena, Synkinesia and Entrainment. Mov Disord Clin Pract 2023; 10:1243-1252. [PMID: 37772299 PMCID: PMC10525069 DOI: 10.1002/mdc3.13798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 09/30/2023] Open
Abstract
In patients with movement disorders, voluntary movements can sometimes be accompanied by unintentional muscle contractions in other body regions. In this review, we discuss clinical and pathophysiological aspects of several motor phenomena including mirror movements, dystonic overflow, synkinesia, entrainment and mirror dystonia, focusing on their similarities and differences. These phenomena share some common clinical and pathophysiological features, which often leads to confusion in their definition. However, they differ in several aspects, such as the body part showing the undesired movement, the type of this movement (identical or not to the intentional movement), the underlying neurological condition, and the role of primary motor areas, descending pathways and inhibitory circuits involved, suggesting that these are distinct phenomena. We summarize the main features of these fascinating clinical signs aiming to improve the clinical recognition and standardize the terminology in research studies. We also suggest that the term "mirror dystonia" may be not appropriate to describe this peculiar phenomenon which may be closer to dystonic overflow rather than to the classical mirror movements.
Collapse
Affiliation(s)
- Andrea Quattrone
- Institute of NeurologyUniversity “Magna Graecia”CatanzaroItaly
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Roopa Rajan
- Department of NeurologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Ray Jen Neo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of NeurologyHospital Kuala LumpurKuala LumpurMalaysia
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
5
|
Bencivenga F, Tullo MG, Sulpizio V, Galati G. Interhemispheric interplay between the left and right premotor cortex during grasping as assessed by dynamic causal modelling. Sci Rep 2023; 13:4958. [PMID: 36973324 PMCID: PMC10042845 DOI: 10.1038/s41598-023-31602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Research on the contribution of the ipsilateral hemisphere to unilateral movements, and how it is mediated by transcallosal connections, has so far provided contradictory findings. By using dynamic causal modelling (DCM) and Parametric Empirical Bayes analyses applied to fMRI data, we sought to describe effective connectivity during pantomimed and imagined right-hand grasping within the grasping network, namely the anterior intraparietal sulcus, ventral and dorsal (PMd) premotor cortex, supplementary motor area and primary motor cortex (M1). The two-fold aim of the present work was to explore a) whether right and left parieto-frontal areas show similar connectivity couplings, and b) the interhemispheric dynamics between these regions across the two hemispheres. We detected a network architecture comparable across hemispheres during executed but not imagined grasping movements. Furthermore, during pantomimed grasping the interhemispheric crosstalk was mainly driven by premotor areas: we found an inhibitory influence from the right PMd toward the left premotor and motor areas and excitatory couplings between homologous ventral premotor and supplementary motor regions. Overall, our results support the view that dissociable components of unilateral grasping execution are encoded by a non-lateralized set of brain areas complexly intertwined by interhemispheric dynamics, whereas motor imagery obeys different principles.
Collapse
Affiliation(s)
- Federica Bencivenga
- PhD Program in Behavioral Neuroscience, Department of Psychology, "Sapienza" University of Rome, Rome, Italy.
- Brain Imaging Laboratory, Department of Psychology, "Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Maria Giulia Tullo
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, "Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, "Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
6
|
Kozioł A, López Pérez D, Laudańska Z, Malinowska-Korczak A, Babis K, Mykhailova O, D’Souza H, Tomalski P. Motor Overflow during Reaching in Infancy: Quantification of Limb Movement Using Inertial Motion Units. SENSORS (BASEL, SWITZERLAND) 2023; 23:2653. [PMID: 36904857 PMCID: PMC10007533 DOI: 10.3390/s23052653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Early in life, infants exhibit motor overflow, which can be defined as the generation of involuntary movements accompanying purposeful actions. We present the results of a quantitative study exploring motor overflow in 4-month-old infants. This is the first study quantifying motor overflow with high accuracy and precision provided by Inertial Motion Units. The study aimed to investigate the motor activity across the non-acting limbs during goal-directed action. To this end, we used wearable motion trackers to measure infant motor activity during a baby-gym task designed to capture overflow during reaching movements. The analysis was conducted on the subsample of participants (n = 20), who performed at least four reaches during the task. A series of Granger causality tests revealed that the activity differed depending on the non-acting limb and the type of the reaching movement. Importantly, on average, the non-acting arm preceded the activation of the acting arm. In contrast, the activity of the acting arm was followed by the activation of the legs. This may be caused by their distinct purposes in supporting postural stability and efficiency of movement execution. Finally, our findings demonstrate the utility of wearable motion trackers for precise measurement of infant movement dynamics.
Collapse
Affiliation(s)
- Agata Kozioł
- Neurocognitive Development Lab, Institute of Psychology, Polish Academy of Sciences, 00-378 Warsaw, Poland
- Graduate School for Social Research, Polish Academy of Sciences, 00-330 Warsaw, Poland
| | - David López Pérez
- Neurocognitive Development Lab, Institute of Psychology, Polish Academy of Sciences, 00-378 Warsaw, Poland
| | - Zuzanna Laudańska
- Neurocognitive Development Lab, Institute of Psychology, Polish Academy of Sciences, 00-378 Warsaw, Poland
- Graduate School for Social Research, Polish Academy of Sciences, 00-330 Warsaw, Poland
| | - Anna Malinowska-Korczak
- Neurocognitive Development Lab, Institute of Psychology, Polish Academy of Sciences, 00-378 Warsaw, Poland
| | - Karolina Babis
- Neurocognitive Development Lab, Institute of Psychology, Polish Academy of Sciences, 00-378 Warsaw, Poland
| | - Oleksandra Mykhailova
- Neurocognitive Development Lab, Institute of Psychology, Polish Academy of Sciences, 00-378 Warsaw, Poland
| | - Hana D’Souza
- Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | - Przemysław Tomalski
- Neurocognitive Development Lab, Institute of Psychology, Polish Academy of Sciences, 00-378 Warsaw, Poland
| |
Collapse
|
7
|
Dai J, Wu F, Li J, Yu M, Liao C, Shou Y. Surface electromyography analysis of mirror movements under unilateral movement in stroke patients: A retrospective study. Front Hum Neurosci 2022; 16:1079596. [PMID: 36606247 PMCID: PMC9807621 DOI: 10.3389/fnhum.2022.1079596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Mirror movements (MMs) are common abnormal motor performance in patients with poststroke hemiparesis. The study aimed to utilize the Electromyography (EMG) characterization of MMs in stroke patients and explore the relationship between MMs and the motor function of affected limbs. Methods Sixty patients with stroke who had used to undergo clinical assessment and surface Electromyography (sEMG) were selected in this study. We investigated the standardized net excitation (SNE) and overflow percentage (OF) as a measure of mirror activities on bilateral muscles of stroke patients. Results In stroke patients, mirror activities occurred in both affected and unaffected muscles during maximal contractions. We found that OF at unilateral contraction on the affected side (UCA) was significantly greater than that at unilateral contraction on the unaffected side (UCU). Additionally, a negative correlation between OF at UCA and Brunnstrom stages on admission and discharge. However, there were no significant correlations between OF and disease duration, Barthel Index, or the degree of improvement in all clinical evaluations. We still found a positive correlation between SNE at UCA and the improvement of the Brunnstrom stage of the hand. But we could not find any significant correlation between SNE and other clinical evaluation scores. Conclusion In conclusion, the study found mirror activities in both affected and unaffected muscles, confirming an asymmetry between them. Although the mechanisms are still unclear, we confirmed a significant correlation between MMs at UCA and the motor function of the affected upper extremity, which might provide further evidences for understanding MMs in stroke patients and a new research direction on evaluation for motor function and outcomes of stroke patients.
Collapse
Affiliation(s)
- Jie Dai
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fangchao Wu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhua Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengjie Yu
- Department of Rehabilitation Medicine, Hospital of Zhejiang Chinese Armed Police Force, Hangzhou, Zhejiang, China
| | - Chen Liao
- Department of Rehabilitation Medicine, The Third Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Yiqun Shou
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,*Correspondence: Yiqun Shou,
| |
Collapse
|
8
|
The impact of brain lesion characteristics and the corticospinal tract wiring on mirror movements in unilateral cerebral palsy. Sci Rep 2022; 12:16301. [PMID: 36175439 PMCID: PMC9522771 DOI: 10.1038/s41598-022-19920-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Mirror movements (MM) influence bimanual performance in children with unilateral cerebral palsy (uCP). Whilst MM are related to brain lesion characteristics and the corticospinal tract (CST) wiring pattern, the combined impact of these neurological factors remains unknown. Forty-nine children with uCP (mean age 10y6mo) performed a repetitive squeezing task to quantify similarity (MM-similarity) and strength (MM-intensity) of the MM activity. We used MRI data to evaluate lesion type (periventricular white matter, N = 30; cortico-subcortical, N = 19), extent of ipsilesional damage, presence of bilateral lesions, and damage to basal ganglia, thalamus and corpus callosum. The CST wiring was assessed with Transcranial Magnetic Stimulation (17 CSTcontralateral, 16 CSTipsilateral, 16 CSTbilateral). Data was analyzed with regression analyses. In the more-affected hand, MM-similarity and intensity were higher with CSTbilateral/ipsilateral. In the less-affected hand, MM-similarity was higher in children with (1) CSTcontra with CSC lesions, (2) CSTbilat/ipsi with PVL lesions and (3) CSTbilat/ipsi with unilateralized lesions. MM-intensity was higher with larger damage to the corpus callosum and unilateral lesions. A complex combination of neurological factors influences MM characteristics, and the mechanisms differ between hands.
Collapse
|
9
|
Citron I, Thomson D, Pescarini E, Creasy H, Sorooshian P, Berner JE, Neville C, Kannan RY, Nduka C. Descriptive Study of Facial Motor Cocontractions During Voluntary Facial Movement in a Healthy Population: A New Hypothesis Contributing to Synkinesis. Facial Plast Surg Aesthet Med 2022; 25:244-249. [PMID: 36083281 DOI: 10.1089/fpsam.2022.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Motor overflow refers to involuntary movements that accompany voluntary movements in healthy individuals. This may have a role in synkinesis. Objective: To describe the frequency and magnitude of facial motor overflow in a healthy population. Methodology: Healthy participants performed unilateral facial movements: brow elevation, wink, snarl, and closed smile. Two reviewers analyzed the magnitude of each movement and cocontraction. Patterns of movements are described. Univariate analysis was used to assess the relationship between efficacy of unilateral facial control and the frequency and magnitude of cocontractions. Results: Eighty-nine participants completed the videos. Consensual mirror movements occurred in 96% of participants during unilateral eye closure and 86% during brow elevation. The most common associated movement was ipsilateral eye constriction occurring during snarl (90.1%). Improved unilateral facial control was associated with a decrease in frequency and magnitude of associated movements during brow elevation, wink, and snarl. Conclusion: This study showed stereotyped patterns of motor overflow in facial muscles that resemble those in synkinesis and become more evident as unilateral control of the face decreases.
Collapse
Affiliation(s)
- Isabelle Citron
- Plastic Surgery Department, Queen Victoria Hospital, East Grinstead, United Kingdom
| | - David Thomson
- Plastic Surgery Department, Queen Victoria Hospital, East Grinstead, United Kingdom
| | - Elena Pescarini
- Plastic Surgery Department, Queen Victoria Hospital, East Grinstead, United Kingdom
- Plastic Surgery Unit, San Bortolo Hospital, Vicenza, Italy
| | - Henrietta Creasy
- Plastic Surgery Department, Queen Victoria Hospital, East Grinstead, United Kingdom
| | - Parviz Sorooshian
- Plastic Surgery Department, Queen Victoria Hospital, East Grinstead, United Kingdom
| | | | - Catriona Neville
- Plastic Surgery Department, Queen Victoria Hospital, East Grinstead, United Kingdom
| | - Ruben Y Kannan
- Plastic Surgery Department, Queen Victoria Hospital, East Grinstead, United Kingdom
| | - Charles Nduka
- Plastic Surgery Department, Queen Victoria Hospital, East Grinstead, United Kingdom
| |
Collapse
|
10
|
Das A, Mock J, Irani F, Huang Y, Najafirad P, Golob E. Multimodal explainable AI predicts upcoming speech behavior in adults who stutter. Front Neurosci 2022; 16:912798. [PMID: 35979337 PMCID: PMC9376608 DOI: 10.3389/fnins.2022.912798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
A key goal of cognitive neuroscience is to better understand how dynamic brain activity relates to behavior. Such dynamics, in terms of spatial and temporal patterns of brain activity, are directly measured with neurophysiological methods such as EEG, but can also be indirectly expressed by the body. Autonomic nervous system activity is the best-known example, but, muscles in the eyes and face can also index brain activity. Mostly parallel lines of artificial intelligence research show that EEG and facial muscles both encode information about emotion, pain, attention, and social interactions, among other topics. In this study, we examined adults who stutter (AWS) to understand the relations between dynamic brain and facial muscle activity and predictions about future behavior (fluent or stuttered speech). AWS can provide insight into brain-behavior dynamics because they naturally fluctuate between episodes of fluent and stuttered speech behavior. We focused on the period when speech preparation occurs, and used EEG and facial muscle activity measured from video to predict whether the upcoming speech would be fluent or stuttered. An explainable self-supervised multimodal architecture learned the temporal dynamics of both EEG and facial muscle movements during speech preparation in AWS, and predicted fluent or stuttered speech at 80.8% accuracy (chance=50%). Specific EEG and facial muscle signals distinguished fluent and stuttered trials, and systematically varied from early to late speech preparation time periods. The self-supervised architecture successfully identified multimodal activity that predicted upcoming behavior on a trial-by-trial basis. This approach could be applied to understanding the neural mechanisms driving variable behavior and symptoms in a wide range of neurological and psychiatric disorders. The combination of direct measures of neural activity and simple video data may be applied to developing technologies that estimate brain state from subtle bodily signals.
Collapse
Affiliation(s)
- Arun Das
- Secure AI and Autonomy Laboratory, University of Texas at San Antonio, San Antonio, TX, United States
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Jeffrey Mock
- Cognitive Neuroscience Laboratory, University of Texas at San Antonio, San Antonio, TX, United States
| | - Farzan Irani
- Department of Communication Disorders, Texas State University, San Marcos, TX, United States
| | - Yufei Huang
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Peyman Najafirad
- Secure AI and Autonomy Laboratory, University of Texas at San Antonio, San Antonio, TX, United States
| | - Edward Golob
- Cognitive Neuroscience Laboratory, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
11
|
Cleland BT, Madhavan S. Motor overflow in the lower limb after stroke: insights into mechanisms. Eur J Neurosci 2022; 56:4455-4468. [PMID: 35775788 PMCID: PMC9380181 DOI: 10.1111/ejn.15753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Motor overflow (involuntary muscle activation) is common after stroke, particularly in the non-paretic upper limb. Two potential cortical mechanisms are: 1) the contralesional hemisphere controls both limbs, and 2) inhibition from the ipsilesional to the contralesional hemisphere is diminished. Few studies have differentiated between these hypotheses or investigated motor overflow in the lower limb after stroke. To investigate these potential mechanisms, individuals with chronic stroke performed unilateral isometric and dynamic dorsiflexion. Motor overflow was quantified in the contralateral, resting (non-target) ankle. Transcranial magnetic stimulation was applied, and responses were measured in both legs. Relations between motor overflow, excitability of ipsilateral motor pathways, and interhemispheric inhibition were assessed. Non-target muscle activity (motor overflow) was greater during isometric and dynamic conditions than rest in both legs (p≤0.001) and was higher in the non-paretic than the paretic leg (p=0.03). Some participants (25%) had motor overflow >4SD above the group mean in the non-paretic leg. Greater motor overflow in the non-paretic leg was associated with lesser inhibition from the ipsilesional to the contralesional hemisphere (p=0.04). In both legs, non-target TMS responses were greater during the isometric and dynamic than the rest condition (p≤0.01), but not when normalized to background muscle activity. Overall, motor overflow occurred in both legs after stroke, suggesting a common bilateral mechanism. Our correlational results suggest that alterations in interhemispheric inhibition may contribute to motor overflow. Furthermore, the lack of differences in non-target MEPs between rest, isometric, and dynamic conditions, suggests that subcortical and/or spinal pathways may contribute to motor overflow.
Collapse
Affiliation(s)
- Brice T Cleland
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Woldeamanuel GG, Frazer AK, Lee A, Avela J, Tallent J, Ahtiainen JP, Pearce AJ, Kidgell DJ. Determining the Corticospinal Responses and Cross-Transfer of Ballistic Motor Performance in Young and Older Adults: A Systematic Review and Meta-Analysis. J Mot Behav 2022; 54:763-786. [PMID: 35437124 DOI: 10.1080/00222895.2022.2061409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ballistic motor training induces plasticity changes and imparts a cross-transfer effect. However, whether there are age-related differences in these changes remain unclear. Thus, the purpose of this study was to perform a meta-analysis to determine the corticospinal responses and cross-transfer of motor performance following ballistic motor training in young and older adults. Meta-analysis was performed using a random-effects model. A best evidence synthesis was performed for variables that had insufficient data for meta-analysis. There was strong evidence to suggest that young participants exhibited greater cross-transfer of ballistic motor performance than their older counterparts. This meta-analysis showed no significant age-related differences in motor-evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and surface electromyography (sEMG) for both hands following ballistic motor training.
Collapse
Affiliation(s)
- Gashaw Garedew Woldeamanuel
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Ashlyn K Frazer
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Annemarie Lee
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Janne Avela
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Finland
| | - Jamie Tallent
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia.,Faculty of Sport, Health and Applied Sciences, St Mary's University, Twickenham, UK
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, NeuroMuscular Research Center, University of Jyväskylä, Finland
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | - Dawson J Kidgell
- Faculty of Medicine, Nursing and Health Science, Department of Physiotherapy, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| |
Collapse
|
13
|
Abstract
OBJECTIVES The presence of excessive mirror overflow in children with Attention Deficit/Hyperactivity Disorder (ADHD) is discussed in numerous published reports. These reports, however, include a limited age range in their samples. The objective of this study is to examine the effects of diagnosis and sex on mirror overflow and standard deviation (SD) of tap time in children with and without ADHD across a larger age range (5-12 years) of children. METHODS One-hundred and forty-eight children with ADHD and 112 age- and sex-matched typically developing (TD) children completed a finger sequencing task. Mirror overflow, SD of tap time, and mean tap time were measured using finger twitch transducers. RESULTS Results reveal a significant diagnostic effect on mirror overflow such that boys and girls with ADHD demonstrate increased overflow compared to same-sex TD children. Boys with ADHD demonstrated more variable tap times compared to TD boys; no diagnostic effect was observed in the girls. CONCLUSIONS Boys with ADHD exhibit anomalous motor variability; girls with ADHD show similar levels of variability as TD girls. Boys and girls with ADHD exhibit similar levels of excessive mirror overflow. This lack of sex differences on mirror overflow is distinct from reports finding sex effects on overflow and could result from an examination of a broader age range than is included in prior reports. Adolescent data would provide a greater understanding of the trajectory of anomalous mirror overflow across development. Examination of functional and structural connectivity would expand the current understanding of the neurobiological foundation of motor overflow.
Collapse
|
14
|
McNerney KM, Kaliyappan K, Wack DS, Muthaiah VPK. The Influence of Motoric Maneuvers on Cervical Vestibular Evoked Myogenic Potentials (cVEMPs). J Am Acad Audiol 2022; 33:134-141. [PMID: 36216040 DOI: 10.1055/s-0041-1739535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND The cervical vestibular evoked myogenic potential (cVEMP) is a vestibular response that is produced by the saccule in response to intense, often low-frequency, short-duration auditory stimuli, and is typically recorded from a contracted sternocleidomastoid (SCM) muscle. Previous research has shown that the amplitude of the cVEMP is related to the amount of SCM electromyographic (EMG) activity. PURPOSE The aim of this study was to determine the influence of various remote motoric maneuvers on the amplitude of the cVEMP, as well as whether they influence the level of SCM EMG activity. RESEARCH DESIGN The cVEMP was recorded from the left SCM muscle to left ear stimulation, in response to the SCM condition, as well as three different motoric maneuvers (jaw clench, eye closure, and the Jendrassik maneuver). EMG activity was also varied between 50, 75, and 100% of maximal EMG activity. STUDY SAMPLE Data from 14 healthy subjects, with a mean age of 25.57 years (standard deviation = 5.93 years), was included in the present study. DATA COLLECTION AND ANALYSIS Mean latency and amplitude of the cVEMP were compared across the four conditions and varying magnitudes of EMG contraction. SPSS 26 was used to statistically analyze the results. RESULTS cVEMP latency did not vary across condition. cVEMP amplitude decreased with decreasing EMG magnitude. SCM contraction with jaw clench produced the largest increase in cVEMP amplitude; however, this condition was not significantly different from the SCM condition alone. SCM contraction with the Jendrassik maneuver produced a cVEMP amplitude that was similar and not statistically different from SCM contraction alone, and the addition of the eye closure maneuver to SCM contraction resulted in the lowest cVEMP amplitude, which was found to be statistically different from the standard SCM condition at 100 and 75% EMG activity. The amplitude relationship across the conditions was not found to vary with changes in EMG activity; however, a significant increase in EMG amplitude was found during the 50% muscle contraction condition when subjects performed the Jendrassik maneuver in addition to the standard SCM contraction. CONCLUSIONS The addition of the eye closure maneuver to SCM contraction resulted in a significant decrease in cVEMP amplitude, while the addition of the Jendrassik maneuver resulted in a significant increase in EMG activity at the lowest level of SCM activation (i.e., 50%). Additional research is necessary to determine how motoric maneuvers influence the cVEMP amplitude, and whether the results are also dependent on how SCM contraction is being produced (e.g., while supine vs. sitting).
Collapse
Affiliation(s)
| | - Kathiravan Kaliyappan
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - David S Wack
- Department of Speech-Language Pathology, SUNY Buffalo State, Buffalo, NY
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY
| | | |
Collapse
|
15
|
Tisseyre J, Cremoux S, Amarantini D, Tallet J. Increased intensity of unintended mirror muscle contractions after cervical spinal cord injury is associated with changes in interhemispheric and corticomuscular coherences. Behav Brain Res 2022; 417:113563. [PMID: 34499938 DOI: 10.1016/j.bbr.2021.113563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
Mirror contractions refer to unintended contractions of the contralateral homologous muscles during voluntary unilateral contractions or movements. Exaggerated mirror contractions have been found in several neurological diseases and indicate dysfunction or lesion of the cortico-spinal pathway. The present study investigates mirror contractions and the associated interhemispheric and corticomuscular interactions in adults with spinal cord injury (SCI) - who present a lesion of the cortico-spinal tract - compared to able-bodied participants (AB). Eight right-handed adults with chronic cervical SCI and ten age-matched right-handed able-bodied volunteers performed sets of right elbow extensions at 20% of maximal voluntary contraction. Electromyographic activity (EMG) of the right and left elbow extensors, interhemispheric coherence over cerebral sensorimotor regions evaluated by electroencephalography (EEG) and corticomuscular coherence between signals over the cerebral sensorimotor regions and each extensor were quantified. Overall, results revealed that participants with SCI exhibited (1) increased EMG activity of both active and unintended active limbs, suggesting more mirror contractions, (2) reduced corticomuscular coherence between signals over the left sensorimotor region and the right active limb and increased corticomuscular coherence between the right sensorimotor region and the left unintended active limb, (3) decreased interhemispheric coherence between signals over the two sensorimotor regions. The increased corticomuscular communication and decreased interhemispheric communication may reflect a reduced inhibition leading to increased communication with the unintended active limb, possibly resulting to exacerbated mirror contractions in SCI. Finally, mirror contractions could represent changes of neural and neuromuscular communication after SCI.
Collapse
Affiliation(s)
- Joseph Tisseyre
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - Sylvain Cremoux
- CerCo, CNRS, UMR5549, Université de Toulouse, 31052 Toulouse, France
| | - David Amarantini
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
16
|
Luo Y, Chen C, Adamek JH, Crocetti D, Mostofsky SH, Ewen JB. Altered cortical activation associated with mirror overflow driven by non-dominant hand movement in attention-deficit/hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110433. [PMID: 34454990 PMCID: PMC9125807 DOI: 10.1016/j.pnpbp.2021.110433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/15/2022]
Abstract
Mirror overflow is involuntary movement that accompanies unilateral voluntary movement on the opposite side of the body, and is commonly seen in Attention-Deficit/Hyperactivity Disorder (ADHD). Children with ADHD show asymmetry in mirror overflow between dominant and non-dominant hand, yet there are competing mechanistic accounts of why this occurs. Using EEG during a sequential, unimanual finger-tapping task, we found that children with ADHD exhibited significantly more mirror overflow than typically developing (TD) controls, especially during the tapping of the non-dominant hand. Furthermore, source-level EEG oscillation analysis revealed that children with ADHD showed decreased alpha (8-12 Hz) event-related desynchronization (ERD) compared with controls in both hemispheres, but only during tapping of the non-dominant hand. Moreover, only the ERD ipsilateral to the mirror overflow during non-dominant hand movement correlated with both magnitude of overflow movements and higher ADHD symptom severity (Conners ADHD Hyperactivity/Impulsiveness scale) in children with ADHD. TD controls did not show these relationships. Our findings suggest that EEG differences in finger-tapping in ADHD are related primarily to voluntary movement in the non-dominant hand. Our results are also consistent with the Ipsilateral Corticospinal Tract (CST) Hypothesis, which posits that the atypical persistence of mirror overflow in ADHD may originate in the sensorimotor areas ipsilateral to mirror overflow and be transmitted via non-decussating CST fibers.
Collapse
Affiliation(s)
- Yu Luo
- School of Biological Science and Medical Engineering, Beihang University, Beijing, BJ, China; Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | - Stewart H Mostofsky
- Kennedy Krieger Institute, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua B Ewen
- Kennedy Krieger Institute, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Liu P, Yuan Y, Zhang N, Liu X, Yu L, Luo B. Mirror Movements in Acquired Neurological Disorders: A Mini-Review. Front Neurol 2021; 12:736115. [PMID: 34616356 PMCID: PMC8488104 DOI: 10.3389/fneur.2021.736115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Mirror movements (MMs) are specifically defined as involuntary movements occurring on one side of homologous muscles when performing unilateral movements with the contralateral limb. MMs have been considered a kind of soft neurological signs, and the persistence or reappearance of MMs in adults is usually pathologic. In addition to some congenital syndrome, MMs have been also described in age-related neurological diseases including pyramidal system diseases (e.g., stroke, amyotrophic lateral sclerosis) and extrapyramidal disorders (e.g., Parkinson's disease, essential tremor). With the advances in instrumentation and detection means, subtle or subclinical MMs have been deeply studied. Furthermore, the underlying mechanism is also being further elucidated. In this mini-review, we firstly discuss the MM examination means, and then review the literature regarding MMs in individuals with acquired neurological disorders, in order to further understand the pathogenesis of MMs.
Collapse
Affiliation(s)
- Ping Liu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Yuan
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Zhang
- Department of Neurology, Pujiang People's Hospital, Jinhua, China
| | - Xiaoyan Liu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Yu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benyan Luo
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Colomer-Poveda D, Zijdewind I, Dolstra J, Márquez G, Hortobágyi T. Voluntary suppression of associated activity decreases force steadiness in the active hand. Eur J Neurosci 2021; 54:5075-5091. [PMID: 34184345 DOI: 10.1111/ejn.15371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
Unilateral muscle contractions are often accompanied by the activation of the ipsilateral hemisphere, producing associated activity (AA) in the contralateral homologous muscles. However, the functional role of AA is not fully understood. We determined the effects of voluntary suppression of AA in the first dorsal interosseous (FDI), on force steadiness during a constant force isometric contraction of the contralateral FDI. Participants (n = 17, 25.5 years) performed two trials of isometric FDI contractions as steadily as possible. In Trial 1, they did not receive feedback or explicit instructions for suppressing the AA in the contralateral homologous FDI. In Trial 2, participants received feedback and were asked to voluntarily suppress the AA in the contralateral nontarget FDI. During both trials, corticospinal excitability and motor cortical inhibition were measured. The results show that participants effectively suppressed the AA in the nontarget contralateral FDI (-71%), which correlated with reductions in corticospinal excitability (-57%), and the suppression was also accompanied by increases in inhibition (27%) in the ipsilateral motor cortex. The suppression of AA impaired force steadiness, but the decrease in force steadiness did not correlate with the magnitude of suppression. The results show that voluntary suppression of AA decreases force steadiness in the active hand. However, due to the lack of association between suppression and decreased steadiness, we interpret these data to mean that specific elements of the ipsilateral brain activation producing AA in younger adults are neither contributing nor detrimental to unilateral motor control during a steady isometric contraction.
Collapse
Affiliation(s)
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jurian Dolstra
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruna, Spain
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, Pécs, Hungary.,Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| |
Collapse
|
19
|
Tisseyre J, Amarantini D, Tallet J. Behavioural and cerebral asymmetries of mirror movements are specific to rhythmic task and related to higher attentional and executive control. Behav Brain Res 2021; 412:113429. [PMID: 34175358 DOI: 10.1016/j.bbr.2021.113429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
Mirror movements (MM) refer to the involuntary movements or contractions occurring in homologous muscles contralateral to the unilateral voluntary movements. This behavioural manifestation increases in elderly. In right-handed adults, some studies report asymmetry in MM production, with greater MM in the right dominant hand during voluntary movements of the left non-dominant hand than the opposite. However, other studies report contradictory results, suggesting that MM asymmetry could depend on the characteristics of the task. The present study investigates the behavioural asymmetry of MM and its associated cerebral correlates during a rhythmic task and a non-rhythmic task using low-force contractions (i.e., 25 % MVC). We determined the quantity and the intensity of MM using electromyography (EMG) and cerebral correlates through electroencephalography (EEG) in right-handed healthy young and middle-aged adults during unimanual rhythmic vs. non-rhythmic tasks. Overall, results revealed (1) behavioural asymmetry of MM specific to the rhythmic task and irrespective of age, (2) cerebral asymmetry of motor activations specific to the rhythmic task and irrespective of age and (3) greater attentional and executive activations in the rhythmic task compared to the non-rhythmic task. In line with our hypotheses, behavioural and cerebral motor asymmetries of MM seem to be specific to the rhythmic task. Results are discussed in terms of cognitive-motor interactions: greater attentional and executive control required in the rhythmic tasks could contribute to the increased occurrence of involuntary movements in both young and middle-aged adults.
Collapse
Affiliation(s)
- Joseph Tisseyre
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - David Amarantini
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
20
|
Fader L, Nyland J, Li H, Pyle B, Yoshida K. Radial nerve palsy following humeral shaft fracture: a theoretical PNF rehabilitation approach for tendon and nerve transfers. Physiother Theory Pract 2021; 38:2284-2294. [PMID: 34156922 DOI: 10.1080/09593985.2021.1938310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background:Humerus fracture-induced radial nerve injury can create severe and permanent disabilities. Purpose:Surgical management often relies on either tendon or nerve transfer. Regardless of which procedure is selected, physical therapists are challenged to restore functional outcomes without jeopardizing repair healing. Through synergistic, multi planar upper extremity movement patterns, neuromuscular irradiation, or overflow, and neuroplasticity, proprioceptive neuromuscular facilitation (PNF) may improve strength, range of motion and tone. Methods:After reviewing the literature, a five phase PNF-based treatment approach is proposed with timing differences based on the selected procedure. Findings:Phase I (2 or 4 weeks pre-surgery for tendon or nerve transfer, respectively) consists of comprehensive patient education; Phase II (4-6 or 1-2 weeks post-surgery for tendon or nerve transfer, respectively) explores variable duration peripheral and central nervous system motor learning during isometric activation to enhance central neuroplasticity; Phase III (7-12 or 3-20 weeks post-surgery for tendon or nerve transfer, respectively) incorporates low-intensity motor control including contralateral isotonic upper extremity loading to maximize overflow and neuroplastic effects; Phase IV (13-26 or 21-52 weeks post-surgery for tendon or nerve transfer, respectively) adds high-intensity strength and motor control using ipsilateral isotonic upper extremity loading to maximize overflow and neuroplastic effects. Phase V (27-52 or 53-78 weeks post-surgery for tendon or nerve transfer, respectively) progresses to more activity of daily living, vocational, or sport-specific training with higher intensity strength and motor control tasks. Conclusions:Through manually guided synergistic, multi planar movement, overflow, and neuroplasticity, a PNF treatment approach may optimize neuromuscular recovery. Validation strategies to confirm clinical treatment efficacy are discussed.
Collapse
Affiliation(s)
- Lauren Fader
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - John Nyland
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA.,Athletic Training Program, Kosair Charities College of Health and Natural Sciences, Spalding University, Louisville, KY, USA
| | - Hao Li
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, PR, China
| | - Brandon Pyle
- Athletic Training Program, Kosair Charities College of Health and Natural Sciences, Spalding University, Louisville, KY, USA
| | - Kei Yoshida
- Athletic Training Program, Kosair Charities College of Health and Natural Sciences, Spalding University, Louisville, KY, USA
| |
Collapse
|
21
|
Das A, Mock J, Huang Y, Golob E, Najafirad P. Interpretable Self-Supervised Facial Micro-Expression Learning to Predict Cognitive State and Neurological Disorders. PROCEEDINGS OF THE ... AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE. AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE 2021; 35:818-826. [PMID: 34221694 PMCID: PMC8252663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human behavior is the confluence of output from voluntary and involuntary motor systems. The neural activities that mediate behavior, from individual cells to distributed networks, are in a state of constant flux. Artificial intelligence (AI) research over the past decade shows that behavior, in the form of facial muscle activity, can reveal information about fleeting voluntary and involuntary motor system activity related to emotion, pain, and deception. However, the AI algorithms often lack an explanation for their decisions, and learning meaningful representations requires large datasets labeled by a subject-matter expert. Motivated by the success of using facial muscle movements to classify brain states and the importance of learning from small amounts of data, we propose an explainable self-supervised representation-learning paradigm that learns meaningful temporal facial muscle movement patterns from limited samples. We validate our methodology by carrying out comprehensive empirical study to predict future speech behavior in a real-world dataset of adults who stutter (AWS). Our explainability study found facial muscle movements around the eyes (p <0.×001) and lips (p <0.001) differ significantly before producing fluent vs. disfluent speech. Evaluations using the AWS dataset demonstrates that the proposed self-supervised approach achieves a minimum of 2.51% accuracy improvement over fully-supervised approaches.
Collapse
Affiliation(s)
- Arun Das
- Secure AI and Autonomy Laboratory, University of Texas at San Antonio
| | - Jeffrey Mock
- Cognitive Neuroscience Laboratory, University of Texas at San Antonio
| | - Yufei Huang
- Secure AI and Autonomy Laboratory, University of Texas at San Antonio
| | - Edward Golob
- Cognitive Neuroscience Laboratory, University of Texas at San Antonio
| | - Peyman Najafirad
- Secure AI and Autonomy Laboratory, University of Texas at San Antonio
| |
Collapse
|
22
|
Fahr A, Keller JW, Balzer J, Lieber J, van Hedel HJA. Quantifying age-related differences in selective voluntary motor control in children and adolescents with three assessments. Hum Mov Sci 2021; 77:102790. [PMID: 33798928 DOI: 10.1016/j.humov.2021.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Neurophysiological development of selective voluntary motor control (SVMC) is assumed but has not been quantified objectively. We assessed SVMC with (i) clinical assessments, (ii) a combination of these assessments with surface electromyography (sEMG) and, (iii) a playful computer game. The aim of this study was to describe and compare age-related differences in SVMC, quantified with these tools, in neurologically intact children, adolescents, and adults. METHODS We measured upper and lower extremity SVMC with three assessments in 31 children and adolescents. A sample of 33 and 31 adults provided reference values for the upper and lower extremity assessments, respectively. The Selective Control of the Upper Extremity Scale (SCUES) or the Selective Control Assessment of the Lower Extremity (SCALE) were combined with simultaneous sEMG recordings. We quantified SVMC by a similarity index that compared an individual's muscle activation pattern with those of an adult reference group. The SVMC Assessgame required isolated joint movements to steer an avatar and quantified the accuracy of the selective movement and the extent of involuntary movements occurring in not involved joints. RESULTS Results from the conventional clinical assessments correlated low to moderately with age (SCUES: r = 0.55, p = 0.013; SCALE: r = 0.44, p = 0.001), while the correlation between the sEMG based similarity index and age was negligible (r ≤ 0.25). The outcomes of the Assessgame correlated highly with age (r ≥ 0.80, p ≤ 0.001). Older children and adolescents performed movements more accurately and with fewer involuntary movements compared to younger participants. CONCLUSIONS The tools assess and quantify SVMC differently, affecting the way they capture age-related differences in SVMC. Some assessments require reference values from neurologically intact children and adolescents to correctly classify impairments of SVMC in patients with neuromotor disorders.
Collapse
Affiliation(s)
- Annina Fahr
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland; Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland; ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland.
| | - Jeffrey W Keller
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland; Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland; Doctoral Program Clinical Science, Faculty of Medicine, University of Zurich, University of Zurich Dean's Office Office of the Board of Directors of the Academic Medicine Zurich (UMZH), Pestalozzistrasse 3/5, 8091 Zurich, Switzerland.
| | - Julia Balzer
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland; Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland.
| | - Jan Lieber
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland; Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland.
| | - Hubertus J A van Hedel
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910 Affoltern am Albis, Switzerland; Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032 Zürich, Switzerland.
| |
Collapse
|
23
|
Crasta JE, Zhao Y, Seymour KE, Suskauer SJ, Mostofsky SH, Rosch KS. Developmental trajectory of subtle motor signs in attention-deficit/hyperactivity disorder: A longitudinal study from childhood to adolescence. Child Neuropsychol 2020; 27:317-332. [PMID: 33243074 DOI: 10.1080/09297049.2020.1847265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study examined the developmental trajectory of neurodevelopmental motor signs among boys and girls with attention-deficit/hyperactivity disorder (ADHD) and typically-developing (TD) children. Seventy children with ADHD and 48 TD children, aged 8-17 years, were evaluated on at least two time-points using the Physical and Neurological Assessment of Subtle Signs (PANESS). Age-related changes in subtle motor signs (overflow, dysrhythmia, speed) were modeled using linear mixed-effects models to compare the developmental trajectories among four subgroups (ADHD girls and boys and TD girls and boys). Across visits, both boys and girls with ADHD showed greater overflow, dysrhythmia, and slower speed on repetitive motor tasks compared to TD peers; whereas, only girls with ADHD were slower on sequential motor tasks than TD girls. Developmental trajectory analyses revealed a greater reduction in overflow with age among boys with ADHD than TD boys; whereas, trajectories did not differ among girls with and without ADHD, or among boys and girls with ADHD. For dysrhythmia and speed, there were no trajectory differences between the subgroups, with all groups showing similar reductions with age. Children with ADHD show developmental trajectories of subtle motor signs that are consistent with those of TD children, with one clear exception: Boys with ADHD show more significant reductions in overflow from childhood to adolescence than do their TD peers. Our findings affirm the presence of subtle motor signs in children with ADHD and suggest that some of these signs, particularly motor overflow in boys, resolve through adolescence while dysrhythmia and slow speed, may persist.
Collapse
Affiliation(s)
- Jewel E Crasta
- Occupational Therapy Division, The Ohio State University, Columbus, OH, USA
| | - Yi Zhao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karen E Seymour
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mental Health, Bloomberg School of Public Health, Baltimore, MD, USA.,Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stacy J Suskauer
- Brain Injury Clinical Research Center, Kennedy Krieger Institute, Baltimore, MD, USA.,Departments of Physical Medicine & Rehabilitation and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stewart H Mostofsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keri S Rosch
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
24
|
McGrath R, Vincent BM, Jurivich DA, Hackney KJ, Tomkinson GR, Dahl LJ, Clark BC. Handgrip Strength Asymmetry and Weakness Together Are Associated With Functional Disability in Aging Americans. J Gerontol A Biol Sci Med Sci 2020; 76:291-296. [DOI: 10.1093/gerona/glaa100] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Evaluating handgrip strength (HGS) asymmetry may help to improve the prognostic value of HGS. This study sought to determine the associations of HGS asymmetry and weakness on future activities of daily living (ADL) disability in a national sample of aging Americans.
Methods
The analytic sample included 18,468 Americans aged ≥50 years from the 2006–2016 waves of the Health and Retirement Study. A handgrip dynamometer measured HGS. Those with HGS >10% stronger on either hand were considered as having any HGS asymmetry. Individuals with HGS >10% stronger on their dominant hand were considered as having dominant HGS asymmetry, while those with HGS >10% stronger on their nondominant hand were classified as having nondominant HGS asymmetry. Men with HGS <26 kg and women with HGS <16 kg were considered weak. ADLs were self-reported. Generalized estimating equations were used for analyses.
Results
Relative to those with symmetric HGS and no weakness, each HGS asymmetry and weakness group had increased odds for future ADL disability: 1.11 (95% confidence interval [CI]: 1.02–1.20) for any HGS asymmetry alone, 1.42 (CI: 1.16–1.74) for weakness alone, and 1.81 (CI: 1.52–2.16) for both any HGS asymmetry and weakness. Most weakness and HGS asymmetry dominance groups had increased odds for future ADL disability: 1.30 (CI: 1.13–1.50) for nondominant HGS asymmetry alone, 1.42 (CI: 1.16–1.74) for weakness alone, 1.72 (CI: 1.29–2.29) for both weakness and nondominant HGS asymmetry, and 1.86 (CI: 1.52–2.28) for both weakness and dominant HGS asymmetry.
Conclusions
HGS asymmetry and weakness together may increase the predictive utility of handgrip dynamometers.
Collapse
Affiliation(s)
- Ryan McGrath
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo
| | | | | | - Kyle J Hackney
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo
| | - Grant R Tomkinson
- Department of Education, Health and Behavior Studies, University of North Dakota, Grand Forks
- Alliance for Research in Exercise, Nutrition and Activity, School of Health Sciences, University of South Australia, Adelaide, Australia
| | - Lindsey J Dahl
- Department of Geriatrics, University of North Dakota, Grand Forks
| | - Brian C Clark
- Department of Biomedical Sciences, Ohio University, Athens
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens
| |
Collapse
|
25
|
Hand Knob Area of Premotor Cortex Represents the Whole Body in a Compositional Way. Cell 2020; 181:396-409.e26. [PMID: 32220308 DOI: 10.1016/j.cell.2020.02.043] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/12/2019] [Accepted: 02/18/2020] [Indexed: 02/08/2023]
Abstract
Decades after the motor homunculus was first proposed, it is still unknown how different body parts are intermixed and interrelated in human motor cortical areas at single-neuron resolution. Using multi-unit recordings, we studied how face, head, arm, and leg movements are represented in the hand knob area of premotor cortex (precentral gyrus) in people with tetraplegia. Contrary to traditional expectations, we found strong representation of all movements and a partially "compositional" neural code that linked together all four limbs. The code consisted of (1) a limb-coding component representing the limb to be moved and (2) a movement-coding component where analogous movements from each limb (e.g., hand grasp and toe curl) were represented similarly. Compositional coding might facilitate skill transfer across limbs, and it provides a useful framework for thinking about how the motor system constructs movement. Finally, we leveraged these results to create a whole-body intracortical brain-computer interface that spreads targets across all limbs.
Collapse
|
26
|
Wang S, Chen X, Zhuang R, Yang Z, Jiang W, Wang T. Flexors activity of affected upper extremity in stroke patients during different standing conditions and their relationships with clinical scales: a cross-sectional study. Neurol Res 2020; 42:244-252. [PMID: 32048562 DOI: 10.1080/01616412.2020.1723312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To explore the flexors activity of affected upper extremity in stroke patients during different standing conditions and their relationships with clinical scales.Materials and methods: Sixteen stroke patientswere recruited, all subjects stood on balance equipment with four different standing postures. The electromyogram (EMG) simultaneously recorded the muscle activity of bilateral biceps brachii, triceps brachii, flexor carpi radialis and extensor carpi radialis and their integrated electromyogram were figured out the contraction rate of elbow flexors(biceps brachii/triceps brachii) and wrist flexors(flexor carpi radialis/extensor carpi radialis). All subjects were assessed using Fugl-Meyer Assessment of the Upper Extremity (FMA-UE), Berg Balance Scale (BBS), Barthel Index (BI) and Modified Ashworth Scale (MAS).Results: The contraction rate of affected elbow flexors in the condition of feet together on soft surface was significantly higher than that in the condition of feet separatedon hard surface (P < 0.05). The contraction rate of affected elbow flexors in four standing conditions tended to increase, all the values of which were greater than numerical value1. The difference in the contraction rate of elbow flexor between the affected side and the unaffected side was statistically significant (P < 0.05). No correlation was observed between the contraction rate of the elbow flexor and the results of MAS, FMA-UE, BBS and BI regardless of the standing conditions.Conclusions: The contraction rates of elbowflexor in the affected side increase with the difficulty in different standing postures,and it may be a good index to reflect the changes of muscle tone in postural control.
Collapse
Affiliation(s)
- Sheng Wang
- Nanjing Medical University, Nanjing, China.,Department of Rehabilitation Medicine, The Affiliated Suzhou Science&Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Xin Chen
- Department of Rehabilitation Medicine, Rui Jin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren Zhuang
- Rehabilitation Medicine Center, Changzhou De'an Hospital, Changzhou, China
| | - Zhiwei Yang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Science&Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | | | - Tong Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
|
28
|
Nisand M, Callens C, Destieux C, Dyer JO, Chanson JB, Sauleau E, Mutter C. Baropodometric quantification and implications of muscle coactivation in the lower limbs caused by head movement: A prospective study. J Bodyw Mov Ther 2020; 24:228-234. [DOI: 10.1016/j.jbmt.2019.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 11/30/2022]
|
29
|
McAuliffe D, Hirabayashi K, Adamek JH, Luo Y, Crocetti D, Pillai AS, Zhao Y, Crone NE, Mostofsky SH, Ewen JB. Increased mirror overflow movements in ADHD are associated with altered EEG alpha/beta band desynchronization. Eur J Neurosci 2019; 51:1815-1826. [PMID: 31821643 DOI: 10.1111/ejn.14642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Children with ADHD show developmentally abnormal levels of mirror overflow-unintentional movements occurring symmetrically opposite of intentional movements. Because mirror overflow correlates with ADHD behavioral symptoms, the study of disinhibition in motor control may shed light on physiologic mechanisms underlying impaired behavioral/cognitive control. This is a case-controlled study of EEG recording from 25 children with ADHD and 25 typically developing (TD) controls performing unilateral sequential finger tapping, with overflow movements measured using electronic goniometers. Consistent with previously published findings, children with ADHD showed increased mirror overflow as compared with TD peers. EEG findings revealed less lateralized alpha modulation (event-related desynchronization; ERD) and decreased magnitude of beta ERD in ADHD; both alpha and beta ERD reflect cortical activation. Moderation analysis revealed a significant association between beta ERD and overflow, independent of diagnosis; and an equivocal (p = .08) effect of diagnosis on the relationship between alpha ERD and overflow, with a significant effect in children with ADHD but not TD children. These results suggest two mechanisms involved with mirror overflow: one reflected in beta ipsilateral to the intentional movement and relevant to both children with ADHD and controls, and the other seemingly more specific to ADHD (alpha, contralateral to movement).
Collapse
Affiliation(s)
| | | | | | - Yu Luo
- Kennedy Krieger Institute, Baltimore, MD, USA.,Beihan University, Beijing, China
| | | | - Ajay S Pillai
- Kennedy Krieger Institute, Baltimore, MD, USA.,Johns Hopkins University, Baltimore, MD, USA
| | - Yi Zhao
- Johns Hopkins University, Baltimore, MD, USA
| | | | - Stewart H Mostofsky
- Kennedy Krieger Institute, Baltimore, MD, USA.,Johns Hopkins University, Baltimore, MD, USA
| | - Joshua B Ewen
- Kennedy Krieger Institute, Baltimore, MD, USA.,Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
30
|
Crasta JE, Sibel J, Slomine BS, Mahone EM, Mostofsky SH, Suskauer SJ. Subtle Motor Signs in Children With Chronic Traumatic Brain Injury. Am J Phys Med Rehabil 2019; 98:737-744. [PMID: 30550451 PMCID: PMC6986431 DOI: 10.1097/phm.0000000000001110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study was to characterize subtle motor signs in children with moderate-severe traumatic brain injury in the chronic phase of injury. DESIGN Fourteen children with moderate (n = 6) or severe (n = 8) traumatic brain injury, ages 11-18 yrs, who had sustained their injury at least 1-yr before study participation (range 1-14 yrs since injury), and 14 matched typically developing controls were examined using the Physical and Neurological Examination of Subtle Signs (PANESS). To examine the neural correlates of subtle motor signs, measures of total cerebral volume and motor/premotor volume were derived from magnetic resonance imaging. RESULTS Children with traumatic brain injury had significantly poorer PANESS performance than controls on the total timed subscore, proximal overflow, and the PANESS total score. Participants with severe traumatic brain injury had greater proximal overflow than those with moderate injury, after controlling for age at injury. Across all participants, greater proximal overflow correlated with reduced total cerebral volume, whereas within the traumatic brain injury group, reduced motor/premotor volume correlated with lower PANESS total score. CONCLUSIONS The study highlights the importance of examining subtle motor signs including overflow during clinical evaluation of chronic pediatric traumatic brain injury and establishes the clinical utility of the PANESS as a measure sensitive to chronic subtle motor signs in this population. TO CLAIM CME CREDITS Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) Define subtle motor signs including motor overflow; (2) Identify subtle motor signs such as motor overflow during clinical evaluation of children with brain injury; and (3) Explain the relevance of examining subtle motor signs in chronic pediatric brain injury during clinical evaluations. LEVEL Advanced. ACCREDITATION The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.The Association of Academic Physiatrists designates this Journal-based CME activity for a maximum of 1.0 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.
Collapse
Affiliation(s)
- Jewel E Crasta
- From the Kennedy Krieger Institute, Baltimore, Maryland (JEC, JS, BSS, EMM, SHM, SJS); Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland (JEC, BSS, SJS); Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland (SHM); Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (SJS); and Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (BSS, EMM)
| | | | | | | | | | | |
Collapse
|
31
|
Tallet J. Importance of assessing the intermanual asymmetry of mirror movements in paediatric hemiparesis. Dev Med Child Neurol 2019; 61:863-864. [PMID: 30761527 DOI: 10.1111/dmcn.14195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jessica Tallet
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
32
|
Groeschel S, Holmström L, Northam G, Tournier JD, Baldeweg T, Latal B, Caflisch J, Vollmer B. Motor Abilities in Adolescents Born Preterm Are Associated With Microstructure of the Corpus Callosum. Front Neurol 2019; 10:367. [PMID: 31040815 PMCID: PMC6476930 DOI: 10.3389/fneur.2019.00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/25/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Preterm birth is associated with increased risk of neuromotor impairment. Rates of major neuromotor impairment (cerebral palsy) have decreased; however, in a large proportion of those who do not develop cerebral palsy impaired neuromotor function is observed and this often has implications for everyday life. The aim of this study was to investigate motor performance in preterm born adolescents without cerebral palsy, and to examine associations with alterations of motor system pathway structure. Design/Methods: Thirty-two adolescents (12 males) without cerebral palsy, born before 33 weeks of gestation (mean 27.4 weeks, SD 2.4; birth weight mean 1,084.5 g; SD 387.2), treated at a single tertiary unit, were assessed (median age 16 years; min 14, max 18). Timed performance and quality of movements were assessed with the Zürich Neuromotor Assessment. Neuroimaging included Diffusion Magnetic Resonance Imaging for tractography of the major motor tracts and measurement of fractional anisotropy as a measure of microstructure of the tracts along the major motor pathways. Separate analyses were conducted for areas with predominantly single and predominantly crossing fiber regions. Results: Motor performance in both tasks assessing timed performance and quality of movements, was poorer than expected in the preterm group in relation to norm population. The strongest significant correlations were seen between performance in tasks assessing movement quality and fractional anisotropy in corpus callosum fibers connecting primary motor, primary somatosensory and premotor areas. In addition, timed motor performance was significantly related to fractional anisotropy in the cortico-spinal and thalamo-cortical to premotor area fibers, and the corpus callosum. Conclusions: Impairments in motor abilities are present in preterm born adolescents without major neuromotor impairment and in the absence of focal brain injury. Altered microstructure of the corpus callosum microstructure appears a crucial factor, in particular for movement quality.
Collapse
Affiliation(s)
- Samuel Groeschel
- Department of Child Neurology, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Linda Holmström
- Neuropaediatric Research Unit, Department of Women's and Children's Health, Karolinska Institutet Stockholm, Stockholm, Sweden
| | - Gemma Northam
- Developmental Neurosciences Programme, UCL Institute of Child Health, London, United Kingdom
| | - J-Donald Tournier
- Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical Engineering, Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Torsten Baldeweg
- Developmental Neurosciences Programme, UCL Institute of Child Health, London, United Kingdom
| | - Beatrice Latal
- Child Development Center and Children's Research Centre, University Children's Hospital Zürich, Zurich, Switzerland
| | - Jon Caflisch
- Child Development Center and Children's Research Centre, University Children's Hospital Zürich, Zurich, Switzerland
| | - Brigitte Vollmer
- Neuropaediatric Research Unit, Department of Women's and Children's Health, Karolinska Institutet Stockholm, Stockholm, Sweden.,Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
33
|
Tisseyre J, Marquet-Doléac J, Barral J, Amarantini D, Tallet J. Lateralized inhibition of symmetric contractions is associated with motor, attentional and executive processes. Behav Brain Res 2019; 361:65-73. [DOI: 10.1016/j.bbr.2018.12.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
34
|
Vanmechelen I, Bekteshi S, Bossier K, Feys H, Deklerck J, Monbaliu E. Presence and severity of dystonia and choreoathetosis overflow movements in participants with dyskinetic cerebral palsy and their relation with functional classification scales. Disabil Rehabil 2019; 42:1548-1555. [DOI: 10.1080/09638288.2018.1528637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Inti Vanmechelen
- Department of Rehabilitation Sciences, KU Leuven, Bruges, Belgium
| | - Saranda Bekteshi
- Department of Rehabilitation Sciences, KU Leuven, Bruges, Belgium
| | - Kyra Bossier
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Hilde Feys
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jan Deklerck
- Department of Rehabilitation Sciences, KU Leuven, Bruges, Belgium
| | - Elegast Monbaliu
- Department of Rehabilitation Sciences, KU Leuven, Bruges, Belgium
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Sweeney KL, Ryan M, Schneider H, Ferenc L, Denckla MB, Mahone EM. Developmental Trajectory of Motor Deficits in Preschool Children with ADHD. Dev Neuropsychol 2018; 43:419-429. [PMID: 29757012 PMCID: PMC5991607 DOI: 10.1080/87565641.2018.1466888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Motor deficits persisting into childhood (>7 years) are associated with increased executive and cognitive dysfunction, likely due to parallel neural circuitry. This study assessed the longitudinal trajectory of motor deficits in preschool children with ADHD, compared to typically developing (TD) children, in order to identify individuals at risk for anomalous neurological development. Participants included 47 children (21 ADHD, 26 TD) ages 4-7 years who participated in three visits (V1, V2, V3), each one year apart (V1=48-71 months, V2=60-83 months, V3=72-95 months). Motor variables assessed included speed (finger tapping and sequencing), total overflow, and axial movements from the Revised Physical and Neurological Examination for Subtle Signs (PANESS). Effects for group, visit, and group-by-visit interaction were examined. There were significant effects for group (favoring TD) for finger tapping speed and total axial movements, visit (performance improving with age for all 4 variables), and a significant group-by-visit interaction for finger tapping speed. Motor speed (repetitive finger tapping) and quality of axial movements are sensitive markers of anomalous motor development associated with ADHD in children as young as 4 years. Conversely, motor overflow and finger sequencing speed may be less sensitive in preschool, due to ongoing wide variations in attainment of these milestones.
Collapse
Affiliation(s)
- Kristie L Sweeney
- a Department of Neuropsychology , Kennedy Krieger Institute , Baltimore , MD , USA
| | - Matthew Ryan
- a Department of Neuropsychology , Kennedy Krieger Institute , Baltimore , MD , USA
| | - Heather Schneider
- a Department of Neuropsychology , Kennedy Krieger Institute , Baltimore , MD , USA
| | - Lisa Ferenc
- a Department of Neuropsychology , Kennedy Krieger Institute , Baltimore , MD , USA
| | | | | |
Collapse
|
36
|
Mirror Movements are Linked to Executive Control in Healthy and Brain-injured Adults. Neuroscience 2018; 379:246-256. [DOI: 10.1016/j.neuroscience.2018.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022]
|
37
|
Teixeira CVLS, Cortes DR, Evangelista AL, Polito LT, Bocalini DS, Costa PB, Simão R, Marchetti PH. Acute effects of maximal isometric muscle action of the elbow extensors on contralateral dynamic task of the elbow flexors: a pilot study. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Roberto Simão
- Universidade Federal do Rio de Janeiro, UFRJ, Brazil
| | | |
Collapse
|
38
|
Kakebeeke TH, Messerli-Bürgy N, Meyer AH, Zysset AE, Stülb K, Leeger-Aschmann CS, Schmutz EA, Arhab A, Puder JJ, Kriemler S, Munsch S, Jenni OG. Contralateral Associated Movements Correlate with Poorer Inhibitory Control, Attention and Visual Perception in Preschool Children. Percept Mot Skills 2017; 124:885-899. [PMID: 28699826 DOI: 10.1177/0031512517719190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Contralateral associated movements (CAMs) frequently occur in complex motor tasks. We investigated whether and to what extent CAMs are associated with inhibitory control among preschool children in the Swiss Preschoolers' Health Study. Participants were 476 healthy, typically developing children (mean age = 3.88 years; 251 boys) evaluated on two consecutive afternoons. The children performed the Zurich Neuromotor Assessment, the statue subtest of the Neuropsychological Assessment for Children (NEPSY), and cognitive tests of the Intelligence and Development Scales-Preschool (IDS-P). CAMs were associated with poor inhibitory control on the statue test and poor selective attention and visual perception on the IDS-P. We attributed these findings to preschoolers' general immaturity of the central nervous system.
Collapse
Affiliation(s)
- Tanja H Kakebeeke
- 1 Child Development Centre, University Children's Hospital Zurich, Zurich, Switzerland.,2 Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nadine Messerli-Bürgy
- 3 Department of Clinical Psychology and Psychotherapy, University of Fribourg, Fribourg, Switzerland.,4 Service of Endocrinology, Diabetes & Metabolism, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Andrea H Meyer
- 5 Department of Psychology, University of Basel, Basel, Switzerland
| | - Annina E Zysset
- 1 Child Development Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Kerstin Stülb
- 3 Department of Clinical Psychology and Psychotherapy, University of Fribourg, Fribourg, Switzerland
| | | | - Einat A Schmutz
- 6 Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Amar Arhab
- 4 Service of Endocrinology, Diabetes & Metabolism, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jardena J Puder
- 4 Service of Endocrinology, Diabetes & Metabolism, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.,7 Division of Pediatric Endocrinology, Diabetology and Obesity, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Susi Kriemler
- 6 Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Simone Munsch
- 3 Department of Clinical Psychology and Psychotherapy, University of Fribourg, Fribourg, Switzerland
| | - Oskar G Jenni
- 1 Child Development Centre, University Children's Hospital Zurich, Zurich, Switzerland.,2 Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Interplay between body stabilisation and quadriceps muscle activation capacity. J Electromyogr Kinesiol 2017; 34:44-49. [DOI: 10.1016/j.jelekin.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 10/30/2016] [Accepted: 03/10/2017] [Indexed: 11/22/2022] Open
|
40
|
Kakebeeke TH, Zysset AE, Messerli-Bürgy N, Chaouch A, Stülb K, Leeger-Aschmann CS, Schmutz EA, Arhab A, Rousson V, Kriemler S, Munsch S, Puder JJ, Jenni OG. Impact of age, sex, socioeconomic status, and physical activity on associated movements and motor speed in preschool children. J Clin Exp Neuropsychol 2017; 40:95-106. [DOI: 10.1080/13803395.2017.1321107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tanja H. Kakebeeke
- Child Development Centre, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Annina E. Zysset
- Child Development Centre, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Nadine Messerli-Bürgy
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Clinical Psychology and Psychotherapy, University of Fribourg, Fribourg, Switzerland
| | - Aziz Chaouch
- Division of Biostatistics, Institute of Social and Preventive Medicine, University Hospital, Lausanne, Switzerland
| | - Kerstin Stülb
- Department of Clinical Psychology and Psychotherapy, University of Fribourg, Fribourg, Switzerland
| | | | - Einat A. Schmutz
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Amar Arhab
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Valentin Rousson
- Division of Biostatistics, Institute of Social and Preventive Medicine, University Hospital, Lausanne, Switzerland
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Simone Munsch
- Department of Clinical Psychology and Psychotherapy, University of Fribourg, Fribourg, Switzerland
| | - Jardena J. Puder
- Endocrinology, Diabetes & Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Division of Pediatric Endocrinology, Diabetology and Obesity, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Oskar G. Jenni
- Child Development Centre, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Lifespan development of the bilateral deficit in a simple reaction time task. Exp Brain Res 2016; 235:985-992. [DOI: 10.1007/s00221-016-4856-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
42
|
Leinen P, Vieluf S, Kennedy D, Aschersleben G, Shea CH, Panzer S. Life span changes: Performing a continuous 1:2 bimanual coordination task. Hum Mov Sci 2016; 46:209-20. [PMID: 26800250 DOI: 10.1016/j.humov.2016.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/11/2023]
Abstract
The experiment was conducted to determine the influence of mirror movements in bimanual coordination during life span. Children, young adults, and older adults were instructed to perform a continuous 1:2 bimanual coordination task by performing flexion-extension wrist movements over 30s where symmetrical and non-symmetrical coordination patterns alternate throughout the trial. The vision of the wrists was covered and Lissajous-feedback was provided online. All age groups had to perform 10 trials under three different load conditions (0kg, .5kg, 1.0kg: order counterbalanced). Load was manipulated to determine if increased load increases the likelihood of mirror movements. The data indicated that the performance of the young adults was superior compared to the children and older adults. Children and older adults showed a stronger tendency to develop mirror movements and had particular difficulty in performing the non-symmetrical mode. This type of influence may be attributed to neural crosstalk.
Collapse
Affiliation(s)
- Peter Leinen
- Institute of Sport Science, Saarland University, Saarbrücken, Germany
| | - Solveig Vieluf
- Institute of Sport Science, Saarland University, Saarbrücken, Germany; Aix-Marseille Université, CNRS, ISM UMR 7287, 13288 Marseille cedex 09, France
| | - Deanna Kennedy
- Human Performance Laboratory, College Station, Texas A&M University, USA
| | - Gisa Aschersleben
- Developmental Psychology Unit, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Charles H Shea
- Human Performance Laboratory, College Station, Texas A&M University, USA
| | - Stefan Panzer
- Institute of Sport Science, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
43
|
Manca A, Ginatempo F, Cabboi MP, Mercante B, Ortu E, Dragone D, De Natale ER, Dvir Z, Rothwell JC, Deriu F. No evidence of neural adaptations following chronic unilateral isometric training of the intrinsic muscles of the hand: a randomized controlled study. Eur J Appl Physiol 2016; 116:1993-2005. [DOI: 10.1007/s00421-016-3451-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/28/2016] [Indexed: 11/27/2022]
|
44
|
D'Souza H, Cowie D, Karmiloff-Smith A, Bremner AJ. Specialization of the motor system in infancy: from broad tuning to selectively specialized purposeful actions. Dev Sci 2016; 20. [PMID: 27255936 DOI: 10.1111/desc.12409] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/04/2016] [Indexed: 11/29/2022]
Abstract
In executing purposeful actions, adults select sufficient and necessary limbs. But infants often move goal-irrelevant limbs, suggesting a developmental process of motor specialization. Two experiments with 9- and 12-month-olds revealed gradual decreases in extraneous movements in non-acting limbs during unimanual actions. In Experiment 1, 9-month-olds produced more extraneous movements in the non-acting hand/arm and feet/legs than 12-month-olds. In Experiment 2, analysis of the spatiotemporal dynamics of infants' movements revealed developmental declines in the spatiotemporal coupling of movements between acting and non-acting arms. We also showed that the degree of specialization in infants' unimanual actions is associated with individual differences in motor experience and visual attention, indicating the experience-dependent and broad functional nature of these developmental changes. Our study provides important new insights into motor development: as in cognitive domains, motor behaviours are initially broadly tuned to their goal, becoming progressively specialized during the first year of life.
Collapse
Affiliation(s)
- Hana D'Souza
- Sensorimotor Development Research Unit, Department of Psychology, Goldsmiths, University of London, UK
| | | | - Annette Karmiloff-Smith
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, UK
| | - Andrew J Bremner
- Sensorimotor Development Research Unit, Department of Psychology, Goldsmiths, University of London, UK
| |
Collapse
|
45
|
Reliability of negative BOLD in ipsilateral sensorimotor areas during unimanual task activity. Brain Imaging Behav 2016; 9:245-54. [PMID: 24788334 DOI: 10.1007/s11682-014-9302-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Research using functional magnetic resonance imaging has for numerous years now reported the existence of a negative blood oxygenation level dependent (BOLD) response. Based on accumulating evidence, this negative BOLD signal appears to represent an active inhibition of cortical areas in which it is found during task activity. This particularly important with respect to motor function given that it is fairly well-established that, in younger adults, the ipsilateral sensorimotor cortex exhibits negative BOLD during unimanual movements in fMRI. This interhemispheric suppression of cortical activity may have useful implications for our understanding of both basic motor function and rehabilitation of injury or disease. However, to date, we are aware of no study that has tested the reliability of evoked negative BOLD in ipsilateral sensorimotor cortex in individuals across sessions. The current study employs a unimanual finger opposition task previously shown to evoke negative BOLD in ipsilateral sensorimotor cortex across three sessions. Reliability metrics across sessions indicates that both the magnitude and location of ipsilateral sensorimotor negative BOLD response is relatively stable over each of the three sessions. Moreover, the volume of negative BOLD in ipsilateral cortex was highly correlated with volume of positive BOLD activity in the contralateral primary motor cortex. These findings show that the negative BOLD signal can be reliably evoked in unimanual task paradigms, and that the signal dynamic could represent an active suppression of the ipsilateral sensorimotor cortex originating from the contralateral motor areas.
Collapse
|
46
|
Reissig P, Stöckel T, Garry MI, Summers JJ, Hinder MR. Age-Specific Effects of Mirror-Muscle Activity on Cross-Limb Adaptations Under Mirror and Non-Mirror Visual Feedback Conditions. Front Aging Neurosci 2015; 7:222. [PMID: 26648867 PMCID: PMC4664666 DOI: 10.3389/fnagi.2015.00222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/16/2015] [Indexed: 11/26/2022] Open
Abstract
Cross-limb transfer (CLT) describes the observation of bilateral performance gains due to unilateral motor practice. Previous research has suggested that CLT may be reduced, or absent, in older adults, possibly due to age-related structural and functional brain changes. Based on research showing increases in CLT due to the provision of mirror visual feedback (MVF) during task execution in young adults, our study aimed to investigate whether MVF can facilitate CLT in older adults, who are known to be more reliant on visual feedback for accurate motor performance. Participants (N = 53) engaged in a short-term training regime (300 movements) involving a ballistic finger task using their dominant hand, while being provided with either visual feedback of their active limb, or a mirror reflection of their active limb (superimposed over the quiescent limb). Performance in both limbs was examined before, during and following the unilateral training. Furthermore, we measured corticospinal excitability (using TMS) at these time points, and assessed muscle activity bilaterally during the task via EMG; these parameters were used to investigate the mechanisms mediating and predicting CLT. Training resulted in significant bilateral performance gains that did not differ as a result of age or visual feedback (both p > 0.1). Training also elicited bilateral increases in corticospinal excitability (p < 0.05). For younger adults, CLT was significantly predicted by performance gains in the trained hand (β = 0.47), whereas for older adults it was significantly predicted by mirror activity in the untrained hand during training (β = 0.60). The present study suggests that older adults are capable of exhibiting CLT to a similar degree to younger adults. The prominent role of mirror activity in the untrained hand for CLT in older adults indicates that bilateral cortical activity during unilateral motor tasks is a compensatory mechanism. In this particular task, MVF did not facilitate the extent of CLT.
Collapse
Affiliation(s)
- Paola Reissig
- Human Motor Control Laboratory, School of Medicine, Faculty of Health, University of Tasmania Hobart, TAS, Australia ; Faculty of Health Graduate Research Program, University of Tasmania Hobart, TAS, Australia
| | - Tino Stöckel
- Human Motor Control Laboratory, School of Medicine, Faculty of Health, University of Tasmania Hobart, TAS, Australia ; Sport and Exercise Psychology Unit, Department of Sport Science, University of Rostock Rostock, Germany
| | - Michael I Garry
- Human Motor Control Laboratory, School of Medicine, Faculty of Health, University of Tasmania Hobart, TAS, Australia
| | - Jeffery J Summers
- Human Motor Control Laboratory, School of Medicine, Faculty of Health, University of Tasmania Hobart, TAS, Australia ; School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University UK
| | - Mark R Hinder
- Human Motor Control Laboratory, School of Medicine, Faculty of Health, University of Tasmania Hobart, TAS, Australia
| |
Collapse
|
47
|
Blanchfield AW, Hardy J, De Morree HM, Staiano W, Marcora SM. Talking yourself out of exhaustion: the effects of self-talk on endurance performance. Med Sci Sports Exerc 2014; 46:998-1007. [PMID: 24121242 DOI: 10.1249/mss.0000000000000184] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The psychobiological model of endurance performance proposes that the perception of effort is the ultimate determinant of endurance performance. Therefore, any physiological or psychological factor affecting the perception of effort will affect endurance performance. Accordingly, this novel study investigated the effects of a frequently used psychological strategy, motivational self-talk (ST), on RPE and endurance performance. METHODS In a randomized between-group pretest-posttest design, 24 participants (mean ± SD age = 24.6 ± 7.5 yr, VO2max = 52.3 ± 8.7 mL·kg·min) performed two constant-load (80% peak power output) cycling time-to-exhaustion (TTE) tests, punctuated by a 2-wk ST intervention or a control phase. RESULTS A group (ST vs Control) × test (pretest vs posttest) mixed-model ANOVA revealed that ST significantly enhanced TTE test from pretest to posttest (637 ± 210 vs 750 ± 295 s, P < 0.05) with no change in the control group (486 ± 157 vs 474 ± 169 s). Moreover, a group × test × isotime (0%, 50%, and 100%) mixed-model ANOVA revealed a significant interaction for RPE, with follow-up tests showing that motivational self-talk significantly reduced RPE at 50% isotime (7.3 ± 0.6 vs 6.4 ± 0.8, P < 0.05), with no significant difference in the control group (6.9 ± 1.9 vs 7.0 ± 1.7). CONCLUSIONS This study is the first to demonstrate that ST significantly reduces RPE and enhances endurance performance. The findings support the psychobiological model of endurance performance and illustrate that psychobiological interventions designed to specifically target favorable changes in the perception of effort are beneficial to endurance performance. Consequently, this psychobiological model offers an important and novel perspective for future research investigations.
Collapse
Affiliation(s)
- Anthony William Blanchfield
- 1Institute for the Psychology of Elite Performance (IPEP), School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UNITED KINGDOM; 2Department of Medical and Clinical Psychology, Center of Research on Psychology in Somatic diseases (CoRPS), Tilburg University, Tilburg, THE NETHERLANDS; and 3Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Kent, UNITED KINGDOM
| | | | | | | | | |
Collapse
|
48
|
Kakebeeke TH, Egloff K, Caflisch J, Chaouch A, Rousson V, Largo RH, Jenni OG. Similarities and dissimilarities between the movement ABC-2 and the Zurich neuromotor assessment in children with suspected developmental coordination disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:3148-3155. [PMID: 25151604 DOI: 10.1016/j.ridd.2014.07.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 06/03/2023]
Abstract
An established tool for the assessment of motor performance in children with developmental coordination disorder (DCD) is the Movement-ABC-2 (M-ABC-2). The Zurich Neuromotor Assessment (ZNA) is also widely used for the evaluation of children's motor performance, but has not been compared with the M-ABC-2. Fifty-one children (39 males) between 5 and 7 years of age with suspected DCD were assessed using the M-ABC-2 and the ZNA. Rank correlations between scores of different test components were calculated. The structure of the tests was explored using canonical-correlation analysis. The correlation between total scores of the two motor tests was reasonable (0.66; p<0.001). However, ZNA scores were generally lower than those of M-ABC-2, due to poor performance in the fine motor adaptive component and increased contralateral associated movements (CAM). The canonical-correlation analysis revealed that ZNA measures components like pure motor skills and CAM that are not represented in the M-ABC-2. Furthermore, there was also no equivalent for the aiming and catching items of the M-ABC-2 in ZNA. The two tests measure different motor characteristics in children with suspected DCD and, thus, can be used complementary for the diagnosis of the disorder.
Collapse
Affiliation(s)
- Tanja H Kakebeeke
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland.
| | | | - Jon Caflisch
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland.
| | - Aziz Chaouch
- Statistical Unit, Institute of Social and Preventive Medicine, University Hospital, Lausanne, Switzerland.
| | - Valentin Rousson
- Statistical Unit, Institute of Social and Preventive Medicine, University Hospital, Lausanne, Switzerland.
| | - Remo H Largo
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland.
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
49
|
Morishita T, Kubota S, Hirano M, Funase K. Different modulation of short- and long-latency interhemispheric inhibition from active to resting primary motor cortex during a fine-motor manipulation task. Physiol Rep 2014; 2:2/10/e12170. [PMID: 25293600 PMCID: PMC4254095 DOI: 10.14814/phy2.12170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Performing a complex unimanual motor task markedly increases activation not only in the hemisphere contralateral to the task-performing hand but also in the ipsilateral hemisphere. Transcranial magnetic stimulation studies showed increased motor evoked potential amplitude recorded in resting hand muscles contralateral to the task-performing hand during a unimanual motor task, and transcallosal inputs from the active hemisphere have been suggested to have responsibilities for this phenomenon. In the present study, we used a well-established double-pulse transcranial magnetic stimulation paradigm to measure two phases of interhemispheric inhibition from the active to the resting primary motor cortex during the performance of a complex unimanual motor task. Two different unimanual motor tasks were carried out: a fine-motor manipulation task (using chopsticks to pick up, transport, and release glass balls) as a complex task and a pseudo fine-motor manipulation task as a control task (mimicking the fine-motor manipulation task without using chopsticks and picking glass balls). We found increased short-latency interhemispheric inhibition and decreased long-latency interhemispheric inhibition from the active to the resting primary motor cortex during the fine-motor manipulation task. To the best of our knowledge, the present study is the first to demonstrate different modulation of two phases of interhemispheric inhibition from the active to the resting primary motor cortex during the performance of a complex unimanual motor task. The different modulation of short- and long-latency interhemispheric inhibition may suggest that two phases of interhemispheric inhibition are implemented in distinct circuits with different functional meaning.
Collapse
Affiliation(s)
- Takuya Morishita
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shinji Kubota
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masato Hirano
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kozo Funase
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
50
|
Coppi E, Houdayer E, Chieffo R, Spagnolo F, Inuggi A, Straffi L, Comi G, Leocani L. Age-related changes in motor cortical representation and interhemispheric interactions: a transcranial magnetic stimulation study. Front Aging Neurosci 2014; 6:209. [PMID: 25157232 PMCID: PMC4128298 DOI: 10.3389/fnagi.2014.00209] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
To better understand the physiological mechanisms responsible for the differential motor cortex functioning in aging, we used transcranial magnetic stimulation to investigate interhemispheric interactions and cortical representation of hand muscles in the early phase of physiological aging, correlating these data with participants' motor abilities. Right-handed healthy subjects were divided into a younger group (n = 15, mean age 25.4 ± 1.9 years old) and an older group (n = 16, mean age 61.1 ± 5.1 years old). Activity of the bilateral abductor pollicis brevis (APB) and abductor digiti minimi (ADM) was recorded. Ipsilateral silent period (ISP) was measured in both APBs. Cortical maps of APB and ADM were measured bilaterally. Mirror movements (MM) were recorded during thumb abductions. Motor abilities were tested using Nine Hole Peg Test, finger tapping, and grip strength. ISP was reduced in the older group on both sides, in terms of duration (p = 0.025), onset (p = 0.029), and area (p = 0.008). Resting motor threshold did not differ between groups. APB and ADM maps were symmetrical in the younger group, but were reduced on the right compared to the left hemisphere in the older group (p = 0.008). The APB map of the right hemisphere was reduced in the older group compared to the younger (p = 0.021). Older subjects showed higher frequency of MM and worse motor abilities (p < 0.001). The reduction of right ISP area correlated significantly with the worsening of motor performances. Our results showed decreased interhemispheric interactions in the early processes of physiological aging and decreased cortical muscles representation over the non-dominant hemisphere. The decreased ISP and increased frequency of MM suggest a reduction of transcallosal inhibition. These data demonstrate that early processes of normal aging are marked by a dissociation of motor cortices, characterized, at least, by a decline of the non-dominant hemisphere, reinforcing the hypothesis of the right hemi-aging model.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Elise Houdayer
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Raffaella Chieffo
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Francesca Spagnolo
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Alberto Inuggi
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Laura Straffi
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Giancarlo Comi
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| | - Letizia Leocani
- Neurological Department and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), University Hospital-IRCCS San Raffaele , Milan , Italy
| |
Collapse
|