1
|
Zhao L, Zhang Y, Tian Y, Ding X, Lin R, Xiao L, Peng F, Zhang K, Yang Z. Role of ENPP1 in cancer pathogenesis: Mechanisms and clinical implications (Review). Oncol Lett 2024; 28:590. [PMID: 39411204 PMCID: PMC11474142 DOI: 10.3892/ol.2024.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer is a significant societal, public health and economic challenge in the 21st century, and is the primary cause of death from disease globally. Ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) serves a crucial role in several biochemical processes, including adenosine triphosphate hydrolysis, purine metabolism and regulation of signaling pathways. Specifically, ENPP1, a type II transmembrane glycoprotein and key member of the ENPP family, may be upregulated in tumor cells and implicated in the pathogenesis of multiple human cancers. The present review provides an overview of the structural, pathological and physiological roles of ENPP1 and discusses the potential mechanisms of ENPP1 in the development of cancers such as breast, colon, gallbladder, liver and lung cancers, and also summarizes the four major signaling pathways in tumors. Furthermore, the present review demonstrates that ENPP1 serves a crucial role in cell migration, proliferation and invasion, and that corresponding inhibitors have been developed and associated with clinical characterization.
Collapse
Affiliation(s)
- Lujie Zhao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yu Zhang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Yahui Tian
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Xin Ding
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Runling Lin
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Lin Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
- Weifang Key L2aboratory of Collaborative Innovation of Intelligent Diagnosis and Treatment and Molecular Diseases, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Kai Zhang
- Genetic Testing Centre, Qingdao University Women's and Children's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261021, P.R. China
| |
Collapse
|
2
|
Chen Y, Zheng X, Shi W, Lu C, Qiu Y, Lin L. Osteoblasts are induced into cancer-associated osteoblasts to promote tumor progression in head and neck squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167439. [PMID: 39074625 DOI: 10.1016/j.bbadis.2024.167439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Bone invasion by head and neck squamous cell carcinoma (HNSCC) significantly impacts tumor staging, treatment choice, prognosis, and quality of life. While HNSCC is known to cause osteolytic bone invasion, we found that specific HNSCC subtypes can induce osteogenic bone destruction at the tumor-bone interface. This destruction mode significantly correlated with reduced patient survival rates and increased neck lymph node metastasis. Further in vivo and in vitro experiments indicated that HNSCC cells triggered abnormal phenotypic changes in osteoblasts to remodel the tumor-bone microenvironment, facilitating tumor lymphatic metastasis. Through transcriptome analysis, we identified three genes-osteopontin (SPP1), chemokine (C-X-C motif) ligand 1 (CXCL1), and matrix metalloprotein (MMP)9 (MMP9) linked to a poorer prognosis. We discovered osteoblasts with abnormal phenotypes at the tumor-bone interface exhibiting high SPP1, MMP9, and CXCL1 expressions. Based on these characteristics, we identified this osteoblast subpopulation as "cancer-associated osteoblasts (CAOs)." HNSCC cells activated the TNF-α/NF-κB signaling pathway in osteoblasts, transforming them into "CAOs." These CAOs significantly contributed to the progression of tumor-induced bone invasion, facilitating cancer growth and metastasis. We first provided clinical data and in vivo and in vitro evidence that HNSCC cells can promote tumor progression by manipulating osteoblasts into "CAOs" in the bone invasion.
Collapse
Affiliation(s)
- Yaqi Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; Department of Oral and Maxillofacial Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Xianglong Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Oral and Maxillofacial Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Wenrui Shi
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350004, China; Department of Oral and Maxillofacial Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Chenghui Lu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Yu Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Oral and Maxillofacial Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Lisong Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Oral and Maxillofacial Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
3
|
Lv W, Wang Y. Neural Influences on Tumor Progression Within the Central Nervous System. CNS Neurosci Ther 2024; 30:e70097. [PMID: 39469896 PMCID: PMC11519750 DOI: 10.1111/cns.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
For decades, researchers have studied how brain tumors, the immune system, and drugs interact. With the advances in cancer neuroscience, which centers on defining and therapeutically targeting nervous system-cancer interactions, both within the local tumor microenvironment (TME) and on a systemic level, the subtle relationship between neurons and tumors in the central nervous system (CNS) has been deeply studied. Neurons, as the executors of brain functional activities, have been shown to significantly influence the emergence and development of brain tumors, including both primary and metastatic tumors. They engage with tumor cells via chemical or electrical synapses, directly regulating tumors or via intricate coupling networks, and also contribute to the TME through paracrine signaling, secreting proteins that exert regulatory effects. For instance, in a study involving a mouse model of glioblastoma, the authors observed a 42% increase in tumor volume when neuronal activity was stimulated, compared to controls (p < 0.01), indicating a direct correlation between neural activity and tumor growth. These thought-provoking results offer promising new strategies for brain tumor therapies, highlighting the potential of neuronal modulation to curb tumor progression. Future strategies may focus on developing drugs to inhibit or neutralize proteins and other bioactive substances secreted by neurons, break synaptic connections and interactions between infiltrating cells and tumor cells, as well as disrupt electrical coupling within glioma cell networks. By harnessing the insights gained from this research, we aspire to usher in a new era of brain tumor therapies that are both more potent and precise.
Collapse
Affiliation(s)
- Wenhao Lv
- Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouZhejiangChina
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
4
|
Wang S, Xu L, Wang D, Zhao S, Li K, Ma F, Yao Q, Zhang Y, Wu Z, Shao Y, Song S, Yan W. YTHDF1 promotes the osteolytic bone metastasis of breast cancer via inducing EZH2 and CDH11 translation. Cancer Lett 2024; 597:217047. [PMID: 38871245 DOI: 10.1016/j.canlet.2024.217047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Bone metastasis is common in breast cancer and more effective therapies are required, however, its molecular mechanism is poorly understood. Additionally, the role of the m6A reader YTHDF1 in bone metastasis of breast cancer has not been reported. Here, we reveal that the increased expression of YTHDF1 is clinically correlated with breast cancer bone metastases. YTHDF1 promotes migration, invasion, and osteoblast adhesion and induces osteoclast differentiation of cancer cells in vitro and vivo. Mechanically, RNA-seq, MeRIP-seq and RIP-seq analysis, and molecular biology experiments demonstrate that YTHDF1 translationally enhances EZH2 and CDH11 expression by reading m6A-enriched sites of their transcripts. Moreover, adeno-associated virus (AAV) was used to deliver shYTHDF1 (shYTHDF1-AAV) in intratibial injection models, eliciting a significant suppressive effect on breast cancer bone metastatic formation and osteolytic destruction. Overall, we uncovered that YTHDF1 promotes osteolytic bone metastases of breast cancer by inducing EZH2 and CDH11 translation.
Collapse
Affiliation(s)
- Shuoer Wang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Nuclear Medicine, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lun Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongliang Wang
- Department of Nuclear Medicine, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Songjiao Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Li
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fen Ma
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunkui Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Wu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Wang J, Liang S, Chen S, Ma T, Chen M, Niu C, Leng Y, Wang L. Bacterial outer membrane vesicle-cancer cell hybrid membrane-coated nanoparticles for sonodynamic therapy in the treatment of breast cancer bone metastasis. J Nanobiotechnology 2024; 22:328. [PMID: 38858780 PMCID: PMC11165797 DOI: 10.1186/s12951-024-02619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Breast cancer bone metastasis is a terminal-stage disease and is typically treated with radiotherapy and chemotherapy, which causes severe side effects and limited effectiveness. To improve this, Sonodynamic therapy may be a more safe and effective approach in the future. Bacterial outer membrane vesicles (OMV) have excellent immune-regulating properties, including modulating macrophage polarization, promoting DC cell maturation, and enhancing anti-tumor effects. Combining OMV with Sonodynamic therapy can result in synergetic anti-tumor effects. Therefore, we constructed multifunctional nanoparticles for treating breast cancer bone metastasis. We fused breast cancer cell membranes and bacterial outer membrane vesicles to form a hybrid membrane (HM) and then encapsulated IR780-loaded PLGA with HM to produce the nanoparticles, IR780@PLGA@HM, which had tumor targeting, immune regulating, and Sonodynamic abilities. Experiments showed that the IR780@PLGA@HM nanoparticles had good biocompatibility, effectively targeted to 4T1 tumors, promoted macrophage type I polarization and DC cells activation, strengthened anti-tumor inflammatory factors expression, and presented the ability to effectively kill tumors both in vitro and in vivo, which showed a promising therapeutic effect on breast cancer bone metastasis. Therefore, the nanoparticles we constructed provided a new strategy for effectively treating breast cancer bone metastasis.
Collapse
Affiliation(s)
- Jiahao Wang
- The School of Medicine, Nankai University, Tianjin, 300071, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, China
| | - Tianliang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Leng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China.
| |
Collapse
|
6
|
Wei T, Kang Y, Wang X, Yue J, Xu B, Yuan P. Prognostic value and relapse pattern of HER2-low in hormone receptor-positive breast cancer. Thorac Cancer 2024; 15:550-558. [PMID: 38272454 PMCID: PMC10912524 DOI: 10.1111/1759-7714.15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND A new concept of HER2-low has emerged in recent years. However, the prognostic value and the relapse pattern of HER2-low is unclear. METHODS Our study included patients diagnosed with HER2-negative/hormone receptor-positive breast cancer to explore the differences in survival outcomes between the HER2-low group and the HER2-zero group. More importantly, we explored different recurrence patterns, including the comparison of metastatic sites and recurrence time curve between the two groups. RESULTS A total of 797 patients with hormone receptor-positive breast cancer were analyzed. Similar disease-free survival (DFS) was observed between the HER2-low group and HER2-zero group (HR 0.84, 95% CI: 0.61-1.16, p = 0.290). There was also no significant difference in OS between the HER2-low group and the HER2-zero group (HR 0.77, 95% CI: 0.46-1.28, p = 0.310). When IHC 1+ and 0 were taken as a group, the IHC 2+ group had significantly better DFS than the IHC 1+ and 0 group in some subgroups. The risk of bone metastasis in patients with HER2 IHC 1+ and 0 was significantly higher than that of patients with HER2 IHC 2+ (12.7% vs. 4.7%, p < 0.001). Compared with the HER2-zero group, we found that the HER2-low group had a more obvious peak in mortality at the time of postoperative 80th-100th month. CONCLUSIONS No significant difference in DFS and OS between the HER2-low group and the HER2-zero group was observed. Patients with HER2 IHC 1+ and 0 tend to develop bone metastasis. The HER2-low group had a more obvious second peak in mortality.
Collapse
Affiliation(s)
- Tong Wei
- Department of VIP Medical, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yikun Kang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Xue Wang
- Department of VIP Medical, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jian Yue
- Department of VIP Medical, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Peng Yuan
- Department of VIP Medical, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
7
|
Zhan Q, Liu B, Situ X, Luo Y, Fu T, Wang Y, Xie Z, Ren L, Zhu Y, He W, Ke Z. New insights into the correlations between circulating tumor cells and target organ metastasis. Signal Transduct Target Ther 2023; 8:465. [PMID: 38129401 PMCID: PMC10739776 DOI: 10.1038/s41392-023-01725-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Organ-specific metastasis is the primary cause of cancer patient death. The distant metastasis of tumor cells to specific organs depends on both the intrinsic characteristics of the tumor cells and extrinsic factors in their microenvironment. During an intermediate stage of metastasis, circulating tumor cells (CTCs) are released into the bloodstream from primary and metastatic tumors. CTCs harboring aggressive or metastatic features can extravasate to remote sites for continuous colonizing growth, leading to further lesions. In the past decade, numerous studies demonstrated that CTCs exhibited huge clinical value including predicting distant metastasis, assessing prognosis and monitoring treatment response et al. Furthermore, increasingly numerous experiments are dedicated to identifying the key molecules on or inside CTCs and exploring how they mediate CTC-related organ-specific metastasis. Based on the above molecules, more and more inhibitors are being developed to target CTCs and being utilized to completely clean CTCs, which should provide promising prospects to administer advanced tumor. Recently, the application of various nanomaterials and microfluidic technologies in CTCs enrichment technology has assisted to improve our deep insights into the phenotypic characteristics and biological functions of CTCs as a potential therapy target, which may pave the way for us to make practical clinical strategies. In the present review, we mainly focus on the role of CTCs being involved in targeted organ metastasis, especially the latest molecular mechanism research and clinical intervention strategies related to CTCs.
Collapse
Affiliation(s)
- Qinru Zhan
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Bixia Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Xiaohua Situ
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Yuting Luo
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Tongze Fu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Yanxia Wang
- Zhongshan School of Medicine, Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Zhongpeng Xie
- Zhongshan School of Medicine, Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Lijuan Ren
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
| | - Weiling He
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
- School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, 361000, Xiamen, Fujian, P.R. China.
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
8
|
Paiva Barbosa V, Bastos Silveira B, Amorim Dos Santos J, Monteiro MM, Coletta RD, De Luca Canto G, Stefani CM, Guerra ENS. Critical appraisal tools used in systematic reviews of in vitro cell culture studies: A methodological study. Res Synth Methods 2023; 14:776-793. [PMID: 37464457 DOI: 10.1002/jrsm.1657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Systematic reviews (SRs) of preclinical studies are marked with poor methodological quality. In vitro studies lack assessment tools to improve the quality of preclinical research. This methodological study aimed to identify, collect, and analyze SRs based on cell culture studies to highlight the current appraisal tools utilized to support the development of a validated critical appraisal tool for cell culture in vitro research. SRs, scoping reviews, and meta-analyses that included cell culture studies and used any type of critical appraisal tool were included. Electronic search, study selection, data collection and methodological quality (MQ) assessment tool were realized. Further, statistical analyses regarding possible associations and correlations between MQ and collected data were performed. After the screening process, 82 studies remained for subsequent analysis. A total of 32 different appraisal tools were identified. Approximately 60% of studies adopted pre-structured tools not designed for cell culture studies. The most frequent instruments were SYRCLE (n = 14), OHAT (n = 9), Cochrane Collaboration's tool (n = 7), GRADE (n = 6), CONSORT (n = 5), and ToxRTool (n = 5). The studies were divided into subgroups to perform statistical analyses. A significant association (OR = 5.00, 95% CI = 1.54-16.20, p = 0.008) was found between low MQ and chronic degenerative disorders as topic of SR. Several challenges in collecting information from the included studies led to some modifications related to the previously registered protocol. These results may serve as a basis for further development of a critical appraisal tool for cell culture studies capable of capturing all the essential factors related to preclinical research, therefore enhancing the practice of evidence-based.
Collapse
Affiliation(s)
- Victor Paiva Barbosa
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Bruna Bastos Silveira
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Juliana Amorim Dos Santos
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Mylene Martins Monteiro
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | - Ricardo D Coletta
- University of Campinas, Department of Oral Diagnosis and Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - Graziela De Luca Canto
- Federal University of Santa Catarina, Department of Dentistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristine Miron Stefani
- University of Brasilia, Department of Dentistry, School of Health Sciences, University of Brasilia, Brasília, Brazil
| | - Eliete Neves Silva Guerra
- University of Brasília, Laboratory of Oral Histopathology, Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
9
|
Mita H, Katoh H, Komura D, Kakiuchi M, Abe H, Rokutan H, Yagi K, Nomura S, Ushiku T, Seto Y, Ishikawa S. Aberrant Cadherin11 expression predicts distant metastasis of gastric cancer. Pathol Res Pract 2023; 242:154294. [PMID: 36610328 DOI: 10.1016/j.prp.2022.154294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The prognosis of gastric cancer (GC) is significantly affected by distant metastases and postoperative recurrences. Bone metastasis is one of the worst prognostic metastases in GC; however, its molecular mechanisms and predictive biomarkers remain elusive. In prostate and breast cancers, it has been reported that overexpression of Cadherin 11 (CDH11), a mesenchymal cell-cell contact factor, is known to be correlated with bone metastasis. Overexpression of CDH11 mRNA in bulk GC tissues has also been reported to be associated with a worse prognosis. However, a more precise evaluation of CDH11 expression in GC cells is necessary to establish a robust link between CDH11 and metastatic features of GC. We performed immunohistochemical analysis of CDH11 expression in 342 GC cases, of which specimens were obtained at the time of surgery, with a special focus on its aberrant membranous expression in GC cells. The correlations between aberrant CDH11 expression and distant metastases and the prognosis of GC cases were statistically investigated. Approximately half of the GC cases investigated showed aberrant expression of CDH11 in the GC cells of primary lesions. Aberrant CDH11 expression was statistically associated with bone metastasis of GCs. Moreover, metastases to the liver and distant lymph nodes were also statistically correlated with CDH11 expression. Aberrant CDH11 expression in GC cells in primary tumor lesions was shown to be a predictive biomarker of distant metastases in GC. GCs with CDH11 expression require preventive clinical attention for the detection of metastatic lesions.
Collapse
Affiliation(s)
- Hideaki Mita
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Miwako Kakiuchi
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Hirofumi Rokutan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Koichi Yagi
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan.
| |
Collapse
|
10
|
TOR1B: a predictor of bone metastasis in breast cancer patients. Sci Rep 2023; 13:1495. [PMID: 36707670 PMCID: PMC9883392 DOI: 10.1038/s41598-023-28140-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Recent therapeutic advances in breast cancer (BC) have improved survival outcomes; however, the prognosis for patients with bone metastasis (BM) remains poor. Hence, novel clinical biomarkers are needed to accurately predict BC BM as well as to promote personalized medicine. Here, we discovered a novel biomarker, TOR1B, for BM in BC patients via analysis of BC gene expression data and clinical information downloaded from open public databases. In cancer cells, we found high expression levels of TOR1B in the nucleus and endoplasmic reticulum. Regarding gene expression, the level of TOR1B was significantly upregulated in BC patients with BM (p < 0.05), and the result was externally validated. In addition, gene expression clearly demonstrated two distinct types of prognoses in ER- and PR-positive patients. In multivariate regression, the gene could be an independent predictor of BM in BC patients, i.e., a low expression level of TOR1B was associated with delayed metastasis to bone in BC patients (HR, 0.28; 95% CI 0.094-0.84). Conclusively, TOR1B might be a useful biomarker for predicting BM; specifically, patients with ER- and PR-positive subtypes would benefit from the clinical use of this promising prognostic biomarker.
Collapse
|
11
|
Ismail A, El-Mahdy HA, Abulsoud AI, Sallam AAM, Eldeib MG, Elsakka EG, Zaki MB, Doghish AS. Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: A comprehensive review. Int J Biol Macromol 2022; 224:1541-1565. [DOI: 10.1016/j.ijbiomac.2022.10.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
12
|
Chen G, Yan S, Zhang J, Zhang J, Deng IB, He R. The alternative 3' splice site of GPNMB may promote neuronal survival after neonatal hypoxic-ischemic encephalopathy injury. IBRAIN 2022; 8:302-313. [PMID: 37786733 PMCID: PMC10529014 DOI: 10.1002/ibra.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 10/04/2023]
Abstract
This study aimed to decipher the effect of glycoprotein nonmetastatic melanoma protein B (GPNMB) on neonatal hypoxic-ischemic encephalopathy (NHIE) and its potential molecular mechanism. The hypoxic-ischemic (HI) model was established in 7-day-old rats, and then, Zea-Longa scores and Nissl staining were performed to measure brain damage post-HI. In addition, gene sequencing was used to detect the differential expression genes (DEGs), and then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to determine the function of DEGs. Furthermore, an oxygen-glucose deprivation (OGD) model was developed in SY5Y cells and human fetal neurons, and then, the level of GPNMB was verified by quantitative real-time polymerase chain reaction. In addition, methyl thiazolyl tetrazolium and cell counting kit-8 assays were applied after GPNMB interference. Finally, the alternative splicing of GPNMB expression was analyzed using Splice Grapher software. The results indicated that HI induced marked neurological impairment and neuron injury in rats. Also, GPNMB was the most obviously upregulated gene in DEGs. Additionally, GPNMB was upregulated significantly in SY5Y and fetal neurons after OGD, and GPNMB-si promoted an increase in cell viability and number. Moreover, we found that the GPNMB alternative splicing type was the Alternative 3' splice site, with the alternative splicing site in 143382985:143404102. Herein, GPNMB promotes a crucial regulatory mechanism with alternative splicing for neuronal survival after NHIE.
Collapse
Affiliation(s)
- Guo‐Jiao Chen
- Bioinformatics CenterKunming Medical UniversityKunmingYunnanChina
| | | | | | - Ji Zhang
- Southwest Medical UniversityLuzhouSichuanChina
| | - Isaac Bul Deng
- Center for Epogenetics and Induced Pluripotent Stem Cells, Kennedy Krieger InstituteJohns Hopkins UniversityBaltimoreUSA
| | - Rong He
- Bioinformatics CenterKunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
13
|
Prominin 1 Significantly Correlated with Bone Metastasis of Breast Cancer and Influenced the Patient’s Prognosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4123622. [PMID: 36193308 PMCID: PMC9526600 DOI: 10.1155/2022/4123622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/07/2022] [Indexed: 02/08/2023]
Abstract
Background This study is aimed at identifying the important biomarkers associated with bone metastasis (BM) in breast cancer (BRCA). Methods The GSE175692 dataset was used to detect significant differential expressed genes (DEGs) between BRCA samples with or without BM, and DEG-related pathways were then explored. Further, we constructed the protein-protein interaction (PPI) network on GEGs and filtered 5 vital nodes. We then performed the Cox regression, Kaplan-Meier analysis, nomogram, and ROC curve to filter the most significant prognosis genes. The GSE14020 and GSE124647 datasets were used to verify the expression and prognostic value of hub genes, respectively. Finally, the gene set enrichment analysis (GSEA) was performed to reveal the potential mechanism. Results Totally, 74 DEGs were detected, which mainly correlated with infectious disease, signaling molecules, and interaction. The 5 important DEGs were then filtered, and the Cox regression further showed that 2 genes, including prominin 1 (PROM1) and C-C motif chemokine ligand 2 (CCL2), were related to the prognosis of BRCA metastasis patients. Especially, PROM1 presented a better prognostic performance on the survival probability of patients than CCL2. Verification analysis further confirmed the abnormal expression and significant prognostic influence of PROM1. Finally, GSEA revealed that PROM1 was negatively related to IGF1 and mTOR pathways in BRCA metastasis. Conclusion PROM1 was an important biomarker associated with BRCA bone metastasis and affected the prognosis of metastatic BRCA patients. It may play a vital role in metastatic BRCA by negatively regulating IGF1 and mTOR pathways.
Collapse
|
14
|
Lammert J, Basrai M, Struck J, Hartmann O, Engel C, Bischoff SC, Berling-Ernst A, Halle M, Kiechle M, Grill S. Associations of Plasma Bioactive Adrenomedullin Levels with Cardiovascular Risk Factors in BRCA1/2 Mutation Carriers. Geburtshilfe Frauenheilkd 2022; 82:601-609. [PMID: 35903716 PMCID: PMC9315398 DOI: 10.1055/a-1811-2164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Cardiovascular disease (CVD) is an important cause of morbidity and mortality in breast cancer survivors. Effective screening modalities to identify CVD risk are lacking
in this population. Adrenomedullin (ADM) has been suggested as a biomarker for subclinical cardiac dysfunction in the general population. Levels of ADM have been proven to be responsive to
lifestyle changes that lead to improved cardiovascular health. As
BRCA1/2
mutation carriers are deemed to be at an increased risk for CVD, the aim of this study was to examine plasma
ADM levels in a cohort of
BRCA
mutation carriers and to assess their association with cardiovascular risk factors.
Methods
Plasma ADM concentrations were measured in 292 female
BRCA1/2
mutation carriers with and without a history of breast cancer. Subjects were classified into high versus
low ADM levels based on the median ADM level in the entire cohort (13.8 pg/mL). Logistic regression models were used to estimate the odds ratios (OR) of having elevated ADM levels by several
cardiovascular risk factors.
Results
Of all women (median age: 43 years), 57.5% had a previous diagnosis of breast cancer. The median time between diagnosis and study entry was three years (range: 0 – 32 years).
Women presenting with metabolic syndrome had 22-fold increased odds of having elevated ADM levels (p < 0.001). Elevated ADM levels were associated with lower cardiorespiratory fitness
(OR = 0.88, p < 0.001) and several parameters of obesity (p < 0.001). ADM levels were higher in women who have ever smoked (OR = 1.72, p = 0.02). ADM levels were not associated with a
previous diagnosis of breast cancer (p = 0.28).
Conclusions
This is the first study in
BRCA
mutation carriers that has linked circulating ADM levels to traditional cardiovascular risk factors. The long-term clinical
implications of these findings are yet to be determined.
Collapse
Affiliation(s)
- Jacqueline Lammert
- Department of Gynecology and Center for Hereditary Breast and Ovarian Cancer, University Hospital rechts der Isar, Technical University of Munich (TUM), Munich,
Germany
| | - Maryam Basrai
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | | | | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Anika Berling-Ernst
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Halle
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marion Kiechle
- Department of Gynecology and Center for Hereditary Breast and Ovarian Cancer, University Hospital rechts der Isar, Technical University of Munich (TUM), Munich,
Germany
| | - Sabine Grill
- Department of Gynecology and Center for Hereditary Breast and Ovarian Cancer, University Hospital rechts der Isar, Technical University of Munich (TUM), Munich,
Germany
| |
Collapse
|
15
|
Abstract
Metastasis is responsible for a large majority of death from malignant solid tumors. Bone is one of the most frequently affected organs in cancer metastasis, especially in breast and prostate cancer. Development of bone metastasis requires cancer cells to successfully complete a number of challenging steps, including local invasion and intravasation, survival in circulation, extravasation and initial seeding, and finally, formation of metastatic colonies after a period of dormancy or indolent growth. During this process, cancer cells often undergo a series of cellular and molecular changes to gain cellular plasticity that helps them adapt to various environments they encounter along the journey of metastasis. Understanding the mechanisms behind cellular plasticity and adaptation during the formation of bone metastasis is crucial for the development of novel therapies.
Collapse
Affiliation(s)
- Cao Fang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
16
|
Barbier C, Mansour A, Ismailova A, Sarmadi F, Scarlata DA, Bouttier M, Zeitouni C, Wang C, Gleason JL, White JH. Molecular mechanisms of bifunctional vitamin D receptor agonist-histone deacetylase inhibitor hybrid molecules in triple-negative breast cancer. Sci Rep 2022; 12:6745. [PMID: 35468986 PMCID: PMC9038752 DOI: 10.1038/s41598-022-10740-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
The active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D), and its analogues signal through the nuclear vitamin D receptor (VDR), a ligand-regulated transcription factor, and have been extensively investigated as anticancer agents. 1,25D and its analogs have potential in combination therapies because they exhibit synergistic activities with other anticancer agents such as histone deacetylase inhibitors (HDACi). We have developed a series of hybrid molecules that combine HDACi within the backbone of a VDR agonist and thus represent fully integrated bifunctional molecules. They exhibit anti-tumor efficacy in reducing tumor growth and metastases in an aggressive model of triple-negative breast cancer. However, their solubility is limited by their hydrophobic diarylpentane cores. Our goals here were two-fold: (1) to improve the solubility of hybrids by introducing nitrogen into diarylpentane cores, and (2) to investigate the molecular mechanisms underlying their anti-tumor efficacy by performing comparative gene expression profiling studies with 1,25D and the potent HDACi suberoylanilide hydroxamic acid (SAHA). We found that substituting aryl with pyrydyl rings did not sacrifice bifunctionality and modestly improved solubility. Notably, one compound, AM-193, displayed enhanced potency as a VDR agonist and in cellular assays of cytotoxicity. RNAseq studies in triple negative breast cancer cells revealed that gene expression profiles of hybrids were very similar to that of 1,25D, as was that observed with 1,25D and SAHA combined. The effects of SAHA alone on gene expression were limited and distinct from those 1,25D or hybrids. The combined results suggest that efficacy of hybrids arises from targeting HDACs that do not have a direct role in gene regulation. Moreover, pathways analysis revealed that hybrids regulate numerous genes controlling immune cell infiltration into tumors and suppress the expression of several secreted molecules that promote breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Camille Barbier
- Departments of Physiology, McGill University, Montreal, QC, Canada
| | - Ali Mansour
- Departments of Chemistry, McGill University, Montreal, QC, Canada
| | - Aiten Ismailova
- Departments of Physiology, McGill University, Montreal, QC, Canada
| | - Fatemeh Sarmadi
- Departments of Physiology, McGill University, Montreal, QC, Canada
| | - David A Scarlata
- Departments of Chemistry, McGill University, Montreal, QC, Canada
| | | | - Camille Zeitouni
- Departments of Physiology, McGill University, Montreal, QC, Canada
| | - Catherine Wang
- Departments of Physiology, McGill University, Montreal, QC, Canada
| | - James L Gleason
- Departments of Chemistry, McGill University, Montreal, QC, Canada.
| | - John H White
- Departments of Physiology, McGill University, Montreal, QC, Canada.
- Departments of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
Satcher RL, Zhang XHF. Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer 2022; 22:85-101. [PMID: 34611349 DOI: 10.1038/s41568-021-00406-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Many cancer types metastasize to bone. This propensity may be a product of genetic traits of the primary tumour in some cancers. Upon arrival, cancer cells establish interactions with various bone-resident cells during the process of colonization. These interactions, to a large degree, dictate cancer cell fates at multiple steps of the metastatic cascade, from single cells to overt metastases. The bone microenvironment may even influence cancer cells to subsequently spread to multiple other organs. Therefore, it is imperative to spatiotemporally delineate the evolving cancer-bone crosstalk during bone colonization. In this Review, we provide a summary of the bone microenvironment and its impact on bone metastasis. On the basis of the microscopic anatomy, we tentatively define a roadmap of the journey of cancer cells through bone relative to various microenvironment components, including the potential of bone to function as a launch pad for secondary metastasis. Finally, we examine common and distinct features of bone metastasis from various cancer types. Our goal is to stimulate future studies leading to the development of a broader scope of potent therapies.
Collapse
Affiliation(s)
- Robert L Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
MicroRNAs: Emerging Regulators of Metastatic Bone Disease in Breast Cancer. Cancers (Basel) 2022; 14:cancers14030729. [PMID: 35158995 PMCID: PMC8833828 DOI: 10.3390/cancers14030729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Bone metastasis is a frequent complication in patients with advanced breast cancer. Once in the bone, cancer cells disrupt the tightly regulated cellular balance within the bone microenvironment, leading to excessive bone destruction and further tumor growth. Physiological and pathological interactions in the bone marrow are mediated by cell-cell contacts and secreted molecules that include soluble proteins as well as RNA molecules. MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally interfere with their target messenger RNA (mRNA) and subsequently reduce protein abundance. Since their discovery, miRNAs have been identified as critical regulators of physiological and pathological processes, including breast cancer and associated metastatic bone disease. Depending on their targets, miRNAs can exhibit pro-tumorigenic or anti-tumorigenic functions and serve as diagnostic and prognostic biomarkers. These properties have encouraged pre-clinical and clinical development programs to investigate miRNAs as biomarkers and therapeutic targets in various diseases, including metastatic cancers. In this review, we discuss the role of miRNAs in metastatic bone disease with a focus on breast cancer and the bone microenvironment and elaborate on their potential use for diagnostic and therapeutic purposes in metastatic bone disease and beyond.
Collapse
|
19
|
Wu W, Yang H, Wang Z, Zhang Z, Lu X, Yang W, Xu X, Jiang Y, Li Y, Fan X, Shao Q. A Noncanonical Hedgehog Signaling Exerts a Tumor-Promoting Effect on Pancreatic Cancer Cells Via Induction of Osteopontin Expression. Cancer Biother Radiopharm 2021. [PMID: 34978897 DOI: 10.1089/cbr.2021.0317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective: Sonic Hedgehog (Shh)-Gli1 signaling and osteopontin (OPN) play vital roles in pancreatic cancer. However, the precise mechanisms of both signals have not been fully clarified, and whether there is a correlation between them in pancreatic ductal adenocarcinoma (PDAC) is unknown. This study aims to confirm the effect of OPN on human PDAC and assess whether Hh signaling affects pancreatic cancer cells through upregulation of OPN. Materials and Methods: OPN expression in human PDAC tissues and cell lines was investigated. Proliferation, apoptosis, migration, and invasion of OPN-knockdown BxPC-3 cells were observed. We analyzed the correlation between Shh or Gli1 and OPN expression in human PDAC. Hh signaling inhibitors and shRNA against Gli1 were used to confirm if OPN expression in BxPC-3 cells was regulated by Hh canonical or noncanonical pathway. We also evaluated the proliferation, apoptosis, migration, and invasion of Gli1-knockdown BxPC-3 cells. Results: OPN is highly expressed in human PDAC tissues and cell lines. The proliferation, migration, and invasion of BxPC-3 cell lines were decreased, whereas apoptosis was increased when OPN was knocked down. Correlation analysis showed that Gli1, but not Shh, was associated with OPN expression in human PDAC, and Gli1 regulated OPN production in BxPC-3 cells through a noncanonical pathway because Gli but not Smo inhibitor reduced OPN expression. Similar to above, the proliferation, migration, and invasion of BxPC-3 cells were decreased, whereas the apoptosis was increased when Gli1 was knocked down. Supplement of exogenous OPN protein could partially reverse the effect of both OPN knockdown and Gli1 knockdown on the bio-behavior of BxPC-3 cells. Conclusion: Hh signaling promotes proliferation, migration, and invasion but inhibits apoptosis of pancreatic cancer cells through upregulation of OPN in a noncanonical pathway.
Collapse
Affiliation(s)
- Weijiang Wu
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Hanqing Yang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
- Department of Burns and Plastic Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, People's Republic of China
| | - Zhutao Wang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Zhijian Zhang
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiaodong Lu
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Wenjing Yang
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiayue Xu
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Yinuo Jiang
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yan Li
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xin Fan
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
- Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, People's Republic of China
| |
Collapse
|
20
|
Sharma R, Gogoi G, Saikia S, Sharma A, Kalita DJ, Sarma A, Limaye AM, Gaur MK, Bhattacharyya J, Jaganathan BG. BMP4 enhances anoikis resistance and chemoresistance of breast cancer cells through canonical BMP signaling. J Cell Commun Signal 2021; 16:191-205. [PMID: 34608584 DOI: 10.1007/s12079-021-00649-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) regulate cell fate during development and mediate cancer progression. In this study, we investigated the role of BMP4 in proliferation, anoikis resistance, metastatic migration, and drug resistance of breast cancer cells. We utilized breast cancer cell lines and clinical samples representing different subtypes to understand the functional effect of BMP4 on breast cancer. The BMP pathway was inhibited with the small molecule inhibitor LDN193189 hydrochloride (LDN). BMP4 signaling enhanced the expression of stem cell genes CD44, ALDH1A3, anti-apoptotic gene BCL2 and promoted anoikis resistance in MDA-MB-231 breast cancer cells. BMP4 enhanced self-renewal and chemoresistance in MDA-MB-231 by upregulating Notch signaling while LDN treatment abrogated anoikis resistance and proliferation of anoikis resistant breast cancer cells in the osteogenic microenvironment. Conversely, BMP4 downregulated proliferation, colony-forming ability, and suppressed anoikis resistance in MCF7 and SkBR3 cells, while LDN treatment promoted tumor spheroid formation and growth. These findings indicate that BMP4 has a context-dependent role in breast cancer. Further, our data with MDA-MB-231 cells representing triple-negative breast cancer suggest that BMP inhibition might impair its metastatic spread and colonization.
Collapse
Affiliation(s)
- Renu Sharma
- Stem Cells and Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gayatri Gogoi
- Department of Pathology, Assam Medical College, Dibrugarh, Assam, India
| | - Snigdha Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Amit Sharma
- Stem Cells and Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Deep Jyoti Kalita
- Department of Surgical Oncology, Dr B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Anupam Sarma
- Department of Oncopathology, Dr B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Manish Kumar Gaur
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Jina Bhattacharyya
- Department of Hematology, Gauhati Medical College, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India. .,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
21
|
The genomic architecture of metastasis in breast cancer: focus on mechanistic aspects, signalling pathways and therapeutic strategies. Med Oncol 2021; 38:95. [PMID: 34268641 DOI: 10.1007/s12032-021-01547-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is a multifactorial, heterogeneous disease and the second most frequent cancer amongst women worldwide. Metastasis is one of the most leading causes of death in these patients. Early-stage or locally advanced breast cancer is limited to the breast or nearby lymph nodes. When breast cancer spreads to farther tissues/organs from its original site, it is referred to as metastatic or stage IV breast cancer. Normal breast development is regulated by specific genes and signalling pathways controlling cell proliferation, cell death, cell differentiation and cell motility. Dysregulation of genes involved in various signalling pathways not only leads to the formation of primary tumour but also to the metastasis as well. The metastatic cascade is represented by a multi-step process including invasion of the local tumour cell followed by its entry into the vasculature, exit of malignant cells from the circulation and ultimately their colonization at the distant sites. These stages are referred to as formation of primary tumour, angiogenesis, invasion, intravasation and extravasation, respectively. The major sites of metastasis of breast cancer are the lymph nodes, bone, brain and lung. Only about 28% five-year survival rate has been reported for stage IV breast cancer. Metastasis is a serious concern for breast cancer and therefore, various therapeutic strategies such as tyrosine kinase inhibitors have been developed to target specific dysregulated genes and various signalling pathways involved in different steps of metastasis. In addition, other therapies like hyperbaric oxygen therapy, RNA interference and CRISPR/Cas9 are also being explored as novel strategies to cure the stage IV/metastatic breast cancer. Therefore, the current review has been compiled with an aim to evaluate the genetic basis of stage IV breast cancer with a focus on the molecular mechanisms. In addition, the therapeutic strategies targeting these dysregulated genes involved in various signalling pathways have also been discussed. Genome editing technologies that can target specific genes in the affected areas by making knock-in and knock-out alternations and thereby bring significant treatment outcomes in breast cancer have also been summarized.
Collapse
|
22
|
Colombo MV, Bersini S, Arrigoni C, Gilardi M, Sansoni V, Ragni E, Candiani G, Lombardi G, Moretti M. Engineering the early bone metastatic niche through human vascularized immuno bone minitissues. Biofabrication 2021; 13. [PMID: 33735854 DOI: 10.1088/1758-5090/abefea] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/18/2021] [Indexed: 01/04/2023]
Abstract
Bone metastases occur in 65%-80% advanced breast cancer patients. Although significant progresses have been made in understanding the biological mechanisms driving the bone metastatic cascade, traditional 2Din vitromodels and animal studies are not effectively reproducing breast cancer cells (CCs) interactions with the bone microenvironment and suffer from species-specific differences, respectively. Moreover, simplifiedin vitromodels cannot realistically estimate drug anti-tumoral properties and side effects, hence leading to pre-clinical testing frequent failures. To solve this issue, a 3D metastatic bone minitissue (MBm) is designed with embedded human osteoblasts, osteoclasts, bone-resident macrophages, endothelial cells and breast CCs. This minitissue recapitulates key features of the bone metastatic niche, including the alteration of macrophage polarization and microvascular architecture, along with the induction of CC micrometastases and osteomimicry. The minitissue reflects breast CC organ-specific metastatization to bone compared to a muscle minitissue. Finally, two FDA approved drugs, doxorubicin and rapamycin, have been tested showing that the dose required to impair CC growth is significantly higher in the MBm compared to a simpler CC monoculture minitissue. The MBm allows the investigation of metastasis key biological features and represents a reliable tool to better predict drug effects on the metastatic bone microenvironment.
Collapse
Affiliation(s)
- Maria Vittoria Colombo
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland.,Biocompatibility and Cell Culture Laboratory 'BioCell', Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, 20133 Milano, Italy
| | - Simone Bersini
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Mara Gilardi
- Institute of Pathology, University Hospital of Basel, Basel 4056, Switzerland
| | - Veronica Sansoni
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, 20161 Milano, Italy
| | - Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Orthopedic Biotechnology Lab, 20161 Milano, Italy
| | - Gabriele Candiani
- Biocompatibility and Cell Culture Laboratory 'BioCell', Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, 20133 Milano, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, 20161 Milano, Italy.,Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań 61-871, Poland
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland.,IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, 20161 Milano, Italy.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
23
|
Andriessen AS, Donnelly CR, Ji RR. Reciprocal interactions between osteoclasts and nociceptive sensory neurons in bone cancer pain. Pain Rep 2021; 6:e867. [PMID: 33981921 PMCID: PMC8108580 DOI: 10.1097/pr9.0000000000000867] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Many common cancers such as breast, prostate, and lung cancer metastasize to bones at advanced stages, producing severe pain and functional impairment. At present, the current pharmacotherapies available for bone cancer pain are insufficient to provide safe and efficacious pain relief. In this narrative review, we discuss the mechanisms used by cancer cells within the bone tumor microenvironment (TME) to drive bone cancer pain. In particular, we highlight the reciprocal interactions between tumor cells, bone-resorbing osteoclasts, and pain-sensing sensory neurons (nociceptors), which drive bone cancer pain. We discuss how tumor cells present within the bone TME accelerate osteoclast differentiation (osteoclastogenesis) and alter osteoclast activity and function. Furthermore, we highlight how this perturbed state of osteoclast overactivation contributes to bone cancer pain through (1) direct mechanisms, through their production of pronociceptive factors that act directly on sensory afferents; and (2) by indirect mechanisms, wherein osteoclasts drive bone resorption that weakens tumor-bearing bones and predisposes them to skeletal-related events, thereby driving bone cancer pain and functional impairment. Finally, we discuss some potential therapeutic agents, such as denosumab, bisphosphonates, and nivolumab, and discuss their respective effects on bone cancer pain, osteoclast overactivation, and tumor growth within the bone TME.
Collapse
Affiliation(s)
- Amanda S. Andriessen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
| | - Christopher R. Donnelly
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
24
|
Gentile M, Centonza A, Lovero D, Palmirotta R, Porta C, Silvestris F, D'Oronzo S. Application of "omics" sciences to the prediction of bone metastases from breast cancer: State of the art. J Bone Oncol 2021; 26:100337. [PMID: 33240786 PMCID: PMC7672315 DOI: 10.1016/j.jbo.2020.100337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy and the first cause of cancer-related death in women. The majority of patients with advanced BC develop skeletal metastases which may ultimately lead to serious complications, termed skeletal-related events, that often dramatically impact on quality of life and survival. Therefore, the identification of biomarkers able to stratify BC patient risk to develop bone metastases (BM) is fundamental to define personalized diagnostic and therapeutic strategies, possibly at the earliest stages of the disease. In this regard, the advent of "omics" sciences boosted the investigation of several putative biomarkers of BC osteotropism, including deregulated genes, proteins and microRNAs. The present review revisits the current knowledge on BM development in BC and the most recent studies exploring potential BM-predicting biomarkers, based on the application of omics sciences to the study of primary breast malignancies.
Collapse
Key Words
- ADAMTS1, a disintegrin-like and metalloproteinase with thrombospondin type 1
- ALP, alkaline phosphatase
- BALP (BSAP), bone-specific alkaline phosphatase
- BC, breast cancer
- BM, bone metastases
- BOLCs, breast osteoblast-like cells
- BTM, bone turnover markers
- Biomarkers
- Bone metastases
- Breast cancer
- CAPG, capping-protein
- CCN3, cellular communication network factor 3
- CDH11, cadherin-11
- CNV, copy number variation
- CTGF, connective tissue-derived growth factor
- CTSK, cathepsin K
- CTX, C-telopeptide
- CXCL, C-X-C-ligand
- CXCR, C–X–C motif chemokine receptor
- DEGs, differentially expressed genes
- DOCK4, dedicator of cytokinesis protein 4
- DPD, deoxypyridoline
- DTC, disseminated tumour cells
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- ERRα, estrogen-related receptor alpha
- FAK, focal adhesion kinase
- FGF, fibroblast growth factor
- FST, follistatin
- GIPC1, PDZ domain-containing protein member 1
- HR, hazard ratio
- Her, human epidermal growth factor
- ICAM-1, intercellular adhesion molecule 1
- IGF, insulin-like growth factor
- IHC, immunohistochemistry
- IL, interleukin
- LC/MS/MS, liquid chromatography/mass spectrometry/mass spectrometry
- MAF, v-maf avian muscolo aponeurotic fibro-sarcoma oncogene homolog
- MDA-MB, MD Anderson metastatic BC
- MMP1, matrix metalloproteinase-1
- NTX, N-telopeptide
- OPG, osteoprotegerin
- Omics sciences
- Osteotropism
- P1CP, pro-collagen type I C-terminal
- P1NP, pro-collagen type I N-terminal
- PDGF, platelet-derived growth factor
- PRG1, proteoglycan-1
- PTH-rP, parathyroid hormone-related protein
- PYD, pyridoline
- PgR, progesterone receptor
- PlGF, placental growth factor
- RANK, receptor activator of nuclear factor к-B
- RT-PCR, real time-PCR
- SILAC-MS, stable isotope labelling by amino acids in cell culture-mass spectrometry
- SNPs, single nucleotide polymorphisms
- SPP1, osteopontin
- SREs, skeletal-related events
- TCGA, the cancer genome atlas
- TGF-β, transforming growth factor beta
- TNF-α, tumor necrosis factor-α
- TRACP-5b, tartrate resistant acid phosphatase-5b
- VEGF, vascular endothelial growth factor
- ZNF217, zinc-finger protein 217
- miRNAs, microRNAs
- ncRNAs, noncoding RNA
Collapse
Affiliation(s)
- Marica Gentile
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonella Centonza
- “Casa Sollievo della Sofferenza” Onco-hematologic Department, Medical Oncology Unit, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Camillo Porta
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
25
|
Chen X, Xiang H, Yu S, Lu Y, Wu T. Research progress in the role and mechanism of Cadherin-11 in different diseases. J Cancer 2021; 12:1190-1199. [PMID: 33442417 PMCID: PMC7797656 DOI: 10.7150/jca.52720] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cadherin is an important cell-cell adhesion molecule, which mediates intercellular adhesion through calcium dependent affinity interaction. Cadherin-11 (CDH11, OB-cadherin) is a member of cadherin family, and its gene is situated on chromosome 16q22.1. Increasing lines of researches have proved that CDH11 plays important roles in the occurrence and development of a lot of diseases, such as tumors, arthritis and so on. CDH11 often leads to promoter methylation inactivation, which can induce cancer cell apoptosis, suppress cell motility and invasion, and can inhibit cancer through Wnt/β-catenin, AKT/Rho A and NF-κB signaling pathways. This review focused on the current knowledge of CDH11, including its function and mechanism in different diseases. In this article, we aimed to have a more comprehensive and in-depth understanding of CDH11 and to provide new ideas for the treatment of some diseases.
Collapse
Affiliation(s)
- Xinyi Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyu Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
26
|
Vella V, De Francesco EM, Lappano R, Muoio MG, Manzella L, Maggiolini M, Belfiore A. Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling. Front Cell Dev Biol 2020; 8:608412. [PMID: 33364239 PMCID: PMC7753049 DOI: 10.3389/fcell.2020.608412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The development and progression of the great majority of breast cancers (BCs) are mainly dependent on the biological action elicited by estrogens through the classical estrogen receptor (ER), as well as the alternate receptor named G-protein–coupled estrogen receptor (GPER). In addition to estrogens, other hormones and growth factors, including the insulin and insulin-like growth factor system (IIGFs), play a role in BC. IIGFs cooperates with estrogen signaling to generate a multilevel cross-communication that ultimately facilitates the transition toward aggressive and life-threatening BC phenotypes. In this regard, the majority of BC deaths are correlated with the formation of metastatic lesions at distant sites. A thorough scrutiny of the biological and biochemical events orchestrating metastasis formation and dissemination has shown that virtually all cell types within the tumor microenvironment work closely with BC cells to seed cancerous units at distant sites. By establishing an intricate scheme of paracrine interactions that lead to the expression of genes involved in metastasis initiation, progression, and virulence, the cross-talk between BC cells and the surrounding microenvironmental components does dictate tumor fate and patients’ prognosis. Following (i) a description of the main microenvironmental events prompting BC metastases and (ii) a concise overview of estrogen and the IIGFs signaling and their major regulatory functions in BC, here we provide a comprehensive analysis of the most recent findings on the role of these transduction pathways toward metastatic dissemination. In particular, we focused our attention on the main microenvironmental targets of the estrogen-IIGFs interplay, and we recapitulated relevant molecular nodes that orientate shared biological responses fostering the metastatic program. On the basis of available studies, we propose that a functional cross-talk between estrogens and IIGFs, by affecting the BC microenvironment, may contribute to the metastatic process and may be regarded as a novel target for combination therapies aimed at preventing the metastatic evolution.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| |
Collapse
|
27
|
Monteran L, Ershaid N, Sabah I, Fahoum I, Zait Y, Shani O, Cohen N, Eldar-Boock A, Satchi-Fainaro R, Erez N. Bone metastasis is associated with acquisition of mesenchymal phenotype and immune suppression in a model of spontaneous breast cancer metastasis. Sci Rep 2020; 10:13838. [PMID: 32796899 PMCID: PMC7429866 DOI: 10.1038/s41598-020-70788-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
The most common site of breast cancer metastasis is the bone, occurring in approximately 70% of patients with advanced disease. Bone metastasis is associated with severe morbidities and high mortality. Therefore, deeper understanding of the mechanisms that enable bone-metastatic relapse are urgently needed. We report the establishment and characterization of a bone-seeking variant of breast cancer cells that spontaneously forms aggressive bone metastases following surgical resection of primary tumor. We characterized the modifications in the immune milieu during early and late stages of metastatic relapse and found that the formation of bone metastases is associated with systemic changes, as well as modifications of the bone microenvironment towards an immune suppressive milieu. Furthermore, we characterized the intrinsic changes in breast cancer cells that facilitate bone-tropism and found that they acquire mesenchymal and osteomimetic features. This model provides a clinically relevant platform to study the functional interactions between breast cancer cells and the bone microenvironment, in an effort to identify novel targets for intervention.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Nour Ershaid
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Idan Sabah
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ibrahim Fahoum
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ophir Shani
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Noam Cohen
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
28
|
Wang Y, Ren S, Wang Z, Wang Z, Zhu N, Cai D, Ye Z, Ruan J. Chemokines in bone-metastatic breast cancer: Therapeutic opportunities. Int Immunopharmacol 2020; 87:106815. [PMID: 32711376 DOI: 10.1016/j.intimp.2020.106815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Due to non-response to chemotherapy, incomplete surgical resection, and resistance to checkpoint inhibitors, breast cancer with bone metastasis is notoriously difficult to cure. Therefore, the development of novel, efficient strategies to tackle bone metastasis of breast cancer is urgently needed. Chemokines, which induce directed migration of immune cells and act as guide molecules between diverse cells and tissues, are small proteins indispensable in immunity. These complex chemokine networks play pro-tumor roles or anti-tumor roles when produced by breast cancer cells in the tumor microenvironment. Additionally, chemokines have diverse roles when secreted by various immune cells in the tumor microenvironment of breast cancer, which can be roughly divided into immunosuppressive effects and immunostimulatory effects. Recently, targeting chemokine networks has been shown to have potential for use in treatment of metastatic malignancies, including bone-metastatic breast cancer. In this review, we focus on the role of chemokines networks in the biology of breast cancer and metastasis to the bone. We also discuss the therapeutic opportunities and future prospects of targeting chemokine networks, in combination with other current standard therapies, for the treatment of bone-metastatic breast cancer.
Collapse
Affiliation(s)
| | - Shihong Ren
- First People's Hospital of Wenling, Wenling, China
| | - Zhan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Zhu
- Hebei North University, Zhangjiakou, China
| | | | - Zhaoming Ye
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | | |
Collapse
|
29
|
Management of bone metastasis with intravenous bisphosphonates in breast cancer: a systematic review and meta-analysis of dosing frequency. Support Care Cancer 2020; 28:2533-2540. [PMID: 32060705 DOI: 10.1007/s00520-020-05355-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/06/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bisphosphonates are wildly used in breast cancer patients with bone metastasis and generally administrated every 4 weeks to lessen the risk of subsequent skeletal-related events. Bisphosphonates administration every 12 weeks is also recommended in some guidelines. Recent clinical trials suggested that bisphosphonate treatment with reduced frequency (every 12 weeks) to be non-inferior to standard therapy. The object of this analysis was to contrast the efficacy and safety of these two treatment strategies. METHOD We systematically retrieved databases such as MEDLINE, PubMed, Embase, and Cochrane library from 1947 to present for clinical trials comparing the efficacy between standard (every 4 weeks) and de-escalation (every 12 weeks) treatment of bisphosphates. RESULTS We identified 4 articles with available data from 4 randomized clinical trials (n = 1721). Administration of bisphosphate every 12 weeks was non-inferior to administration every 4 weeks. There existed no significant difference in on-study skeletal-related events, renal dysfunction, and osteonecrosis of jaw. In the exploratory study, patients who received intravenous bisphosphates before enrollment experienced less on-study skeletal-related events and significant difference was observed between groups. CONCLUSION This analysis suggested that de-escalation treatment with bisphosphates may be superior to standard treatment in terms of efficacy, safety, and economic costs. But it would be better that all the patients receive bisphosphates every 4 weeks for several months before de-escalation.
Collapse
|
30
|
Ye L, Shi H, Wu S, Yu C, Wang B, Zheng L. Dysregulated interleukin 11 in primary Sjögren's syndrome contributes to apoptosis of glandular epithelial cells. Cell Biol Int 2020; 44:327-335. [PMID: 31502734 DOI: 10.1002/cbin.11236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/08/2019] [Indexed: 01/24/2023]
Abstract
The purpose of this study was to explore the potential function of interleukin-11 (IL-11) in the pathogenesis of primary Sjögren's syndrome (pSS) patients. Real-time polymerase chain reaction was performed to examine IL-11 expression in the labial glands of 30 pSS patients and 30 healthy controls. Immunohistochemistry was conducted to assess the distribution of IL-ll-positive cells in labial glands. The human salivary gland (HSG) cell line was used to study the effects of IL-11 on gland epithelial cells in vitro. Cell viability and cell proliferation were examined by CCK-8 kit and EdU assay, respectively. The population of apoptotic cells was detected in flow cytometry followed by Annexin V/PI and Hoechst staining. We found that the expression levels of IL-11 were remarkably decreased in pSS labial glands and were positively correlated with C-reactive protein levels and negatively correlated with rheumatoid factor levels. Fewer numbers of glandular epithelial cells were observed to be positively stained with IL-11 antibody in labial glands from pSS patients than those in healthy control patients. After IL-11 treatment, the viability and proliferation of HSG cells were significantly higher than those in the control group. The total apoptotic and necrotic rates of HSG cells in the group after IL-11 treatment were significantly lower. In conclusion, the results indicated that IL-11 promoted viability and proliferation and inhibited apoptotic and necrotic rates of glandular epithelial cells. In pSS, downregulated IL-11 might contribute to the apoptosis of salivary gland epithelial cells. However, it might be a potential target to alleviate the pathological atrophy of glandular epithelial cells in pSS patients.
Collapse
Affiliation(s)
- Lei Ye
- Department of Oral Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai, Zhizaoju Road 639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road 639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Zhizaoju Road 639, Shanghai, 200011, China
| | - Huan Shi
- Department of Oral Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai, Zhizaoju Road 639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road 639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Zhizaoju Road 639, Shanghai, 200011, China
| | - Shufeng Wu
- Department of Oral Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai, Zhizaoju Road 639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road 639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Zhizaoju Road 639, Shanghai, 200011, China
| | - Chuangqi Yu
- Department of Oral Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai, Zhizaoju Road 639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road 639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Zhizaoju Road 639, Shanghai, 200011, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai, Zhizaoju Road 639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road 639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Zhizaoju Road 639, Shanghai, 200011, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai, Zhizaoju Road 639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road 639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Zhizaoju Road 639, Shanghai, 200011, China
| |
Collapse
|
31
|
Zhang X, Yu X, Zhao Z, Yuan Z, Ma P, Ye Z, Guo L, Xu S, Xu L, Liu T, Liu H, Yu S. MicroRNA-429 inhibits bone metastasis in breast cancer by regulating CrkL and MMP-9. Bone 2020; 130:115139. [PMID: 31706051 DOI: 10.1016/j.bone.2019.115139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Bone metastasis is common in late-stage breast cancer patients and leads to skeletal-related events that affect the quality of life and decrease survival. Numerous miRNAs have been confirmed to be involved in metastatic breast cancer, such as the miR200 family. Our previous study identified microRNA-429 (miR-429) as a regulatory molecule in breast cancer bone metastasis. However, the effects of miR-429 and its regulatory axis in the metastatic breast cancer bone microenvironment have not been thoroughly investigated. We observed a positive correlation between miR-429 expression in clinical tissues and the bone metastasis-free interval and a negative correlation between miR-429 expression and the degree of bone metastasis. We cultured bone metastatic MDA-MB-231 cells and used conditioned medium (CM) to detect the effect of miR-429 on osteoblast and osteoclast cells in vitro. We constructed an orthotopic bone destruction model and a left ventricle implantation model to examine the effect of miR-429 on the metastatic bone environment in vivo. The transfection experiments showed that the expression levels of V-crk sarcoma virus CT10 oncogene homolog-like (CrkL) and MMP-9 were negatively regulated by miR-429. The in vitro coculture experiments showed that miR-429 promoted osteoblast differentiation and that CrkL promoted osteoclast differentiation. The two animal models showed that miR-429 diminished local bone destruction and distant bone metastasis but CrkL enhanced these effects. Furthermore, CrkL and MMP-9 expression decreased simultaneously in response to increased miR-429 expression. These findings further reveal the possible mechanism and effect of the miR-429/CrkL/MMP-9 regulatory axis in the bone microenvironment in breast cancer bone metastasis.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiying Yu
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenguo Zhao
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhennan Yuan
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiqing Ma
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhibin Ye
- Department of Gastrointestinal Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Liping Guo
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Songfeng Xu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Libin Xu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Liu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanmei Liu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
32
|
Lee WH, Loo CY, Rohanizadeh R. Functionalizing the surface of hydroxyapatite drug carrier with carboxylic acid groups to modulate the loading and release of curcumin nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:929-939. [DOI: 10.1016/j.msec.2019.02.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 01/22/2023]
|
33
|
Zhang Y, He W, Zhang S. Seeking for Correlative Genes and Signaling Pathways With Bone Metastasis From Breast Cancer by Integrated Analysis. Front Oncol 2019; 9:138. [PMID: 30918839 PMCID: PMC6424882 DOI: 10.3389/fonc.2019.00138] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Bone metastasis frequently occurs in advanced breast cancer patients, and it is one of major causes of breast cancer associated mortality. The aim of the current study is to identify potential genes and related signaling pathways in the pathophysiology of breast cancer bone metastasis. Methods: Three mRNA expression datasets for breast cancer bone metastasis were obtained from Gene Expression Omnibus (GEO) dataset. The differentially expressed genes (DEGs) were obtained. Functional analyses, protein-protein interaction (PPI) network, and transcription factors (TFs)-target genes network was constructed. Real-time PCR using clinical specimens was conducted to justify the results from integrated analysis. Results: A 749 DEGs were obtained. Osteoclast differentiation and rheumatoid arthritis were two significantly enriched signaling pathways for DEGs in the bone metastasis of breast cancer. SMAD7 (degree = 10), TGFBR2 (degree = 9), VIM (degree = 8), FOS (degree = 8), PDGFRB (degree = 7), COL5A1 (degree = 6), ARRB2 (degree = 6), and ITGAV (degree = 6) were high degree genes in the PPI network. ETS1 (degree = 12), SPI1 (degree = 12), FOS (degree = 10), FLI1 (degree = 5), KLF4 (degree = 4), JUNB (degree = 4), NR3C1 (degree = 4) were high degree genes in the TFs-target genes network. Validated by QRT-PCR, the expression levels of IBSP, MMP9, MMP13, TNFAIP6, CD200, DHRS3, ASS1, RIPK4, VIM, and PROM1 were roughly consistent with our integrated analysis. Except PROM1, the other genes had a diagnose value for breast cancer bone metastasis. Conclusions: The identified DEGs and signaling pathways may make contribution for understanding the pathological mechanism of bone metastasis from breast cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Orthopaedics, The First People's Hospital of Chengdu, Chengdu, China
| | - Wendan He
- Department of Stomatology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Zhang W, Bado I, Wang H, Lo HC, Zhang XHF. Bone Metastasis: Find Your Niche and Fit in. Trends Cancer 2019; 5:95-110. [PMID: 30755309 DOI: 10.1016/j.trecan.2018.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Metastasis to bones is determined by both intrinsic traits of metastatic tumor cells and properties appertaining to the bone microenvironment. Bone marrow niches are critical for all major steps of metastasis, including the seeding of disseminated tumor cells (DTCs) to bone, the survival of DTCs and microscopic metastases under dormancy, and the eventual outgrowth of overt metastases. In this review, we discuss the role of bone marrow niches in bone colonization. The emphasis is on complicated and dynamic nature of cancer cells-niche interaction, which may underpin the long-standing mystery of metastasis dormancy, and represent a therapeutic target for elimination of minimal residue diseases and prevention of life-taking, overt metastases.
Collapse
Affiliation(s)
- Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hin-Ching Lo
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Small molecules inhibit ex vivo tumor growth in bone. Bioorg Med Chem 2018; 26:6128-6134. [PMID: 30470597 DOI: 10.1016/j.bmc.2018.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
Bone is a common site of metastasis for breast, prostate, lung, kidney and other cancers. Bone metastases are incurable, and substantially reduce patient quality of life. To date, there exists no small-molecule therapeutic agent that can reduce tumor burden in bone. This is partly attributed to the lack of suitable in vitro assays that are good models of tumor growth in bone. Here, we take advantage of a novel ex vivo model of bone colonization to report a series of pyrrolopyrazolone small molecules that inhibit cancer cell invasion and ex vivo tumor growth in bone at single-digit micromolar concentration. We find that the compounds modulated the expression levels of genes associated with bone-forming osteoblasts, bone-destroying osteoclasts, cancer cell viability and metastasis. Our compounds provide chemical tools to uncover novel targets and pathways associated with bone metastasis, as well as for the development of compounds to prevent and reverse bone tumor growth in vivo.
Collapse
|
36
|
Stromal cells in breast cancer as a potential therapeutic target. Oncotarget 2018; 9:23761-23779. [PMID: 29805773 PMCID: PMC5955086 DOI: 10.18632/oncotarget.25245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer in the United States is the second most commonly diagnosed cancer in women. About 1 in 8 women will develop invasive breast cancer over the course of her lifetime and breast cancer remains the second leading cause of cancer-related death. In pursuit of novel therapeutic strategies, researchers have examined the tumor microenvironment as a potential anti-cancer target. In addition to neoplastic cells, the tumor microenvironment is composed of several critical normal cell types, including fibroblasts, vascular and lymph endothelial cells, osteoclasts, adipocytes, and immune cells. These cells have important roles in healthy tissue stasis, which frequently are altered in tumors. Indeed, tumor-associated stromal cells often contribute to tumorigenesis, tumor progression, and metastasis. Consequently, these host cells may serve as a possible target in anti-tumor and anti-metastatic therapeutic strategies. Targeting the tumor associated host cells offers the benefit that such cells do not mutate and develop resistance in response to treatment, a major cause of failure in cancer therapeutics targeting neoplastic cells. This review discusses the role of host cells in the tumor microenvironment during tumorigenesis, progression, and metastasis, and provides an overview of recent developments in targeting these cell populations to enhance cancer therapy efficacy.
Collapse
|
37
|
Ma YV, Lam C, Dalmia S, Gao P, Young J, Middleton K, Liu C, Xu H, You L. Mechanical regulation of breast cancer migration and apoptosis via direct and indirect osteocyte signaling. J Cell Biochem 2018; 119:5665-5675. [DOI: 10.1002/jcb.26745] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Yu‐Heng V. Ma
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Candy Lam
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Shreyash Dalmia
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Peter Gao
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Jacob Young
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Kevin Middleton
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Chao Liu
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Henry Xu
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Lidan You
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
38
|
Chen W, Hoffmann AD, Liu H, Liu X. Organotropism: new insights into molecular mechanisms of breast cancer metastasis. NPJ Precis Oncol 2018; 2:4. [PMID: 29872722 PMCID: PMC5871901 DOI: 10.1038/s41698-018-0047-0] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 02/08/2023] Open
Abstract
Metastasis accounts for 90% of breast cancer mortality. Despite the significant progress made over the past decade in cancer medicine our understanding of metastasis remains limited, therefore preventing and targeting metastasis is not yet possible. Breast cancer cells preferentially metastasize to specific organs, known as “organotropic metastasis”, which is regulated by subtypes of breast cancer, host organ microenvironment, and cancer cells-organ interactions. The cross-talk between cancer cells and host organs facilitates the formation of the premetastatic niche and is augmented by factors released from cancer cells prior to the cancer cells’ arrival at the host organ. Moreover, host microenvironment and specific organ structure influence metastatic niche formation and interactions between cancer cells and local resident cells, regulating the survival of cancer cells and formation of metastatic lesions. Understanding the molecular mechanisms of organotropic metastasis is essential for biomarker-based prediction and prognosis, development of innovative therapeutic strategy, and eventual improvement of patient outcomes. In this review, we summarize the molecular mechanisms of breast cancer organotropic metastasis by focusing on tumor cell molecular alterations, stemness features, and cross-talk with the host environment. In addition, we also update some new progresses on our understanding about genetic and epigenetic alterations, exosomes, microRNAs, circulating tumor cells and immune response in breast cancer organotropic metastasis.
Collapse
Affiliation(s)
- Wenjing Chen
- 1Department of Pharmacology, Northwestern University, Chicago, IL USA
| | - Andrew D Hoffmann
- 1Department of Pharmacology, Northwestern University, Chicago, IL USA
| | - Huiping Liu
- 1Department of Pharmacology, Northwestern University, Chicago, IL USA.,2Department of Medicine, Division of Hematology and Oncology, Northwestern University, Chicago, IL USA.,3Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL USA
| | - Xia Liu
- 1Department of Pharmacology, Northwestern University, Chicago, IL USA.,3Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL USA
| |
Collapse
|
39
|
Mittal S, Brown NJ, Holen I. The breast tumor microenvironment: role in cancer development, progression and response to therapy. Expert Rev Mol Diagn 2018; 18:227-243. [DOI: 10.1080/14737159.2018.1439382] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Suruchi Mittal
- Department of Oncology and Metabolism, University of Sheffield, UK
| | - Nicola J. Brown
- Department of Oncology and Metabolism, University of Sheffield, UK
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, UK
| |
Collapse
|
40
|
Ouyang Z, Guo X, Chen X, Liu B, Zhang Q, Yin Z, Zhai Z, Qu X, Liu X, Peng D, Shen Y, Liu T, Zhang Q. Hypericin targets osteoclast and prevents breast cancer-induced bone metastasis via NFATc1 signaling pathway. Oncotarget 2018; 9:1868-1884. [PMID: 29416737 PMCID: PMC5788605 DOI: 10.18632/oncotarget.22930] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Bone is the most common target organ of metastasis of breast cancers. This produces considerable morbidity due to skeletal-related events, and severely reduces the quality of life. Increased osteoclast activity is implicated in breast cancer outgrowth in the bone microenvironment. Our previous observation of an anti-osteoclastic activity of hypericin, a natural plant compound, led us to investigate whether hypericin could inhibit bone metastasis and osteolysis caused by breast cancer. We find that hypericin inhibited the upregulation of osteoclasts stimulated by breast cancer cells. The activity of hypericin on osteoclasts and breast cancer-mediated osteoclastogenesis was associated with the inhibition of NFATc1 signaling pathway and attenuation of Ca2+ oscillation. Furthermore, hypericin suppresses invasion and migration in breast cancer cells, but has little effect on breast cancer-cell induced RANKL/OPG ratio in osteoblast or the expression of osteoclast-activating factors. Administration of hypericin could reduce tumor burden, osteolysis induced by direct inoculation of MDA-MB-231 cells into the bone marrow cavity of the tibia as well as metastasis of bone and improve survival in an experimental metastasis model by intracardiac injection of MDA-MB-231 breast cancer cells. Taken together, these results suggest that hypericin may be a potential natural agent for preventing and treating bone destruction in patients with bone metastasis due to breast cancer.
Collapse
Affiliation(s)
- Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoning Guo
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xia Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Bo Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qiang Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Ziqing Yin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zanjing Zhai
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Xinhua Qu
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, P.R. China
| | - Dan Peng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yi Shen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qing Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
41
|
Zabkiewicz C, Resaul J, Hargest R, Jiang WG, Ye L. Bone morphogenetic proteins, breast cancer, and bone metastases: striking the right balance. Endocr Relat Cancer 2017; 24:R349-R366. [PMID: 28733469 PMCID: PMC5574206 DOI: 10.1530/erc-17-0139] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) belong to the TGF-β super family, and are essential for the regulation of foetal development, tissue differentiation and homeostasis and a multitude of cellular functions. Naturally, this has led to the exploration of aberrance in this highly regulated system as a key factor in tumourigenesis. Originally identified for their role in osteogenesis and bone turnover, attention has been turned to the potential role of BMPs in tumour metastases to, and progression within, the bone niche. This is particularly pertinent to breast cancer, which commonly metastasises to bone, and in which studies have revealed aberrations of both BMP expression and signalling, which correlate clinically with breast cancer progression. Ultimately a BMP profile could provide new prognostic disease markers. As the evidence suggests a role for BMPs in regulating breast tumour cellular function, in particular interactions with tumour stroma and the bone metastatic microenvironment, there may be novel therapeutic potential in targeting BMP signalling in breast cancer. This review provides an update on the current knowledge of BMP abnormalities and their implication in the development and progression of breast cancer, particularly in the disease-specific bone metastasis.
Collapse
Affiliation(s)
- Catherine Zabkiewicz
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Jeyna Resaul
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Rachel Hargest
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Wen Guo Jiang
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Lin Ye
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
42
|
D'Oronzo S, Brown J, Coleman R. The role of biomarkers in the management of bone-homing malignancies. J Bone Oncol 2017; 9:1-9. [PMID: 28948139 PMCID: PMC5602513 DOI: 10.1016/j.jbo.2017.09.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022] Open
Abstract
Bone represents a common site of metastasis from several solid tumours, including breast, prostate and lung malignancies. The onset of bone metastases (BM) is associated not only with serious skeletal complications, but also shortened overall survival, owing to the lack of curative treatment options for late-stage cancer. Despite the diagnostic advances, BM detection often occurs in the symptomatic stage, underlining the need for novel strategies aimed at the early identification of high-risk patients. To this purpose, both bone turnover and tumour-derived markers are being investigated for their potential diagnostic, prognostic and predictive roles. In this review, we summarize the pathogenesis of BM in breast, prostate and lung tumours, while exploring the current research focused on the identification and clinical validation of BM biomarkers.
Collapse
Key Words
- 1CTP, cross-linked carboxy-terminal telopeptide of type 1 collagen
- BALP, bone specific alkaline phosphatase
- BC, breast cancer
- BM, bone metastases
- BMDC, bone marrow derived cells
- BMPs, bone morphogenetic proteins
- BSP, bone sialoprotein
- BTA, bone-targeting agents
- BTM, bone turnover markers
- Biomarkers
- Bone metastasis
- Bone turnover markers
- Breast cancer
- CAPG, macrophage-capping protein
- CCL2, chemokine C-C ligand 2
- CTC, circulating tumour cells
- CXCL, C–X–C motif chemokine ligand
- CXCR, C–X–C motif chemokine receptor
- CaSR, calcium sensing receptor
- DPD, deoxypyridinoline
- DTC, disseminated tumour cells
- EMT, epithelial to mesenchymal transition
- ER, estrogen receptor
- FGF, fibroblast growth factor
- GIPC1, PDZ domain–containing protein member 1
- HR, hormone receptor
- Her2, human epidermal growth factor receptor 2
- IGF, insulin-like growth factor
- IL, interleukin
- IL-1R, IL-1 receptor
- LC, lung cancer
- Lung cancer
- M-CSF, macrophage colony stimulating factor
- MAF, v-maf avian musculo-aponeurotic fibrosarcoma oncogene homolog
- NSCLC, non-small cell LC
- NTX and CTX, N- and C- telopeptides of type 1 collagen
- OPG, osteoprotegerin
- P1NP and P1CP, N and C terminal pro-peptides of type 1 collagen
- PC, prostate cancer
- PDGF, platelet-derived growth factor
- PDGFRα, PDGF receptor α
- PSA, prostate specific antigen
- PTH, parathyroid hormone
- PTH-rP, PTH related protein
- PYD, pyridinoline
- PlGF, placental growth factor
- Prostate cancer
- RANK, receptor activator of nuclear factor kB
- RANK-L, RANK-ligand
- SDF-1, stromal cell-derived factor 1
- SREs, skeletal related events
- TGF-β, transforming growth factor-β
- TNF, tumour necrosis factor
- TRACP-5b, tartrate-resistant acid phosphatase type 5b
- TRAF3, TNF receptor associated factor 3
- VEGF, vascular endothelial growth factor
- ZNF217, zinc-finger protein 217
- miRNA, micro RNA
- sBALP, serum BALP
- shRNA, short hairpin RNA
- uNTX, urinary NTX
- β-CTX, CTX β isomer
Collapse
Affiliation(s)
- Stella D'Oronzo
- Academic Unit of Clinical Oncology, Weston Park Hospital, University of Sheffield, Whitham Road, Sheffield S10 2S, England, UK
| | - Janet Brown
- Academic Unit of Clinical Oncology, Weston Park Hospital, University of Sheffield, Whitham Road, Sheffield S10 2S, England, UK
| | - Robert Coleman
- Academic Unit of Clinical Oncology, Weston Park Hospital, University of Sheffield, Whitham Road, Sheffield S10 2S, England, UK
| |
Collapse
|
43
|
Mercatali L, La Manna F, Miserocchi G, Liverani C, De Vita A, Spadazzi C, Bongiovanni A, Recine F, Amadori D, Ghetti M, Ibrahim T. Tumor-Stroma Crosstalk in Bone Tissue: The Osteoclastogenic Potential of a Breast Cancer Cell Line in a Co-Culture System and the Role of EGFR Inhibition. Int J Mol Sci 2017; 18:ijms18081655. [PMID: 28758931 PMCID: PMC5578045 DOI: 10.3390/ijms18081655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Although bone metastases represent a major challenge in the natural history of breast cancer (BC), the complex interactions involved have hindered the development of robust in vitro models. The aim of this work is the development of a preclinical model of cancer and bone stromal cells to mimic the bone microenvironment. We studied the effects on osteoclastogenesis of BC cells and Mesenchymal stem cells (MSC) cultured alone or in combination. We also analyzed: (a) whether the blockade of the Epithelial Growth Factor Receptor (EGFR) pathway modified their influence on monocytes towards differentiation, and (b) the efficacy of bone-targeted therapy on osteoclasts. We evaluated the osteoclastogenesis modulation of human peripheral blood monocytes (PBMC) indirectly induced by the conditioned medium (CM) of the human BC cell line SCP2, cultured singly or with MSC. Osteoclastogenesis was evaluated by TRAP analysis. The effect of the EGFR blockade was assessed by treating the cells with gefitinib, and analyzed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Western Blot (WB). We observed that SCP2 co-cultured with MSC increased the differentiation of PBMC. This effect was underpinned upon pre-treatment of the co-culture with gefitinib. Co-culture of SCP2 with MSC increased the expression of both the bone-related marker Receptor Activator of Nuclear Factor κB (RANK) and EGFR in BC cells. These upregulations were not affected by the EGFR blockade. The effects of the CM obtained by the cells treated with gefitinib in combination with the treatment of the preosteoclasts with the bone-targeted agents and everolimus enhanced the inhibition of the osteoclastogenesis. Finally, we developed a fully human co-culture system of BC cells and bone progenitor cells. We observed that the interaction of MSC with cancer cells induced in the latter molecular changes and a higher power of inducing osteoclastogenesis. We found that blocking EGFR signaling could be an efficacious strategy for breaking the interactions between cancer and bone cells in order to inhibit bone metastasis.
Collapse
Affiliation(s)
- Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Federico La Manna
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Dino Amadori
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Martina Ghetti
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
- Biomedical and Neuromotor Sciences Department, University of Bologna, 40123 Bologna, Italy.
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| |
Collapse
|
44
|
Gandellini P, Doldi V, Zaffaroni N. microRNAs as players and signals in the metastatic cascade: Implications for the development of novel anti-metastatic therapies. Semin Cancer Biol 2017; 44:132-140. [PMID: 28344166 DOI: 10.1016/j.semcancer.2017.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 01/28/2023]
Abstract
microRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. Increasing evidence emerging from human tumor preclinical models clearly indicates that specific miRNAs, collectively termed "metastamirs," play a functional role in different steps of the metastatic cascade, by exerting either pro- or anti-metastatic functions, and behave as signaling mediators to enable tumor cell to colonize a specific organ. miRNAs also actively participate in the proficient interaction of cancer cells with tumor microenvironment, either at the primary or at the metastatic site. Circulating miRNAs, released by multiple cell types, following binding to proteins or encapsulation in extracellular vesicles, play a main role in this cross-talk by acting as transferrable messages. The documented involvement of specific miRNAs in the dissemination process has aroused interest in the development of miRNA-based strategies for the treatment of metastasis. Preclinical research carried out in tumor experimental models, using both miRNA replacement and miRNA inhibitory approaches, is encouraging towards translating miRNA-based strategies into human cancer therapy, based on the observed therapeutic activity in the absence of main toxicity. However, to accelerate their adoption in the clinic, further improvements in terms of efficacy and targeted delivery to the tumor are still necessary.
Collapse
Affiliation(s)
- Paolo Gandellini
- Molecular Pharmacology, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Valentina Doldi
- Molecular Pharmacology, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Nadia Zaffaroni
- Molecular Pharmacology, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|