1
|
Verner R, Szaflarski JP, Allendorfer JB, Vonck K, Giannicola G. Modulation of the thalamus by microburst vagus nerve stimulation: a feasibility study protocol. Front Neurol 2023; 14:1169161. [PMID: 37384278 PMCID: PMC10299807 DOI: 10.3389/fneur.2023.1169161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/04/2023] [Indexed: 06/30/2023] Open
Abstract
Vagus nerve stimulation (VNS) was the first device-based therapy for epilepsy, having launched in 1994 in Europe and 1997 in the United States. Since then, significant advances in the understanding of the mechanism of action of VNS and the central neurocircuitry that VNS modulates have impacted how the therapy is practically implemented. However, there has been little change to VNS stimulation parameters since the late 1990s. Short bursts of high frequency stimulation have been of increasing interest to other neuromodulation targets e.g., the spine, and these high frequency bursts elicit unique effects in the central nervous system, especially when applied to the vagus nerve. In the current study, we describe a protocol design that is aimed to assess the impact of high frequency bursts of stimulation, called "Microburst VNS", in subjects with refractory focal and generalized epilepsies treated with this novel stimulation pattern in addition to standard anti-seizure medications. This protocol also employed an investigational, fMRI-guided titration protocol that permits personalized dosing of Microburst VNS among the treated population depending on the thalamic blood-oxygen-level-dependent signal. The study was registered on clinicaltrials.gov (NCT03446664). The first subject was enrolled in 2018 and the final results are expected in 2023.
Collapse
Affiliation(s)
- Ryan Verner
- Clinical and Medical Affairs, LivaNova PLC (or a subsidiary), London, United Kingdom
| | - Jerzy P. Szaflarski
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
| | - Jane B. Allendorfer
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
| | - Kristl Vonck
- Department of Neurology, 4Brain, Ghent University Hospital, Ghent, Belgium
| | - Gaia Giannicola
- Clinical and Medical Affairs, LivaNova PLC (or a subsidiary), London, United Kingdom
| | | |
Collapse
|
2
|
Charalambous M, Fischer A, Potschka H, Walker MC, Raedt R, Vonck K, Boon P, Lohi H, Löscher W, Worrell G, Leeb T, McEvoy A, Striano P, Kluger G, Galanopoulou AS, Volk HA, Bhatti SFM. Translational veterinary epilepsy: A win-win situation for human and veterinary neurology. Vet J 2023; 293:105956. [PMID: 36791876 DOI: 10.1016/j.tvjl.2023.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Epilepsy is a challenging multifactorial disorder with a complex genetic background. Our current understanding of the pathophysiology and treatment of epilepsy has substantially increased due to animal model studies, including canine studies, but additional basic and clinical research is required. Drug-resistant epilepsy is an important problem in both dogs and humans, since seizure freedom is not achieved with the available antiseizure medications. The evaluation and exploration of pharmacological and particularly non-pharmacological therapeutic options need to remain a priority in epilepsy research. Combined efforts and sharing knowledge and expertise between human medical and veterinary neurologists are important for improving the treatment outcomes or even curing epilepsy in dogs. Such interactions could offer an exciting approach to translate the knowledge gained from people and rodents to dogs and vice versa. In this article, a panel of experts discusses the similarities and knowledge gaps in human and animal epileptology, with the aim of establishing a common framework and the basis for future translational epilepsy research.
Collapse
Affiliation(s)
- Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich 80539, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich 80539, Germany
| | - Matthew C Walker
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Robrecht Raedt
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Kristl Vonck
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Paul Boon
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Hannes Lohi
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, and Folkhälsan Research Center, University of Helsinki, Helsinki 00014, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | | | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern 3001, Switzerland
| | - Andrew McEvoy
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Pasquale Striano
- IRCCS 'G. Gaslini', Genova 16147, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Gerhard Kluger
- Research Institute, Rehabilitation, Transition-Palliation', PMU Salzburg, Salzburg 5020, Austria; Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen Clinic Vogtareuth, Vogtareuth 83569, Germany
| | - Aristea S Galanopoulou
- Saul R Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Sofie F M Bhatti
- Faculty of Veterinary Medicine, Small Animal Department, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
3
|
Pergande AE, Belshaw Z, Volk HA, Packer RMA. Owner perspectives on the impact of veterinary surgeons upon their decision making in the management of dogs with idiopathic epilepsy. Vet Rec 2022:e2482. [PMID: 36529783 DOI: 10.1002/vetr.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Idiopathic epilepsy is a prevalent canine condition that can be challenging to manage. A positive vet-owner relationship contributes to satisfaction and compliance, but its impact on management is unclear. The aim of this study was to investigate owner perspectives about the impact of veterinary surgeons on decision making and management. METHODS Qualitative methods were utilised, and semi-structured interviews were completed with 21 owners of dogs with epilepsy who lived in England. Transcripts were thematically analysed, and this study discusses the theme 'influences of the veterinary surgeon'. RESULTS Many owners felt that more precise expectations could have improved interactions with their veterinary surgeon(s), and their experiences of caring for their dog. Most owners referred to a specialist reported a positive experience, often due to specialists being perceived to have greater experience or knowledge. Owners who reported predominantly negative experiences were often less trusting of the veterinary profession, and more likely to perform self-directed research. LIMITATIONS These results represent the experiences of a small subset of owners, and larger scale studies are required to support these findings. CONCLUSION Owners appear to value the formation of partnerships of care with their veterinary surgeon, and greater availability of educational resources could further improve owner satisfaction.
Collapse
Affiliation(s)
- Amy E Pergande
- Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | | | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Rowena M A Packer
- Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, UK
| |
Collapse
|
4
|
Abstract
Epilepsy is a common neurological disease in both humans and domestic dogs, making dogs an ideal translational model of epilepsy. In both species, epilepsy is a complex brain disease characterized by an enduring predisposition to generate spontaneous recurrent epileptic seizures. Furthermore, as in humans, status epilepticus is one of the more common neurological emergencies in dogs with epilepsy. In both species, epilepsy is not a single disease but a group of disorders characterized by a broad array of clinical signs, age of onset, and underlying causes. Brain imaging suggests that the limbic system, including the hippocampus and cingulate gyrus, is often affected in canine epilepsy, which could explain the high incidence of comorbid behavioral problems such as anxiety and cognitive alterations. Resistance to antiseizure medications is a significant problem in both canine and human epilepsy, so dogs can be used to study mechanisms of drug resistance and develop novel therapeutic strategies to benefit both species. Importantly, dogs are large enough to accommodate intracranial EEG and responsive neurostimulation devices designed for humans. Studies in epileptic dogs with such devices have reported ictal and interictal events that are remarkably similar to those occurring in human epilepsy. Continuous (24/7) EEG recordings in a select group of epileptic dogs for >1 year have provided a rich dataset of unprecedented length for studying seizure periodicities and developing new methods for seizure forecasting. The data presented in this review substantiate that canine epilepsy is an excellent translational model for several facets of epilepsy research. Furthermore, several techniques of inducing seizures in laboratory dogs are discussed as related to therapeutic advances. Importantly, the development of vagus nerve stimulation as a novel therapy for drug-resistant epilepsy in people was based on a series of studies in dogs with induced seizures. Dogs with naturally occurring or induced seizures provide excellent large-animal models to bridge the translational gap between rodents and humans in the development of novel therapies. Furthermore, because the dog is not only a preclinical species for human medicine but also a potential patient and pet, research on this species serves both veterinary and human medicine.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
5
|
Nowakowska M, Üçal M, Charalambous M, Bhatti SFM, Denison T, Meller S, Worrell GA, Potschka H, Volk HA. Neurostimulation as a Method of Treatment and a Preventive Measure in Canine Drug-Resistant Epilepsy: Current State and Future Prospects. Front Vet Sci 2022; 9:889561. [PMID: 35782557 PMCID: PMC9244381 DOI: 10.3389/fvets.2022.889561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Modulation of neuronal activity for seizure control using various methods of neurostimulation is a rapidly developing field in epileptology, especially in treatment of refractory epilepsy. Promising results in human clinical practice, such as diminished seizure burden, reduced incidence of sudden unexplained death in epilepsy, and improved quality of life has brought neurostimulation into the focus of veterinary medicine as a therapeutic option. This article provides a comprehensive review of available neurostimulation methods for seizure management in drug-resistant epilepsy in canine patients. Recent progress in non-invasive modalities, such as repetitive transcranial magnetic stimulation and transcutaneous vagus nerve stimulation is highlighted. We further discuss potential future advances and their plausible application as means for preventing epileptogenesis in dogs.
Collapse
Affiliation(s)
- Marta Nowakowska
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Muammer Üçal
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Sofie F. M. Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Small Animal Teaching Hospital, Ghent University, Merelbeke, Belgium
| | - Timothy Denison
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Heidrun Potschka
- Faculty of Veterinary Medicine, Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
6
|
Castillo G, Gaitero L, Fonfara S, Czura CJ, Monteith G, James F. Transcutaneous Cervical Vagus Nerve Stimulation Induces Changes in the Electroencephalogram and Heart Rate Variability of Healthy Dogs, a Pilot Study. Front Vet Sci 2022; 9:878962. [PMID: 35769324 PMCID: PMC9234651 DOI: 10.3389/fvets.2022.878962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Transcutaneous cervical vagus nerve stimulation (tcVNS) has been used to treat epilepsy in people and dogs. Objective electroencephalographic (EEG) and heart rate variability (HRV) data associated with tcVNS have been reported in people. The question remained whether EEG and electrocardiography (ECG) would detect changes in brain activity and HRV, respectively, after tcVNS in dogs. Simultaneous EEG and Holter recordings, from 6 client-owned healthy dogs were compared for differences pre- and post- tcVNS in frequency band power analysis (EEG) and HRV. The feasibility and tolerance of the patients to the tcVNS were also noted. In a general linear mixed model, the average power per channel per frequency band was found to be significantly different pre- and post-stimulation in the theta (p = 0.02) and alpha bands (p = 0.04). The pooled power spectral analysis detected a significant decrease in the alpha (p < 0.01), theta (p = 0.01) and beta (p = 0.035) frequencies post-stimulation. No significant interaction was observed between dog, attitude, and stimulation in the multivariate model, neither within the same dog nor between individuals. There was a significant increase in the HRV measured by the standard deviation of the inter-beat (SDNN) index (p < 0.01) and a decrease in mean heart rate (p < 0.01) after tcVNS. The tcVNS was found to be well-tolerated. The results of this pilot study suggest that EEG and ECG can detect changes in brain activity and HRV associated with tcVNS in healthy dogs. Larger randomized controlled studies are required to confirm the results of this study and to assess tcVNS potential therapeutic value.
Collapse
Affiliation(s)
- Gibrann Castillo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Luis Gaitero
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sonja Fonfara
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Gabrielle Monteith
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Fiona James
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- *Correspondence: Fiona James
| |
Collapse
|
7
|
Aniwattanapong D, List JJ, Ramakrishnan N, Bhatti GS, Jorge R. Effect of Vagus Nerve Stimulation on Attention and Working Memory in Neuropsychiatric Disorders: A Systematic Review. Neuromodulation 2022; 25:343-355. [PMID: 35088719 DOI: 10.1016/j.neurom.2021.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND It has been suggested that vagus nerve stimulation (VNS) may enhance attention and working memory. The neuromodulator effects of VNS are thought to activate the release of neurotransmitters involving cognition and to promote neuronal plasticity. Therefore, VNS has been studied for its effects on attention and working memory impairment in neuropsychiatric disorders. OBJECTIVES This study aimed to assess the effects of VNS on attention and working memory among patients with neuropsychiatric disorders, examine stimulation parameters, provide mechanistic hypotheses, and propose future studies using VNS. MATERIALS AND METHODS We conducted a systematic review using electronic databases MEDLINE (Ovid), Embase (Ovid), Cochrane library, and PsycINFO (Ovid). Narrative analysis was used to describe the therapeutic effects of VNS on attention and working memory, describe stimulation parameters, and propose explanatory mechanisms. RESULTS We identified 20 studies reporting VNS effects on attention and working memory in patients with epilepsy or mood disorders. For epilepsy, there was one randomized controlled trial from all 18 studies. It demonstrated no statistically significant differences in the cognitive tasks between active and control VNS. From a within-subject experimental design, significant improvement of working memory after VNS was demonstrated. One of three nonrandomized controlled trials found significantly improved attentional performance after VNS. The cohort studies compared VNS and surgery and found attentional improvement in both groups. Nine of 12 pretest-posttest studies showed improvement of attention or working memory after VNS. For mood disorders, although one study showed significant improvement of attention following VNS, the other did not. CONCLUSIONS This review suggests that, although we identified some positive results from eligible studies, there is insufficient good-quality evidence to establish VNS as an effective intervention to enhance attention and working memory in persons with neuropsychiatric disorders. Further studies assessing the efficacy of such intervention are needed.
Collapse
Affiliation(s)
- Daruj Aniwattanapong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Chulalongkorn Cognitive, Clinical & Computational Neuroscience Lab, Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| | - Justine J List
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Nithya Ramakrishnan
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Gursimrat S Bhatti
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Ricardo Jorge
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Harcourt-Brown TR, Carter M. Implantable vagus nerve stimulator settings and short-term adverse effects in epileptic dogs. J Vet Intern Med 2021; 35:2350-2358. [PMID: 34472639 PMCID: PMC8478022 DOI: 10.1111/jvim.16226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Implantable vagus nerve stimulation (VNS) devices can be used to treat epilepsy in dogs. Adverse effects and short-term complications associated with delivering suggested therapeutic electrical stimulation (>1.5 mA) are not well-described. OBJECTIVES To compare complications and adverse effects observed with standard and rapid protocols of current increase. ANIMALS Sixteen client-owned dogs with idiopathic epilepsy. METHODS Nonrandomized, nonblinded prospective cohort study. Surgical complications, stimulation-related adverse effects, modifications to stimulator settings, number of hospital visits, and time to reach 1.5 mA stimulation current without intolerable adverse effects were described in dogs receiving current increases every 1 to 3 weeks (slow ramping) and dogs receiving current increases every 8 to 12 hours (fast ramping). RESULTS Self-resolving surgery site seromas formed in 6 dogs. No other surgical complications were observed. Fourteen dogs reached 1.5 mA. Coughing (11/14 dogs; 5 slow, 6 fast ramping) was the most common adverse effect. Intolerable coughing that limited current increases despite changing other stimulus parameters occurred in 6/7 of the fast-ramping group and in none of the slow-ramping group. Median time to 1.5 mA was 72 days (range, 28-98) in the slow-ramping group and 77 days (range, 3-152) in the fast-ramping group. Median number of clinic visits was 6 for the slow-ramping group (range, 5-6) and 3 for the fast-ramping group (range, 1-7). CONCLUSIONS AND CLINICAL IMPORTANCE Coughing is a common adverse effect of VNS in dogs and generally is well tolerated, particularly if current is increased slowly and other stimulation parameters are adapted for effect.
Collapse
Affiliation(s)
| | - Michael Carter
- Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
9
|
Hasegawa D, Asada R, Hamamoto Y, Yu Y, Kuwabara T, Mizoguchi S, Chambers JK, Uchida K. Focal Cortical Resection and Hippocampectomy in a Cat With Drug-Resistant Structural Epilepsy. Front Vet Sci 2021; 8:719455. [PMID: 34355038 PMCID: PMC8329420 DOI: 10.3389/fvets.2021.719455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy surgery is a common therapeutic option in humans with drug-resistant epilepsy. However, there are few reports of intracranial epilepsy surgery for naturally occurring epilepsy in veterinary medicine. A 12-year-old neutered male domestic shorthair cat with presumed congenital cortical abnormalities (atrophy) in the right temporo-occipital cortex and hippocampus had been affected with epilepsy from 3 months of age. In addition to recurrent epileptic seizures, the cat exhibited cognitive dysfunction, bilateral blindness, and right forebrain signs. Seizures had been partially controlled (approximately 0.3–0.7 seizures per month) by phenobarbital, zonisamide, diazepam, and gabapentin until 10 years of age; however, they gradually became uncontrollable (approximately 2–3 seizures per month). In order to plan epilepsy surgery, presurgical evaluations including advanced structural magnetic resonance imaging and long-term intracranial video-electroencephalography monitoring were conducted to identify the epileptogenic zone. The epileptogenic zone was suspected in the right atrophied temporo-occipital cortex and hippocampus. Two-step surgery was planned, and a focal cortical resection of that area was performed initially. After the first surgery, seizures were not observed for 2 months, but they then recurred. The second surgery was performed to remove the right atrophic hippocampus and extended area of the right cortex, which showed spikes on intraoperative electrocorticography. After the second operation, although epileptogenic spikes remained in the contralateral occipital lobe, which was suspected as the second epileptogenic focus, seizure frequency decreased to <0.3 seizure per month under treatment with antiseizure drugs at 1.5 years after surgery. There were no apparent complications associated with either operation, although the original neurological signs were unchanged. This is the first exploratory study of intracranial epilepsy surgery for naturally occurring epilepsy, with modern electroclinical and imaging evidence, in veterinary medicine. Along with the spread of advanced diagnostic modalities and neurosurgical devices in veterinary medicine, epilepsy surgery may be an alternative treatment option for drug-resistant epilepsy in cats.
Collapse
Affiliation(s)
- Daisuke Hasegawa
- Laboratory of Veterinary Radiology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan.,The Research Center of Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Rikako Asada
- Laboratory of Veterinary Radiology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Yuji Hamamoto
- Veterinary Medical Teaching Hospital, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Yoshihiko Yu
- Laboratory of Veterinary Radiology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Takayuki Kuwabara
- Laboratory of Veterinary Radiology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Shunta Mizoguchi
- Laboratory of Veterinary Radiology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
10
|
Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A. Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 2021; 127:37-53. [PMID: 33894241 DOI: 10.1016/j.neubiorev.2021.04.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022]
Abstract
Brain diseases, including neurodegenerative, cerebrovascular and neuropsychiatric diseases, have posed a deleterious threat to human health and brought a great burden to society and the healthcare system. With the development of medical technology, vagus nerve stimulation (VNS) has been approved by the Food and Drug Administration (FDA) as an alternative treatment for refractory epilepsy, refractory depression, cluster headaches, and migraines. Furthermore, current evidence showed promising results towards the treatment of more brain diseases, such as Parkinson's disease (PD), autistic spectrum disorder (ASD), traumatic brain injury (TBI), and stroke. Nonetheless, the biological mechanisms underlying the beneficial effects of VNS in brain diseases remain only partially elucidated. This review aims to delve into the relevant preclinical and clinical studies and update the progress of VNS applications and its potential mechanisms underlying the biological effects in brain diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Robinson K, Platt S, Stewart G, Reno L, Barber R, Boozer L. Feasibility of Non-Invasive Vagus Nerve Stimulation (gammaCore VET™) for the Treatment of Refractory Seizure Activity in Dogs. Front Vet Sci 2020; 7:569739. [PMID: 33195555 PMCID: PMC7524862 DOI: 10.3389/fvets.2020.569739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022] Open
Abstract
Idiopathic epilepsy is the most common chronic neurologic condition in dogs. Approximately 20–30% of those dogs are refractory to standard medical therapy and commonly experience side effects from antiepileptic drugs. Non-invasive vagus nerve stimulation (nVNS) has been frequently used in human medicine as an adjunct seizure therapy with low incidence of adverse events. Canine studies are limited to invasive surgical implants with no non-invasive evaluations currently published. We investigated the feasibility and efficacy of nVNS (gammaCore VET) as an adjunct treatment for refractory epilepsy in dogs. In total, 14 client-owned dogs completed the trial of either 8- or 16-week treatment periods during which they received 90–120 s stimulation three times per day in the region of the left cervical vagus nerve. Owners recorded seizure type (focal or generalized) and frequency as well as any adverse effects. Out of 14 dogs, nine achieved a reduction in seizure frequency and four were considered responders with a 50% or greater reduction in seizures from baseline to the final treatment period. However, there was no statistically significant difference in overall seizure frequency (p = 0.53) or percent change in seizure frequency between groups (p = 0.75). Adverse effects occurred in 25% of dogs originally enrolled, with reports of a hoarse bark and limb trembling, lethargy, behavioral changes, and an increase in seizure frequency. Non-invasive VNS was found to be safe and easy to administer with mild adverse events. It is considered a feasible treatment option as an adjunct therapy in refractory seizures and should be further investigated.
Collapse
Affiliation(s)
- Kelsey Robinson
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Simon Platt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | | | - Lisa Reno
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Renee Barber
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Lindsay Boozer
- Friendship Hospital for Animals, Washington, DC, United States
| |
Collapse
|
12
|
Tona KD, Revers H, Verkuil B, Nieuwenhuis S. Noradrenergic Regulation of Cognitive Flexibility: No Effects of Stress, Transcutaneous Vagus Nerve Stimulation, and Atomoxetine on Task-switching in Humans. J Cogn Neurosci 2020; 32:1881-1895. [PMID: 32644883 DOI: 10.1162/jocn_a_01603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cognitive flexibility allows us to adaptively switch between different responsibilities in important domains of our daily life. Previous work has elucidated the neurochemical basis underlying the ability to switch responses to a previously nonreinforced exemplar and to switch between attentional sets. However, the role of neuromodulators in task switching, the ability to rapidly switch between two or more cognitive tasks afforded by the same stimuli, is still poorly understood. We attempted to fill this gap by manipulating norepinephrine levels using stress manipulation (Study 1a, n = 48; between-group design), transcutaneous vagus nerve stimulation at two different intensities (Study 1b, n = 48; sham-controlled between-group design), and pharmacological manipulation (Study 2, n = 24; double-blind crossover design), all of which increased salivary cortisol measures. Participants repeatedly switched between two cognitive tasks (classifying a digit as high/low [Task 1] or as odd/even [Task 2]), depending on the preceding cue. On each trial, a cue indicated the task to be performed. The cue-stimulus interval was varied to manipulate the time to prepare for the switch. Participants showed typical switch costs, which decreased with the time available for preparation. None of the manipulations modulated the size of the switch costs or the preparation effect, as supported by frequentist and Bayesian model comparisons. Task-switching performance reflects a complex mix of cognitive control and bottom-up dynamics of task-set representations. Our findings suggest that norepinephrine does not affect either of these aspects of cognitive flexibility.
Collapse
Affiliation(s)
| | | | - Bart Verkuil
- Leiden University.,Leiden Institute for Brain and Cognition
| | | |
Collapse
|
13
|
Park H, Choi S, Joo E, Seo DW, Hong S, Lee JI, Hong SC, Lee S, Shon YM. The Role of Anterior Thalamic Deep Brain Stimulation as an Alternative Therapy in Patients with Previously Failed Vagus Nerve Stimulation for Refractory Epilepsy. Stereotact Funct Neurosurg 2019; 97:176-182. [DOI: 10.1159/000502344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/25/2019] [Indexed: 11/19/2022]
|
14
|
Abstract
The revolution in theory, swift technological developments, and invention of new devices have driven tremendous progress in neurostimulation as a third‐line treatment for epilepsy. Over the past decades, neurostimulation took its place in the field of epilepsy as an advanced treatment technique and opened up a new world. Numerous animal studies have proven the physical efficacy of stimulation of the brain and peripheral nerves. Based on this optimistic fundamental research, new advanced techniques are being explored in clinical practice. Over the past century, drawing on the benefits brought about by vagus nerve stimulation for the treatment of epilepsy, various new neurostimulation modalities have been developed to control seizures. Clinical studies including case reports, case series, and clinical trials have been booming in the past several years. This article gives a comprehensive review of most of these clinical studies. In addition to highlighting the advantages of neurostimulation for the treatment of epilepsy, concerns with this modality and future development directions are also discussed. The biggest advantage of neurostimulation over pharmacological treatments for epilepsy is the modulation of the epilepsy network by delivering stimuli at a specific target or the “hub.” Conversely, however, a lack of knowledge of epilepsy networks and the mechanisms of neurostimulation may hinder further development. Therefore, theoretical research on the mechanism of epileptogenesis and epilepsy networks is needed in the future. Within the multiple modalities of neuromodulation, the final choice should be made after full discussion with a multidisciplinary team at a presurgical conference. Furthermore, the establishment of a neurostimulation system with standardized parameters and rigorous guidelines is another important issue. To achieve this goal, a worldwide collaboration of epilepsy centers is also suggested in the future.
Collapse
Affiliation(s)
- Yicong Lin
- Department of Neurology Xuanwu Hospital Capital Medical University Beijing China.,Beijing Key Laboratory of Neuromodulation Beijing China.,Center of Epilepsy Beijing Institute for Brain Disorders Capital Medical University Beijing China
| | - Yuping Wang
- Department of Neurology Xuanwu Hospital Capital Medical University Beijing China.,Beijing Key Laboratory of Neuromodulation Beijing China.,Center of Epilepsy Beijing Institute for Brain Disorders Capital Medical University Beijing China
| |
Collapse
|
15
|
Schulze-Bonhage A. Brain stimulation as a neuromodulatory epilepsy therapy. Seizure 2017; 44:169-175. [DOI: 10.1016/j.seizure.2016.10.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022] Open
|
16
|
Martlé V, Van Ham LML, Boon P, Caemaert J, Tshamala M, Vonck K, Raedt R, Polis I, Bhatti S. Vagus Nerve Stimulator Placement in Dogs: Surgical Implantation Technique, Complications, Long-Term Follow-Up, and Practical Considerations. Vet Surg 2016; 45:71-8. [PMID: 26731597 DOI: 10.1111/vsu.12427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To describe a modified implantation procedure of a vagus nerve stimulation (VNS) device in dogs and to report short- and long-term complications. STUDY DESIGN Descriptive, experimental study. ANIMALS Healthy, adult Beagle dogs (n = 10). METHODS A VNS Therapy(®) System was implanted in the left cervical region of anesthetized dogs. During and within 48 hours after surgery, electrocardiography (ECG) and impedance testing of the system were performed. Dogs were monitored daily and the impedance of the system was determined regularly until VNS devices were surgically removed 3 years after implantation. RESULTS The implantation procedure was successful in all dogs without intraoperative complications. ECG monitoring and impedance tests were within normal limits during and within 48 hours after surgery. Postoperative seroma formation was common (70%). One dog developed an irreversible Horner's syndrome leading to removal of the device 5 months after implantation. Another dog developed trauma-induced damage of the lead requiring surgical revision. The device could be safely removed in all dogs; however, electrodes were left in place to avoid nerve damage. At removal, the anchor tether was dislodged in 40% of dogs and the lead was twisted in 50% of dogs. CONCLUSION Implantation of a VNS Therapy(®) System is safe and feasible in dogs; however, seroma formation, twisting of the lead, and dislodgement of the anchor tether were common. Practical improvements in the technique include stable device placement, use of a compression bandage, and exercise restriction. Regular evaluation of lead impedance is important, as altered values can indicate serious complications.
Collapse
Affiliation(s)
- Valentine Martlé
- Faculty of Veterinary Medicine, Department of Small Animal Medicine and Clinical Biology, Ghent University, Merelbeke, Belgium
| | - Luc M L Van Ham
- Faculty of Veterinary Medicine, Department of Small Animal Medicine and Clinical Biology, Ghent University, Merelbeke, Belgium
| | - Paul Boon
- Faculty of Medicine and Health Sciences, Department of Neurology
| | - Jacques Caemaert
- Faculty of Medicine and Health Sciences, Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | - Mulenda Tshamala
- Faculty of Veterinary Medicine, Department of Small Animal Medicine and Clinical Biology, Ghent University, Merelbeke, Belgium
| | - Kristl Vonck
- Faculty of Medicine and Health Sciences, Department of Neurology
| | - Robrecht Raedt
- Faculty of Medicine and Health Sciences, Department of Neurology
| | - Ingeborgh Polis
- Faculty of Veterinary Medicine, Department of Small Animal Medicine and Clinical Biology, Ghent University, Merelbeke, Belgium
| | - Sofie Bhatti
- Faculty of Veterinary Medicine, Department of Small Animal Medicine and Clinical Biology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
17
|
Dunlop K, Woodside B, Olmsted M, Colton P, Giacobbe P, Downar J. Reductions in Cortico-Striatal Hyperconnectivity Accompany Successful Treatment of Obsessive-Compulsive Disorder with Dorsomedial Prefrontal rTMS. Neuropsychopharmacology 2016; 41:1395-403. [PMID: 26440813 PMCID: PMC4793124 DOI: 10.1038/npp.2015.292] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 01/22/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a disabling illness with high rates of nonresponse to conventional treatments. OCD pathophysiology is believed to involve abnormalities in cortico-striatal-thalamic-cortical circuits through regions such as dorsomedial prefrontal cortex (dmPFC) and ventral striatum. These regions may constitute therapeutic targets for neuromodulation treatments, such as repetitive transcranial magnetic stimulation (rTMS). However, the neurobiological predictors and correlates of successful rTMS treatment for OCD are unclear. Here, we used resting-state functional magnetic resonance imaging (fMRI) to identify neural predictors and correlates of response to 20-30 sessions of bilateral 10 Hz dmPFC-rTMS in 20 treatment-resistant OCD patients, with 40 healthy controls as baseline comparators. A region of interest in the dmPFC was used to generate whole-brain functional connectivity maps pre-treatment and post treatment. Ten of 20 patients met the response criteria (⩾50% improvement on Yale-Brown Obsessive-Compulsive Scale, YBOCS); response to dmPFC-rTMS was sharply bimodal. dmPFC-rTMS responders had higher dmPFC-ventral striatal connectivity at baseline. The degree of reduction in this connectivity, from pre- to post-treatment, correlated to the degree of YBOCS symptomatic improvement. Baseline clinical and psychometric data did not predict treatment response. In summary, reductions in fronto-striatal hyperconnectivity were associated with treatment response to dmPFC-rTMS in OCD. This finding is consistent with previous fMRI studies of deep brain stimulation in OCD, but opposite to previous reports on mechanisms of dmPFC-rTMS in major depression. fMRI could prove useful in predicting the response to dmPFC-rTMS in OCD.
Collapse
Affiliation(s)
- Katharine Dunlop
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,MRI-Guided rTMS Clinic, University Health Network, Toronto, ON, Canada
| | - Blake Woodside
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,Department of Psychiatry, University Health Network, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Eating Disorders Program, University Health Network, Toronto, ON, Canada
| | - Marion Olmsted
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Eating Disorders Program, University Health Network, Toronto, ON, Canada
| | - Patricia Colton
- Department of Psychiatry, University Health Network, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Eating Disorders Program, University Health Network, Toronto, ON, Canada
| | - Peter Giacobbe
- MRI-Guided rTMS Clinic, University Health Network, Toronto, ON, Canada,Department of Psychiatry, University Health Network, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jonathan Downar
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,MRI-Guided rTMS Clinic, University Health Network, Toronto, ON, Canada,Department of Psychiatry, University Health Network, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto Western Research Institute, MRI-Guided rTMS Clinic, University Health Network, 399 Bathurst Street 7M-415, Toronto, ON M5T 2S8, Canada, Tel: +416 603 5667, Fax: +416 603 5292, E-mail:
| |
Collapse
|
18
|
Cukiert A. Commentary: Rates and Predictors of Seizure Freedom With Vagus Nerve Stimulation for Intractable Epilepsy. Neurosurgery 2016; 79:354-5. [PMID: 26901145 DOI: 10.1227/neu.0000000000001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Arthur Cukiert
- *Clinica de Epilepsia de Sao Paulo, Sao Paulo, Brazil; ‡Department of Neurosurgery, ABC Faculty of Medicine, Sao Paulo, Brazil
| |
Collapse
|