1
|
Laakso I, Nissi J, Kangasmaa O. Vestibular involvement in transcranial electrical stimulation: Body sway as a marker of unintended stimulation. Brain Stimul 2024; 18:34-36. [PMID: 39719171 DOI: 10.1016/j.brs.2024.12.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Affiliation(s)
- Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo 02150, Finland.
| | - Janita Nissi
- Department of Electrical Engineering and Automation, Aalto University, Espoo 02150, Finland
| | - Otto Kangasmaa
- Department of Electrical Engineering and Automation, Aalto University, Espoo 02150, Finland
| |
Collapse
|
2
|
Elkhooly M, Di Stadio A, Bernitsas E. Effect of Aerobic Exercise versus Non-Invasive Brain Stimulation on Cognitive Function in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Brain Sci 2024; 14:771. [PMID: 39199465 PMCID: PMC11352410 DOI: 10.3390/brainsci14080771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
OBJECTIVE In this study, we investigated the effects of noninvasive brain stimulation (NIBS) and exercise on cognition in patients with multiple sclerosis (pwMS). METHODS A literature search was performed using the Cochrane Library, Scopus, PubMed and Web of Science. The time interval used for database construction was up to February 2024; the collected trials were subsequently screened, and the data were extracted. RESULTS We identified 12 studies with 208 pwMS treated with noninvasive brain stimulation. Seven of the twelve studies concluded that NIBS was effective in improving reaction time, attention and processing speed. Additionally, 26 articles investigated the effect of various types of exercise on cognition among 708 pwMS. Twelve studies used aerobic exercise only, three studies used resistance only, one used yoga, and ten studies used mixed forms of exercise, such as Pilates, resistance and Frenkel coordination. Aerobic exercise was effective in improving at least one cognitive domain in ten studies. Resistance exercise was found to improve cognition in three studies. Yoga failed to show any improvement in one study. CONCLUSIONS NIBS might be an effective intervention for cognition improvement among pwMS. Aerobic exercise and combined forms of exercise are the most frequently investigated and applied and found to be effective. Further studies are needed, especially for resistance, balance and stretching exercises.
Collapse
Affiliation(s)
- Mahmoud Elkhooly
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Arianna Di Stadio
- Department of GF Ingrassia, University of Catania, 95121 Catania, Italy
- IRCSS Santa Lucia, 00179 Rome, Italy
| | | |
Collapse
|
3
|
Akaiwa M, Matsuda Y, Kurokawa R, Sugawara Y, Kosuge R, Saito H, Shibata E, Sasaki T, Sugawara K, Kozuka N. Does 20 Hz Transcranial Alternating Current Stimulation over the Human Primary Motor Cortex Modulate Beta Rebound Following Voluntary Movement? Brain Sci 2024; 14:74. [PMID: 38248289 PMCID: PMC10813667 DOI: 10.3390/brainsci14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Beta frequency oscillations originating from the primary motor cortex increase in amplitude following the initiation of voluntary movement, a process termed beta rebound. The strength of beta rebound has been reported to predict the recovery of motor function following stroke, suggesting therapeutic applications of beta rebound modulation. The present study examined the effect of 20 Hz transcranial alternating current stimulation (tACS) on the beta rebound induced by self-paced voluntary movement. Electroencephalograms (EEGs) and electromyograms (EMGs) were recorded from 16 healthy adults during voluntary movements performed before and after active or sham tACS. There was no significant change in average beta rebound after active tACS. However, the beta rebound amplitude was significantly enhanced in a subset of participants, and the magnitude of the increase across all participants was negatively correlated with the difference between individual peak beta frequency and tACS frequency. Thus, matching the stimulus frequency of tACS with individual beta frequency may facilitate therapeutic enhancement for motor rehabilitation.
Collapse
Affiliation(s)
- Mayu Akaiwa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yuya Matsuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Ryo Kurokawa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yasushi Sugawara
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Rin Kosuge
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hidekazu Saito
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Eriko Shibata
- Major of Physical Therapy, Department of Rehabilitation, Faculty of Healthcare and Science, Hokkaido Bunkyo University, Eniwa 061-1449, Japan;
| | - Takeshi Sasaki
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| | - Kazuhiro Sugawara
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| | - Naoki Kozuka
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan; (T.S.); (K.S.); (N.K.)
| |
Collapse
|
4
|
De Koninck BP, Brazeau D, Guay S, Herrero Babiloni A, De Beaumont L. Transcranial Alternating Current Stimulation to Modulate Alpha Activity: A Systematic Review. Neuromodulation 2023; 26:1549-1584. [PMID: 36725385 DOI: 10.1016/j.neurom.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) has been one of numerous investigation methods used for their potential to modulate brain oscillations; however, such investigations have given contradictory results and a lack of standardization. OBJECTIVES In this systematic review, we aimed to assess the potential of tACS to modulate alpha spectral power. The secondary outcome was the identification of tACS methodologic key parameters, adverse effects, and sensations. MATERIALS AND METHODS Studies in healthy adults who were receiving active and sham tACS intervention or any differential condition were included. The main outcome assessed was the increase/decrease of alpha spectral power through either electroencephalography or magnetoencephalography. Secondary outcomes were methodologic parameters, sensation reporting, and adverse effects. Risks of bias and the study quality were assessed with the Cochrane assessment tool. RESULTS We obtained 1429 references, and 20 met the selection criteria. A statistically significant alpha-power increase was observed in nine studies using continuous tACS stimulation and two using intermittent tACS stimulation set at a frequency within the alpha range. A statistically significant alpha-power increase was observed in three more studies using a stimulation frequency outside the alpha range. Heterogeneity among stimulation parameters was recognized. Reported adverse effects were mild. The implementation of double blind was identified as challenging using tACS, in part owing to electrical artifacts generated by stimulation on the recorded signal. CONCLUSIONS Most assessed studies reported that tACS has the potential to modulate brain alpha power. The optimization of this noninvasive brain stimulation method is of interest mostly for its potential clinical applications with neurological conditions associated with perturbations in alpha brain activity. However, more research efforts are needed to standardize optimal parameters to achieve lasting modulation effects, develop methodologic alternatives to reduce experimental bias, and improve the quality of studies using tACS to modulate brain activity.
Collapse
Affiliation(s)
- Beatrice P De Koninck
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada.
| | - Daphnée Brazeau
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Samuel Guay
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Alberto Herrero Babiloni
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada; McGill University, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| |
Collapse
|
5
|
Yamada Y, Narita Z, Inagawa T, Yokoi Y, Hirabayashi N, Shirama A, Sueyoshi K, Sumiyoshi T. Electrode montage for transcranial direct current stimulation governs its effect on symptoms and functionality in schizophrenia. Front Psychiatry 2023; 14:1243859. [PMID: 37860168 PMCID: PMC10582326 DOI: 10.3389/fpsyt.2023.1243859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023] Open
Abstract
Backgrounds Patients with schizophrenia suffer from cognitive impairment that worsens real-world functional outcomes. We previously reported that multi-session transcranial direct current stimulation (tDCS) delivered to the left dorsolateral prefrontal cortex (DLPFC) improved daily living skills, while stimulation on the left superior temporal sulcus (STS) enhanced performance on a test of social cognition in these patients. To examine the region-dependent influence of tDCS on daily-living skills, neurocognition, and psychotic symptoms, this study compared effects of anodal stimulation targeting either of these two brain areas in patients with schizophrenia. Methods Data were collected from open-label, single-arm trials with anodal electrodes placed over the left DLPFC (N = 28) or STS (N = 15). Daily-living skills, neurocognition, and psychotic symptoms were measured with the UCSD performance-based skills assessment-brief (UPSA-B), Brief Assessment of Cognition in Schizophrenia (BACS), and Positive and Negative Syndrome Scale (PANSS), respectively. After baseline evaluation, tDCS (2 mA × 20 min) were delivered two times per day for 5 consecutive days. One month after the final stimulation, clinical assessments were repeated. Results Performance on the UPSA-B was significantly improved in patients who received anodal tDCS at the left DLPFC (d = 0.70, p < 0.001), while this effect was absent in patients with anodal electrodes placed on the left STS (d = 0.02, p = 0.939). Significant improvement was also observed for scores on the BACS with anodal tDCS delivered to the DLPFC (d = 0.49, p < 0.001); however, such neurocognitive enhancement was absent when the STS was stimulated (d = 0.05, p = 0.646). Both methods of anodal stimulation showed a significant improvement of General Psychopathology scores on the PANSS (DLPFC, d = 0.50, p = 0.027; STS, d = 0.44, p = 0.001). Conclusion These results indicate the importance of selecting brain regions as a target for tDCS according to clinical features of individual patients. Anodal stimulation of the left DLPFC may be advantageous in improving higher level functional outcomes in patients with schizophrenia. Trial registration These studies were registered within the University hospital Medical Information Network Clinical Trials Registry [(24), UMIN000015953], and the Japan Registry of Clinical Trials [(28), jRCTs032180026].
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Zui Narita
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takuma Inagawa
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuma Yokoi
- Department of Educational Promotion, Clinical Research and Education Promotion Division, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naotsugu Hirabayashi
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Aya Shirama
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuki Sueyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
6
|
Wischnewski M, Alekseichuk I, Opitz A. Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends Cogn Sci 2023; 27:189-205. [PMID: 36543610 PMCID: PMC9852081 DOI: 10.1016/j.tics.2022.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Transcranial alternating current stimulation (tACS) can modulate human neural activity and behavior. Accordingly, tACS has vast potential for cognitive research and brain disorder therapies. The stimulation generates oscillating electric fields in the brain that can bias neural spike timing, causing changes in local neural oscillatory power and cross-frequency and cross-area coherence. tACS affects cognitive performance by modulating underlying single or nested brain rhythms, local or distal synchronization, and metabolic activity. Clinically, stimulation tailored to abnormal neural oscillations shows promising results in alleviating psychiatric and neurological symptoms. We summarize the findings of tACS mechanisms, its use for cognitive applications, and novel developments for personalized stimulation.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Weightman M, Lalji N, Lin CHS, Galea JM, Jenkinson N, Miall RC. Short duration event related cerebellar TDCS enhances visuomotor adaptation. Brain Stimul 2023; 16:431-441. [PMID: 36720304 DOI: 10.1016/j.brs.2023.01.1673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (TDCS) is typically applied before or during a task, for periods ranging from 5 to 30 min. HYPOTHESIS We hypothesise that briefer stimulation epochs synchronous with individual task actions may be more effective. METHODS In two separate experiments, we applied brief bursts of event-related anodal stimulation (erTDCS) to the cerebellum during a visuomotor adaptation task. RESULTS The first study demonstrated that 1 s duration erTDCS time-locked to the participants' reaching actions enhanced adaptation significantly better than sham. A close replication in the second study demonstrated 0.5 s erTDCS synchronous with the reaching actions again resulted in better adaptation than standard TDCS, significantly better than sham. Stimulation either during the inter-trial intervals between movements or after movement, during assessment of visual feedback, had no significant effect. Because short duration stimulation with rapid onset and offset is more readily perceived by the participants, we additionally show that a non-electrical vibrotactile stimulation of the scalp, presented with the same timing as the erTDCS, had no significant effect. CONCLUSIONS We conclude that short duration, event related, anodal TDCS targeting the cerebellum enhances motor adaptation compared to the standard model. We discuss possible mechanisms of action and speculate on neural learning processes that may be involved.
Collapse
Affiliation(s)
- Matthew Weightman
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK; School of Psychology, University of Birmingham, UK
| | - Neeraj Lalji
- School of Psychology, University of Birmingham, UK
| | - Chin-Hsuan Sophie Lin
- Cognitive Neuroscience and Computational Psychiatry Lab, University of Melbourne, Australia
| | | | - Ned Jenkinson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | | |
Collapse
|
8
|
Hsu C, Liu T, Lee D, Yeh D, Chen Y, Liang W, Juan C. Amplitude modulating frequency overrides carrier frequency in tACS-induced phosphene percept. Hum Brain Mapp 2022; 44:914-926. [PMID: 36250439 PMCID: PMC9875935 DOI: 10.1002/hbm.26111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 01/28/2023] Open
Abstract
The amplitude modulated (AM) neural oscillation is an essential feature of neural dynamics to coordinate distant brain areas. The AM transcranial alternating current stimulation (tACS) has recently been adopted to examine various cognitive functions, but its neural mechanism remains unclear. The current study utilized the phosphene phenomenon to investigate whether, in an AM-tACS, the AM frequency could modulate or even override the carrier frequency in phosphene percept. We measured the phosphene threshold and the perceived flash rate/pattern from 12 human subjects (four females, aged from 20-44 years old) under tACS that paired carrier waves (10, 14, 18, 22 Hz) with different envelope conditions (0, 2, 4 Hz) over the mid-occipital and left facial areas. We also examined the phosphene source by adopting a high-density stimulation montage. Our results revealed that (1) phosphene threshold was higher for AM-tACS than sinusoidal tACS and demonstrated different carrier frequency functions in two stimulation montages. (2) AM-tACS slowed down the phosphene flashing and abolished the relation between the carrier frequency and flash percept in sinusoidal tACS. This effect was independent of the intensity change of the stimulation. (3) Left facial stimulation elicited phosphene in the upper-left visual field, while occipital stimulation elicited equally distributed phosphene. (4) The near-eye electrodermal activity (EDA) measured under the threshold-level occipital tACS was greater than the lowest power sufficient to elicit retinal phosphene. Our results show that AM frequency may override the carrier frequency and determine the perceived flashing frequency of AM-tACS-induced phosphene.
Collapse
Affiliation(s)
- Che‐Yi Hsu
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan
| | - Tzu‐Ling Liu
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan,Cognitive Intelligence and Precision Healthcare Research CenterNational Central UniversityTaoyuanTaiwan
| | - Dong‐Han Lee
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan,Cognitive Intelligence and Precision Healthcare Research CenterNational Central UniversityTaoyuanTaiwan
| | - Ding‐Ruey Yeh
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan
| | - Yan‐Hsun Chen
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan,Cognitive Intelligence and Precision Healthcare Research CenterNational Central UniversityTaoyuanTaiwan
| | - Wei‐Kuang Liang
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan,Cognitive Intelligence and Precision Healthcare Research CenterNational Central UniversityTaoyuanTaiwan
| | - Chi‐Hung Juan
- Institute of Cognitive Neuroscience, College of Health Sciences and TechnologyNational Central UniversityTaoyuanTaiwan,Cognitive Intelligence and Precision Healthcare Research CenterNational Central UniversityTaoyuanTaiwan,Department of PsychologyKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
9
|
Benussi A, Cantoni V, Grassi M, Brechet L, Michel CM, Datta A, Thomas C, Gazzina S, Cotelli MS, Bianchi M, Premi E, Gadola Y, Cotelli M, Pengo M, Perrone F, Scolaro M, Archetti S, Solje E, Padovani A, Pascual-Leone A, Borroni B. Increasing brain gamma activity improves episodic memory and restores cholinergic dysfunction in Alzheimer's disease. Ann Neurol 2022; 92:322-334. [PMID: 35607946 PMCID: PMC9546168 DOI: 10.1002/ana.26411] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To assess whether non-invasive brain stimulation with transcranial alternating current stimulation at gamma-frequency (γ-tACS) applied over the precuneus can improve episodic memory and modulate cholinergic transmission by modulating cerebral rhythms in early Alzheimer's disease (AD). METHODS In this randomized, double-blind, sham controlled, crossover study, 60 AD patients underwent a clinical and neurophysiological evaluation including assessment of episodic memory and cholinergic transmission pre- and post- 60 minutes treatment with γ-tACS targeting the precuneus or sham tACS. In a subset of 10 patients, EEG analysis and individualized modelling of electric field distribution were carried out. Predictors to γ-tACS efficacy were evaluated. RESULTS We observed a significant improvement in the Rey auditory verbal learning (RAVL) test immediate recall (p<0.001) and delayed recall scores (p<0.001) after γ-tACS but not after sham tACS. Face-name associations scores improved with γ-tACS (p<0.001) but not after sham tACS. Short latency afferent inhibition, an indirect measure of cholinergic transmission, increased only after γ-tACS (p<0.001). ApoE genotype and baseline cognitive impairment were the best predictors of response to γ-tACS. Clinical improvement correlated with the increase in gamma frequencies in posterior regions and with the amount of predicted electric field distribution in the precuneus. INTERPRETATION Precuneus γ-tACS, able to increase γ-power activity on the posterior brain regions, showed a significant improvement of episodic memory performances, along with restoration of intracortical excitability measures of cholinergic transmission. Response to γ-tACS was dependent on genetic factors and disease stage. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Lucie Brechet
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Abhishek Datta
- Research & Development, Soterix Medical, Inc., New York, USA
| | - Chris Thomas
- Research & Development, Soterix Medical, Inc., New York, USA
| | - Stefano Gazzina
- Neurophysiology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | | | - Marta Bianchi
- Neurology Unit, Valle Camonica Hospital, Esine, Brescia, Italy
| | - Enrico Premi
- Stroke Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Yasmine Gadola
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia
| | - Marta Pengo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Perrone
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maria Scolaro
- Neurophysiology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Silvana Archetti
- Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili Brescia, Brescia, Italy
| | - Eino Solje
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.,Guttmann Brain Health Institut, Barcelona, Spain
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
10
|
Sadeghihassanabadi F, Misselhorn J, Gerloff C, Zittel-Dirks S. Optimizing the Montage for Cerebellar Transcranial Alternating Current Stimulation (tACS): a Combined Computational and Experimental Study. J Neural Eng 2022; 19. [PMID: 35421852 DOI: 10.1088/1741-2552/ac676f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The application of cerebellar transcranial alternating current stimulation (tACS) is limited by the absence of commonly agreed montages and also the presence of unpleasant side effects. We aimed to find the most effective cerebellar tACS montage with minimum side effects (skin sensations and phosphenes). APPROACH We first simulated cerebellar tACS with five montages (return electrode on forehead, buccinator, jaw, and neck positions, additionally focal montage with high-definition ring electrodes) to compare induced cerebellar current, then stimulated healthy participants and evaluated side effects for different montages and varying stimulation frequencies. MAIN RESULTS The simulation revealed a descending order of current density in the cerebellum from forehead to buccinator, jaw, neck and ring montage respectively. Montages inducing higher current intensity in the eyeballs during the simulation resulted in stronger and broader phosphenes during tACS sessions. Strong co-stimulation of the brainstem was observed for the neck. Skin sensations did not differ between montages or frequencies. We propose the jaw montage as an optimal choice for maximizing cerebellar stimulation while minimizing unwanted side effects. SIGNIFICANCE These findings contribute to adopting a standard cerebellar tACS protocol. The combination of computational modelling and experimental data offers improved experimental control, safety, effectiveness, and reproducibility to all brain stimulation practices.
Collapse
Affiliation(s)
- Fatemeh Sadeghihassanabadi
- Klinik und Poliklinik für Neurologie, University Medical Center Hamburg-Eppendorf Head and Neurocenter, Martinistraße 52, Hamburg, Hamburg, 20246, GERMANY
| | - Jonas Misselhorn
- Institut für Neurophysiologie und Pathophysiologie , Universitätsklinikum Hamburg-Eppendorf Zentrum für Experimentelle Medizin, Martinistraße 52, Hamburg, Hamburg, 20246, GERMANY
| | - Christian Gerloff
- Department of Neurology, University Medical Center, Universitatsklinikum Hamburg-Eppendorf, Martinistraße 52, Hamburg, Hamburg, 20246, GERMANY
| | - Simone Zittel-Dirks
- Klinik und Poliklinik für Neurologie, University Medical Center Hamburg-Eppendorf Head and Neurocenter, Martinistraße 52, Hamburg, Hamburg, 20246, GERMANY
| |
Collapse
|
11
|
Nieuwhof F, Toni I, Buijink AW, van Rootselaar AF, van de Warrenburg BP, Helmich RC. Phase-locked transcranial electrical brain stimulation for tremor suppression in dystonic tremor syndromes. Clin Neurophysiol 2022; 140:239-250. [DOI: 10.1016/j.clinph.2022.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/19/2022]
|
12
|
Directionality of the injected current targeting the P20/N20 source determines the efficacy of 140 Hz transcranial alternating current stimulation (tACS)-induced aftereffects in the somatosensory cortex. PLoS One 2022; 17:e0266107. [PMID: 35324989 PMCID: PMC8947130 DOI: 10.1371/journal.pone.0266107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Interindividual anatomical differences in the human cortex can lead to suboptimal current directions and may result in response variability of transcranial electrical stimulation methods. These differences in brain anatomy require individualized electrode stimulation montages to induce an optimal current density in the targeted area of each individual subject. We aimed to explore the possible modulatory effects of 140 Hz transcranial alternating current stimulation (tACS) on the somatosensory cortex using personalized multi-electrode stimulation montages. In two randomized experiments using either tactile finger or median nerve stimulation, we measured by evoked potentials the plasticity aftereffects and oscillatory power changes after 140 Hz tACS at 1.0 mA as compared to sham stimulation (n = 17, male = 9). We found a decrease in the power of oscillatory mu-rhythms during and immediately after tactile discrimination tasks, indicating an engagement of the somatosensory system during stimulus encoding. On a group level both the oscillatory power and the evoked potential amplitudes were not modulated by tACS neither after tactile finger stimulation nor after median nerve stimulation as compared to sham stimulation. On an individual level we could however demonstrate that lower angular difference (i.e., differences between the injected current vector in the target region and the source orientation vector) is associated with significantly higher changes in both P20/N20 and N30/P30 source activities. Our findings suggest that the higher the directionality of the injected current correlates to the dipole orientation the greater the tACS-induced aftereffects are.
Collapse
|
13
|
Suh MW, Tran P, Richardson M, Sun S, Xu Y, Djalilian HR, Lin HW, Zeng FG. Electric hearing and tinnitus suppression by noninvasive ear stimulation. Hear Res 2022; 415:108431. [PMID: 35016022 DOI: 10.1016/j.heares.2022.108431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022]
Abstract
While noninvasive brain stimulation is convenient and cost effective, its utility is limited by the substantial distance between scalp electrodes and their intended neural targets in the head. The tympanic membrane, or eardrum, is a thin flap of skin deep in an orifice of the head that may serve as a port for improved efficiency of noninvasive stimulation. Here we chose the cochlea as a target because it resides in the densest bone of the skull and is adjacent to many deep-brain-stimulation structures. We also tested the hypothesis that noninvasive electric stimulation of the cochlea may restore neural activities that are missing in acoustic stimulation. We placed an electrode in the ear canal or on the tympanic membrane in 25 human adults (10 females) and compared their stimulation efficiency by characterizing the electrically-evoked auditory sensation. Relative to ear canal stimulation, tympanic membrane stimulation was four times more likely to produce an auditory percept, required eight times lower electric current to reach the threshold and produced two-to-four times more linear suprathreshold responses. We further measured tinnitus suppression in 14 of the 25 subjects who had chronic tinnitus. Compared with ear canal stimulation, tympanic membrane stimulation doubled both the probability (22% vs. 55%) and the amount (-15% vs. -34%) of tinnitus suppression. These findings extended previous work comparing evoked perception and tinnitus suppression between electrodes placed in the ear canal and on the scalp. Together, the previous and present results suggest that the efficiency of conventional scalp-based noninvasive electric stimulation can be improved by at least one order of magnitude via tympanic membrane stimulation. This increased efficiency is most likely due to the shortened distance between the electrode placed on the tympanic membrane and the targeted cochlea. The present findings have implications for the management of tinnitus by offering a potential alternative to interventions using invasive electrical stimulation such as cochlear implantation, or other non-invasive transcranial electrical stimulation methods.
Collapse
Affiliation(s)
- Myung-Whan Suh
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, United States; Department of Otorhinolaryngology - Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Phillip Tran
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, United States
| | - Matthew Richardson
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, United States
| | - Shuping Sun
- Department of Otolaryngology - Head and Neck Surgery, The First Affiliated Hospital, Zhengzhou University, Henan 450052, China
| | - Yuchen Xu
- Department of Bioengineering, University of California San Diego, San Diego, California 92092, United States
| | - Hamid R Djalilian
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, United States
| | - Harrison W Lin
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, United States
| | - Fan-Gang Zeng
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
14
|
Liu B, Yan X, Chen X, Wang Y, Gao X. tACS facilitates flickering driving by boosting steady-state visual evoked potentials. J Neural Eng 2021; 18. [PMID: 34962233 DOI: 10.1088/1741-2552/ac3ef3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022]
Abstract
Objective.There has become of increasing interest in transcranial alternating current stimulation (tACS) since its inception nearly a decade ago. tACS in modulating brain state is an active area of research and has been demonstrated effective in various neuropsychological and clinical domains. In the visual domain, much effort has been dedicated to brain rhythms and rhythmic stimulation, i.e. tACS. However, less is known about the interplay between the rhythmic stimulation and visual stimulation.Approach.Here, we used steady-state visual evoked potential (SSVEP), induced by flickering driving as a widely used technique for frequency-tagging, to investigate the aftereffect of tACS in healthy human subjects. Seven blocks of 64-channel electroencephalogram were recorded before and after the administration of 20min 10Hz tACS, while subjects performed several blocks of SSVEP tasks. We characterized the physiological properties of tACS aftereffect by comparing and validating the temporal, spatial, spatiotemporal and signal-to-noise ratio (SNR) patterns between and within blocks in real tACS and sham tACS.Main results.Our result revealed that tACS boosted the 10Hz SSVEP significantly. Besides, the aftereffect on SSVEP was mitigated with time and lasted up to 5 min.Significance.Our results demonstrate the feasibility of facilitating the flickering driving by external rhythmic stimulation and open a new possibility to alter the brain state in a direction by noninvasive transcranial brain stimulation.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xinyi Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Yijun Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
15
|
Non-invasive neurostimulation modulates processing of spatial frequency information in rapid perception of faces. Atten Percept Psychophys 2021; 84:150-160. [PMID: 34668174 DOI: 10.3758/s13414-021-02384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/08/2022]
Abstract
This study used high-frequency transcranial random noise stimulation (tRNS) to examine how low and high spatial frequency filtered faces are processed. Response times were measured in a task where healthy young adults categorised spatially filtered hybrid faces, presented at foveal and peripheral blocks, while sham and high-frequency random noise was applied to a lateral occipito-temporal location on their scalp. Both the Frequentist and Bayesian approaches show that in contrast to sham, active stimulation significantly reduced response times to peripherally presented low spatial frequency information. This finding points to a possible plasticity in targeted regions induced by non-invasive neuromodulation of spatial frequency information in rapid perception of faces.
Collapse
|
16
|
Benussi A, Cantoni V, Cotelli MS, Cotelli M, Brattini C, Datta A, Thomas C, Santarnecchi E, Pascual-Leone A, Borroni B. Exposure to gamma tACS in Alzheimer's disease: A randomized, double-blind, sham-controlled, crossover, pilot study. Brain Stimul 2021; 14:531-540. [PMID: 33762220 DOI: 10.1016/j.brs.2021.03.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To assess whether exposure to non-invasive brain stimulation with transcranial alternating current stimulation at γ frequency (γ-tACS) applied over Pz (an area overlying the medial parietal cortex and the precuneus) can improve memory and modulate cholinergic transmission in mild cognitive impairment due to Alzheimer's disease (MCI-AD). METHODS In this randomized, double-blind, sham controlled, crossover pilot study, participants were assigned to a single 60 min treatment with exposure to γ-tACS over Pz or sham tACS. Each subject underwent a clinical evaluation including assessment of episodic memory pre- and post-γ-tACS or sham stimulation. Indirect measures of cholinergic transmission evaluated using transcranial magnetic stimulation (TMS) pre- and post-γ-tACS or sham tACS were evaluated. RESULTS Twenty MCI-AD participants completed the study. No tACS-related side effects were observed, and the intervention was well tolerated in all participants. We observed a significant improvement at the Rey auditory verbal learning (RAVL) test total recall (5.7 [95% CI, 4.0 to 7.4], p < 0.001) and long delayed recall scores (1.3 [95% CI, 0.4 to 2.1], p = 0.007) after γ-tACS but not after sham tACS. Face-name associations scores improved during γ-tACS (4.3 [95% CI, 2.8 to 5.8], p < 0.001) but not after sham tACS. Short latency afferent inhibition, an indirect measure of cholinergic transmission evaluated with TMS, increased only after γ-tACS (0.31 [95% CI, 0.24 to 0.38], p < 0.001) but not after sham tACS. CONCLUSIONS exposure to γ-tACS over Pz showed a significant improvement of memory performances, along with restoration of intracortical connectivity measures of cholinergic neurotransmission, compared to sham tACS.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Chiara Brattini
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Abhishek Datta
- Research & Development, Soterix Medical, Inc., New York, USA
| | - Chris Thomas
- Research & Development, Soterix Medical, Inc., New York, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy.
| |
Collapse
|
17
|
Yokota H, Otsuru N, Saito K, Kojima S, Miyaguchi S, Inukai Y, Nagasaka K, Onishi H. Region-Specific Effects of 10-Hz Transcranial Alternate Current Stimulation Over the Left Posterior Parietal Cortex and Primary Somatosensory Area on Tactile Two-Point Discrimination Threshold. Front Neurosci 2021; 15:576526. [PMID: 33679291 PMCID: PMC7930224 DOI: 10.3389/fnins.2021.576526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Changes in α-band cortical oscillatory activity (8-13 Hz) affect perception; however, how these changes in the left posterior parietal cortex (PPC) and primary somatosensory cortex (S1), which play different roles in determining the two-point discrimination (TPD) threshold, affect TPD threshold remains unelucidated. Therefore, to determine TPD threshold, we aimed to investigate the function of the left PPC and S1 by applying α-band transcranial alternating current stimulation (α-tACS; 10 Hz). TPD threshold was examined at the pad of the right index finger, contralateral to the stimulation site, in 17 healthy adults using a custom-made, computer-controlled, two-point tactile stimulation device, with random application of either active or sham α-tACS over the left PPC (Experiment 1) and left S1 (Experiment 2). Then, 50% TPD threshold was obtained in the active and sham conditions via logistic regression analysis. Afterward, we compared the difference between the active and sham conditions at 50% TPD threshold in each region and found that α-tACS reduced TPD threshold when applied over the left PPC (P = 0.010); however, its effect was insignificant when applied over the left S1 (P = 0.74). Moreover, a comparison of the change in 50% TPD threshold among the regions revealed that α-tACS applied over the left PPC significantly reduced TPD threshold compared with that applied over the left S1 (P = 0.003). Although we did not reveal the actual changes in cortical activity induced by α-tACS, this is the first empirical evidence that α-tACS applied over the left PPC and left S1 exerts region-specific effects on determining TPD threshold assessed in the contralateral index finger pad by stimulation.
Collapse
Affiliation(s)
- Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
18
|
Vallence AM, Dansie K, Goldsworthy MR, McAllister SM, Yang R, Rothwell JC, Ridding MC. Examining motor evoked potential amplitude and short-interval intracortical inhibition on the up-going and down-going phases of a transcranial alternating current stimulation (tacs) imposed alpha oscillation. Eur J Neurosci 2021; 53:2755-2762. [PMID: 33480046 DOI: 10.1111/ejn.15124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/19/2020] [Accepted: 01/17/2021] [Indexed: 01/18/2023]
Abstract
Many brain regions exhibit rhythmical activity thought to reflect the summed behaviour of large populations of neurons. The endogenous alpha rhythm has been associated with phase-dependent modulation of corticospinal excitability. However, whether exogenous alpha rhythm, induced using transcranial alternating current stimulation (tACS) also has a phase-dependent effect on corticospinal excitability remains unknown. Here, we triggered transcranial magnetic stimuli (TMS) on the up- or down-going phase of a tACS-imposed alpha oscillation and measured motor evoked potential (MEP) amplitude and short-interval intracortical inhibition (SICI). There was no significant difference in MEP amplitude or SICI when TMS was triggered on the up- or down-going phase of the tACS-imposed alpha oscillation. The current study provides no evidence of differences in corticospinal excitability or GABAergic inhibition when targeting the up-going (peak) and down-going (trough) phase of the tACS-imposed oscillation.
Collapse
Affiliation(s)
- Ann-Maree Vallence
- Discipline of Psychology, College of Science, Health, Engineering, and Education, Murdoch University, Perth, Australia
| | - Kathryn Dansie
- Australia and New Zealand Dialysis and Transplant Registry (ANZDATA), South Australian Health and Medical Research Institute (SAHMIR), Adelaide, South, Australia
| | - Mitchell R Goldsworthy
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Suzanne M McAllister
- Formerly of the Discipline of Physiology, School of Medical Science, University of Adelaide, Adelaide, Australia
| | | | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| |
Collapse
|
19
|
De Koninck BP, Guay S, Blais H, De Beaumont L. Parametric study of transcranial alternating current stimulation for brain alpha power modulation. Brain Commun 2021; 3:fcab010. [PMID: 34085039 PMCID: PMC8165484 DOI: 10.1093/braincomms/fcab010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/04/2020] [Accepted: 12/10/2020] [Indexed: 12/02/2022] Open
Abstract
Transcranial alternating current stimulation, a non-invasive brain stimulation technique, has been used to increase alpha (8-12 Hz) power, the latter being associated with various brain functions and states. Heterogeneity among stimulation parameters across studies makes it difficult to implement reliable transcranial alternating current stimulation protocols, explaining the absence of consensus on optimal stimulation parameters to modulate the alpha rhythm. This project documents the differential impact of controlling for key transcranial alternating current stimulation parameters, namely the intensity, the frequency and the stimulation site (anterior versus posterior). Phase 1:20 healthy participants underwent 4 different stimulation conditions. In each experimental condition, stimulation via 2 electrodes was delivered for 20 min. Stimulation conditions were administered at PO7-PO8 or F3-F4 at individual's alpha frequency, or at individual's theta frequency or sham. Stimulation intensity was set according to each participant's comfort following a standardized unpleasantness scale (≤ 40 out of 100) and could not exceed 6 mA. All conditions were counterbalanced. Phase 2: participants who tolerated higher intensity of stimulation (4-6 mA) underwent alpha-frequency stimulation applied over PO7-PO8 at 1 mA to investigate within-subject modulation of stimulation response according to stimulation intensity. Whether set over posterior or anterior cortical sites, alpha-frequency stimulation showed greater increase in alpha power relative to stimulation at theta frequency and sham stimulation. Posterior alpha-frequency stimulation showed a greater increase in alpha power relative to the adjacent frequency bands over frontal and occipito-parietal brain areas. Low intensity (1 mA) posterior alpha stimulation showed a similar increase in alpha power than at high (4-6 mA) intensity when measured immediately after stimulation. However, when tested at 60 min or 120 min, low intensity stimulation was associated with significantly superior alpha power increase relative to high intensity stimulation. This study shows that posterior individual's alpha frequency stimulation at higher intensities is well tolerated but fails to increase stimulation aftereffects recorded within 2 h of stimulation on brain oscillations of the corresponding frequency band. In sharp contrast, stimulating at 1 mA (regardless of phosphene generation or sensory perception) effectively and selectively modulates alpha power within that 2-h time window, thus validating that it as a reliable stimulus intensity for future studies. This study also shows that posterior alpha-frequency stimulation preferentially modulates endogenous brain oscillations of the corresponding frequency band. Moreover, our data suggest that posterior alpha-frequency transcranial alternating current stimulation is a reliable and precise non-invasive brain stimulation technique for persistent modulation of both frontal and occipito-parietal alpha power.
Collapse
Affiliation(s)
- Beatrice P De Koninck
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal Research Center (CRHSCM), H4J 1C5, Montreal, Québec, Canada
- Department of Surgery, Université De Montréal, H3T1J4, Montreal, Québec, Canada
| | - Samuel Guay
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal Research Center (CRHSCM), H4J 1C5, Montreal, Québec, Canada
- Department of Surgery, Université De Montréal, H3T1J4, Montreal, Québec, Canada
| | - Hélène Blais
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal Research Center (CRHSCM), H4J 1C5, Montreal, Québec, Canada
| | - Louis De Beaumont
- Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal Research Center (CRHSCM), H4J 1C5, Montreal, Québec, Canada
- Department of Surgery, Université De Montréal, H3T1J4, Montreal, Québec, Canada
| |
Collapse
|
20
|
Vieira PG, Krause MR, Pack CC. tACS entrains neural activity while somatosensory input is blocked. PLoS Biol 2020; 18:e3000834. [PMID: 33001971 PMCID: PMC7553316 DOI: 10.1371/journal.pbio.3000834] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/13/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) modulates brain activity by passing electrical current through electrodes that are attached to the scalp. Because it is safe and noninvasive, tACS holds great promise as a tool for basic research and clinical treatment. However, little is known about how tACS ultimately influences neural activity. One hypothesis is that tACS affects neural responses directly, by producing electrical fields that interact with the brain’s endogenous electrical activity. By controlling the shape and location of these electric fields, one could target brain regions associated with particular behaviors or symptoms. However, an alternative hypothesis is that tACS affects neural activity indirectly, via peripheral sensory afferents. In particular, it has often been hypothesized that tACS acts on sensory fibers in the skin, which in turn provide rhythmic input to central neurons. In this case, there would be little possibility of targeted brain stimulation, as the regions modulated by tACS would depend entirely on the somatosensory pathways originating in the skin around the stimulating electrodes. Here, we directly test these competing hypotheses by recording single-unit activity in the hippocampus and visual cortex of alert monkeys receiving tACS. We find that tACS entrains neuronal activity in both regions, so that cells fire synchronously with the stimulation. Blocking somatosensory input with a topical anesthetic does not significantly alter these neural entrainment effects. These data are therefore consistent with the direct stimulation hypothesis and suggest that peripheral somatosensory stimulation is not required for tACS to entrain neurons. Transcranial alternating current stimulation (tACS) modulates brain activity by passing electrical current through electrodes that are attached to the scalp. However, whereas one hypothesis is that tACS affects neural responses directly, another is that tACS affects neural activity indirectly, via sensory fibers in the skin. This study demonstrates that tACS directly affects neurons within the brain, rather than relying on a peripheral route.
Collapse
Affiliation(s)
- Pedro G. Vieira
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Matthew R. Krause
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Christopher C. Pack
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
21
|
Ganguly J, Murgai A, Sharma S, Aur D, Jog M. Non-invasive Transcranial Electrical Stimulation in Movement Disorders. Front Neurosci 2020; 14:522. [PMID: 32581682 PMCID: PMC7290124 DOI: 10.3389/fnins.2020.00522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
Dysfunction within large-scale brain networks as the basis for movement disorders is an accepted hypothesis. The treatment options for restoring network function are limited. Non-invasive brain stimulation techniques such as repetitive transcranial magnetic stimulation are now being studied to modify the network. Transcranial electrical stimulation (tES) is also a portable, cost-effective, and non-invasive way of network modulation. Transcranial direct current stimulation and transcranial alternating current stimulation have been studied in Parkinson’s disease, dystonia, tremor, and ataxia. Transcranial pulsed current stimulation and transcranial random noise stimulation are not yet studied enough. The literature in the use of these techniques is intriguing, yet many unanswered questions remain. In this review, we highlight the studies using these four potential tES techniques and their electrophysiological basis and consider the therapeutic implication in the field of movement disorders. The objectives are to consolidate the current literature, demonstrate that these methods are feasible, and encourage the application of such techniques in the near future.
Collapse
Affiliation(s)
- Jacky Ganguly
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Aditya Murgai
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Soumya Sharma
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Dorian Aur
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| | - Mandar Jog
- Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
22
|
Abellaneda-Pérez K, Vaqué-Alcázar L, Perellón-Alfonso R, Bargalló N, Kuo MF, Pascual-Leone A, Nitsche MA, Bartrés-Faz D. Differential tDCS and tACS Effects on Working Memory-Related Neural Activity and Resting-State Connectivity. Front Neurosci 2020; 13:1440. [PMID: 32009896 PMCID: PMC6978675 DOI: 10.3389/fnins.2019.01440] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023] Open
Abstract
Transcranial direct and alternating current stimulation (tDCS and tACS, respectively) entail capability to modulate human brain dynamics and cognition. However, the comparability of these approaches at the level of large-scale functional networks has not been thoroughly investigated. In this study, 44 subjects were randomly assigned to receive sham (N = 15), tDCS (N = 15), or tACS (N = 14). The first electrode (anode in tDCS) was positioned over the left dorsolateral prefrontal cortex, the target area, and the second electrode (cathode in tDCS) was placed over the right supraorbital region. tDCS was delivered with a constant current of 2 mA. tACS was fixed to 2 mA peak-to-peak with 6 Hz frequency. Stimulation was applied concurrently with functional magnetic resonance imaging (fMRI) acquisitions, both at rest and during the performance of a verbal working memory (WM) task. After stimulation, subjects repeated the fMRI WM task. Our results indicated that at rest, tDCS increased functional connectivity particularly within the default-mode network (DMN), while tACS decreased it. When comparing both fMRI WM tasks, it was observed that tDCS displayed decreased brain activity post-stimulation as compared to online. Conversely, tACS effects were driven by neural increases online as compared to post-stimulation. Interestingly, both effects primarily occurred within DMN-related areas. Regarding the differences in each fMRI WM task, during the online fMRI WM task, tACS engaged distributed neural resources which did not overlap with the WM-dependent activity pattern, but with some posterior DMN regions. In contrast, during the post-stimulation fMRI WM task, tDCS strengthened prefrontal DMN deactivations, being these activity reductions associated with faster responses. Furthermore, it was observed that tDCS neural responses presented certain consistency across distinct fMRI modalities, while tACS did not. In sum, tDCS and tACS modulate fMRI-derived network dynamics differently. However, both effects seem to focus on DMN regions and the WM network-DMN shift, which are highly affected in aging and disease. Thus, albeit exploratory and needing further replication with larger samples, our results might provide a refined understanding of how the DMN functioning can be externally modulated through commonly used non-invasive brain stimulation techniques, which may be of eventual clinical relevance.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
| | - Núria Bargalló
- Hospital Clínic de Barcelona, Magnetic Resonance Image Core Facility, Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain.,Hospital Clínic de Barcelona, Neuroradiology Section, Radiology Service, Centre de Diagnòstic per la Imatge, Barcelona, Spain
| | - Min-Fang Kuo
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States.,Guttmann Brain Health Institute, Institut Universitari de Neurorehabilitació Guttmann, Autonomous University of Barcelona, Bellaterra, Spain
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain.,Guttmann Brain Health Institute, Institut Universitari de Neurorehabilitació Guttmann, Autonomous University of Barcelona, Bellaterra, Spain
| |
Collapse
|
23
|
Bland NS, Sale MV. Current challenges: the ups and downs of tACS. Exp Brain Res 2019; 237:3071-3088. [DOI: 10.1007/s00221-019-05666-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
|
24
|
State-Dependent Effects of Transcranial Oscillatory Currents on the Motor System during Action Observation. Sci Rep 2019; 9:12858. [PMID: 31492895 PMCID: PMC6731229 DOI: 10.1038/s41598-019-49166-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
We applied transcranial alternating current stimulation (tACS) to the primary motor cortex (M1) at different frequencies during an index–thumb pinch-grip observation task. To estimate changes in the corticospinal output, we used the size of motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS) of M1 using an online MRI-guided simultaneous TMS-tACS approach. The results of the beta-tACS confirm a non-selective increase in corticospinal excitability in subjects at rest; an increase was observed for both of the tested hand muscles, the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM). However, during action observation of the pinch-grip movement, the increase of corticospinal excitability was only observed for the prime mover FDI muscle and took place during alpha-tACS, while gamma-tACS affected both the FDI and control muscle (ADM) responses. These phenomena likely reflect the hypothesis that the mu and gamma rhythms specifically index the downstream modulation of primary sensorimotor areas by engaging mirror neuron activity. The current neuromodulation approach confirms that tACS can be used to induce neurophysiologically detectable state-dependent enhancement effects, even in complex motor-cognitive tasks.
Collapse
|
25
|
Kortuem V, Kadish NE, Siniatchkin M, Moliadze V. Efficacy of tRNS and 140 Hz tACS on motor cortex excitability seemingly dependent on sensitivity to sham stimulation. Exp Brain Res 2019; 237:2885-2895. [PMID: 31482197 DOI: 10.1007/s00221-019-05640-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/27/2019] [Indexed: 11/25/2022]
Abstract
This study investigates the effect of corticospinal excitability during sham stimulation on the individual response to transcranial non-invasive brain stimulation (tNIBS). Thirty healthy young adults aged 24.2 ± 2.8 S.D. participated in the study. Sham, as well as 1 mA of tRNS and 140 Hz tACS stimulation were applied for 10 min each at different sessions. The effect of each stimulation type was quantified by recording TMS-induced, motor evoked potentials (MEPs) before (baseline) and at fixed time points after stimulation (T0, T30, T60 min.). According to the individual response to sham stimulation at T0 in comparison to baseline MEPs, subjects were regarded as responder or non-responder to sham. Following, MEPs at T0, T30 and T60 after verum or sham stimulation were assessed with a repeated measures ANOVA with the within-subject factor stimulation (sham, tRNS, 140 Hz tACS) and the between-subjects factor group (responder vs non-responder). We found that individuals who did not show immediately changes in excitability in sham stimulation sessions were the ones who responded to active stimulation conditions. On the other hand, individuals who responded to sham condition, by either increases or decreases in MEPS, did not respond to active verum stimulation. This result suggests that the presence or lack of responses to sham stimulation can provide a marker for how individuals will respond to tRNS/tACS and thus provide an explanation for the variability in interindividual response. The results of this study draw attention to the general reactivity of the brain, which can be taken into account when planning future studies using tNIBS.
Collapse
Affiliation(s)
- Viktoria Kortuem
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Preußerstraße 1-9, 24105, Kiel, Germany
| | - Navah Ester Kadish
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Preußerstraße 1-9, 24105, Kiel, Germany
| | - Michael Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Preußerstraße 1-9, 24105, Kiel, Germany.,Clinic for Child and Adolescent Psychiatry, Hospital Bethel, Remterweg 13a, 33617, Bielefeld, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Preußerstraße 1-9, 24105, Kiel, Germany.
| |
Collapse
|
26
|
Lorenz R, Simmons LE, Monti RP, Arthur JL, Limal S, Laakso I, Leech R, Violante IR. Efficiently searching through large tACS parameter spaces using closed-loop Bayesian optimization. Brain Stimul 2019; 12:1484-1489. [PMID: 31289013 PMCID: PMC6879005 DOI: 10.1016/j.brs.2019.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 11/25/2022] Open
Abstract
Background Selecting optimal stimulation parameters from numerous possibilities is a major obstacle for assessing the efficacy of non-invasive brain stimulation. Objective We demonstrate that Bayesian optimization can rapidly search through large parameter spaces and identify subject-level stimulation parameters in real-time. Methods To validate the method, Bayesian optimization was employed using participants’ binary judgements about the intensity of phosphenes elicited through tACS. Results We demonstrate the efficiency of Bayesian optimization in identifying parameters that maximize phosphene intensity in a short timeframe (5 min for >190 possibilities). Our results replicate frequency-dependent effects across three montages and show phase-dependent effects of phosphene perception. Computational modelling explains that these phase effects result from constructive/destructive interference of the current reaching the retinas. Simulation analyses demonstrate the method's versatility for complex response functions, even when accounting for noisy observations. Conclusion Alongside subjective ratings, this method can be used to optimize tACS parameters based on behavioral and neural measures and has the potential to be used for tailoring stimulation protocols to individuals.
Collapse
Affiliation(s)
- Romy Lorenz
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK; Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04303, Germany.
| | - Laura E Simmons
- Computational, Cognitive and Clinical Neuroscience Laboratory, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Ricardo P Monti
- Gatsby Computational Neuroscience Unit, University College London, London, W1T 4JG, UK
| | - Joy L Arthur
- Computational, Cognitive and Clinical Neuroscience Laboratory, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Severin Limal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, 02150, Finland
| | - Robert Leech
- Centre for Neuroimaging Science, King's College London, London, SE5 8AF, UK
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
27
|
Li YT, Chen SC, Yang LY, Hsieh TH, Peng CW. Designing and Implementing a Novel Transcranial Electrostimulation System for Neuroplastic Applications: A Preliminary Study. IEEE Trans Neural Syst Rehabil Eng 2019; 27:805-813. [PMID: 30951469 DOI: 10.1109/tnsre.2019.2908674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recently, a specific repetitive transcranial magnetic stimulation (rTMS) waveform, namely, the theta burst stimulation (TBS) protocol, has been proposed for more efficiently inducing neuroplasticity for various clinic rehabilitation purposes. However, few studies have explored the feasibility of using the TBS combined with direct current (dc) waveform for brain neuromodulation; this waveform is transcranially delivered using electrical current power rather than magnetic power. This study implemented a prototype of a novel transcranial electrostimulation device that can flexibly output a waveform that combined dc and the TBS-like protocol and assessed the effects of the novel combinational waveform on neuroplasticity. An in vivo experiment was conducted first to validate the accuracy of the stimulator's current output at various impedance loads. Using this transcranial stimulator, a series of transcranial stimulation experiments was conducted on the brain cortex of rats, in which electrode-tissue impedance and motor evoked potentials (MEPs) were measured. These experiments were designed to assess the feasibility and efficacy of the new combinational waveforms for brain neuroplasticity. Our results indicated that the transcranial electrostimulation system exhibited satisfactory performance, as evidenced by the error percentage of less than 5% for current output. In the animal experiment, the dc combined with intermittent TBS-like protocol exerted a stronger neuroplastic effect than the conventional dc protocol. These results demonstrated that the combination of electrical dc and TBS-like protocols in our system can produce a new feasible therapeutic waveform for transcranially inducing a promising neuromodulatory effect on various diseases of the central nervous system.
Collapse
|
28
|
Asamoah B, Khatoun A, Mc Laughlin M. tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nat Commun 2019; 10:266. [PMID: 30655523 PMCID: PMC6336776 DOI: 10.1038/s41467-018-08183-w] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/19/2018] [Indexed: 01/19/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) is a noninvasive neuromodulation method which has been shown to modulate hearing, motor, cognitive and memory function. However, the mechanisms underpinning these findings are controversial, as studies show that the current reaching the cortex may not be strong enough to entrain neural activity. Here, we propose a new hypothesis to reconcile these opposing results: tACS effects are caused by transcutaneous stimulation of peripheral nerves in the skin and not transcranial stimulation of cortical neurons. Rhythmic activity from peripheral nerves then entrains cortical neurons. A series of experiments in rats and humans isolated the transcranial and transcutaneous mechanisms and showed that the reported effects of tACS on the motor system can be caused by transcutaneous stimulation of peripheral nerves. Whether or not the transcutaneous mechanism will generalize to tACS effects on other systems is debatable but should be investigated. Transcranial alternating current stimulation (tACS) uses weak electrical currents, applied to the head, to modulate brain activity. Here, the authors show that contrary to previous assumptions, the effects of tACS on the brain may be mediated by its effect on peripheral nerves in the skin, not direct.
Collapse
Affiliation(s)
- Boateng Asamoah
- Exp ORL, Department of Neurosciences, KU Leuven, B-3000, Leuven, Belgium
| | - Ahmad Khatoun
- Exp ORL, Department of Neurosciences, KU Leuven, B-3000, Leuven, Belgium
| | - Myles Mc Laughlin
- Exp ORL, Department of Neurosciences, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
29
|
Armstrong S, Sale MV, Cunnington R. Neural Oscillations and the Initiation of Voluntary Movement. Front Psychol 2018; 9:2509. [PMID: 30618939 PMCID: PMC6307533 DOI: 10.3389/fpsyg.2018.02509] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022] Open
Abstract
The brain processes involved in the planning and initiation of voluntary action are of great interest for understanding the relationship between conscious awareness of decisions and the neural control of movement. Voluntary motor behavior has generally been considered to occur when conscious decisions trigger movements. However, several studies now provide compelling evidence that brain states indicative of forthcoming movements take place before a person becomes aware of a conscious decision to act. While such studies have created much debate over the nature of ‘free will,’ at the very least they suggest that unconscious brain processes are predictive of forthcoming movements. Recent studies suggest that slow changes in neuroelectric potentials may play a role in the timing of movement onset by pushing brain activity above a threshold to trigger the initiation of action. Indeed, recent studies have shown relationships between the phase of low frequency oscillatory activity of the brain and the onset of voluntary action. Such studies, however, cannot determine whether this underlying neural activity plays a causal role in the initiation of movement or is only associated with the intentional behavior. Non-invasive transcranial alternating current brain stimulation can entrain neural activity at particular frequencies in order to assess whether underlying brain processes are causally related to associated behaviors. In this review, we examine the evidence for neural coding of action as well as the brain states prior to action initiation and discuss whether low frequency alternating current brain stimulation could influence the timing of a persons’ decision to act.
Collapse
Affiliation(s)
- Samuel Armstrong
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Martin V Sale
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ross Cunnington
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Paracampo R, Montemurro M, de Vega M, Avenanti A. Primary motor cortex crucial for action prediction: A tDCS study. Cortex 2018; 109:287-302. [DOI: 10.1016/j.cortex.2018.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 09/02/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
|
31
|
No Modulatory Effects when Stimulating the Right Inferior Frontal Gyrus with Continuous 6 Hz tACS and tRNS on Response Inhibition: A Behavioral Study. Neural Plast 2018; 2018:3156796. [PMID: 30425735 PMCID: PMC6218719 DOI: 10.1155/2018/3156796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/07/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022] Open
Abstract
Response inhibition is the cognitive process required to cancel an intended action. During that process, a “go” reaction is intercepted particularly by the right inferior frontal gyrus (rIFG) and presupplementary motor area (pre-SMA). After the commission of inhibition errors, theta activity (4–8 Hz) is related to the adaption processes. In this study, we intend to examine whether the boosting of theta activity by electrical stimulation over rIFG reduces the number of errors and the reaction times in a response inhibition task (Go/NoGo paradigm) during and after stimulation. 23 healthy right-handed adults participated in the study. In three separate sessions, theta tACS at 6 Hz, transcranial random noise (tRNS) as a second stimulation condition, and sham stimulation were applied for 20 minutes. Based on behavioral data, this study could not show any effects of 6 Hz tACS as well as full spectrum tRNS on response inhibition in any of the conditions. Since many findings support the relevance of the rIFG for response inhibition, this could mean that 6 Hz activity is not important for response inhibition in that structure. Reasons for our null findings could also lie in the stimulation parameters, such as the electrode montage or the stimulation frequency, which are discussed in this article in more detail. Sharing negative findings will have (1) positive impact on future research questions and study design and will improve (2) knowledge acquisition of noninvasive transcranial brain stimulation techniques.
Collapse
|
32
|
Miyaguchi S, Otsuru N, Kojima S, Saito K, Inukai Y, Masaki M, Onishi H. Transcranial Alternating Current Stimulation With Gamma Oscillations Over the Primary Motor Cortex and Cerebellar Hemisphere Improved Visuomotor Performance. Front Behav Neurosci 2018; 12:132. [PMID: 30034329 PMCID: PMC6043796 DOI: 10.3389/fnbeh.2018.00132] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) can be used to modulate oscillatory brain activity. In this study, we investigated whether tACS applied over the primary motor cortex (M1) and cerebellar cortex region improved motor performance. We applied tACS (1.0 mA) to 20 healthy adults while they performed an isometric force task with some visuomotor control using their right index finger. Gamma (70 Hz) oscillations in the Experiment 1 or beta (20 Hz) oscillations in the Experiment 2 were applied for 30 s over the left M1, right cerebellar hemisphere or both regions ("M1-Cerebellum"), and errors performing the task were compared. Beta-oscillation tACS did not affect motor performance. With the gamma-oscillation tACS, a negative correlation was found between the difference of error in the M1-Cerebellum condition and the number of errors in the sham condition (P = 0.005, Pearson's r = -0.597), indicating that motor performance improved with M1-Cerebellum tACS for subjects with low motor performance in the sham condition. Those who performed poorly in the sham condition made significantly fewer errors with M1-Cerebellum tACS (P = 0.004). Thus, for subjects with poorer motor performance, tACS with gamma oscillations applied over the M1 and contralateral cerebellar hemisphere improved their performance.
Collapse
Affiliation(s)
- Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Mitsuhiro Masaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
33
|
Vosskuhl J, Strüber D, Herrmann CS. Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations. Front Hum Neurosci 2018; 12:211. [PMID: 29887799 PMCID: PMC5980979 DOI: 10.3389/fnhum.2018.00211] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS) techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS), an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo. These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS.
Collapse
Affiliation(s)
- Johannes Vosskuhl
- Experimental Psychology Lab, Center for Excellence “Hearing4all,” European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Daniel Strüber
- Experimental Psychology Lab, Center for Excellence “Hearing4all,” European Medical School, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Center for Excellence “Hearing4all,” European Medical School, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
34
|
Khatoun A, Breukers J, Op de Beeck S, Nica IG, Aerts JM, Seynaeve L, Haeck T, Asamoah B, Mc Laughlin M. Using high-amplitude and focused transcranial alternating current stimulation to entrain physiological tremor. Sci Rep 2018; 8:4927. [PMID: 29563594 PMCID: PMC5862845 DOI: 10.1038/s41598-018-23290-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) is a noninvasive neuromodulation method that can entrain physiological tremor in healthy volunteers. We conducted two experiments to investigate the effectiveness of high-amplitude and focused tACS montages at entraining physiological tremor. Experiment 1 used saline-soaked sponge electrodes with an extra-cephalic return electrode and compared the effects of a motor (MC) and prefrontal cortex (PFC) electrode location. Average peak-amplitude was 1.925 mA. Experiment 2 used gel-filled cup-electrodes in a 4 × 1 focused montage and compared the effects of MC and occipital cortex (OC) tACS. Average peak-amplitude was 4.45 mA. Experiment 1 showed that unfocused MC and PFC tACS both produced phosphenes and significant phase entrainment. Experiment 2 showed that focused MC and OC tACS produced no phosphenes but only focused MC tACS caused significant phase entrainment. At the group level, tACS did not have a significant effect on tremor amplitude. However, with focused tACS there was a significant correlation between phase entrainment and tremor amplitude modulation: subjects with higher phase entrainment showed more tremor amplitude modulation. We conclude that: (1) focused montages allow for high-amplitude tACS without phosphenes and (2) high amplitude focused tACS can entrain physiological tremor.
Collapse
Affiliation(s)
- Ahmad Khatoun
- ExpORL, Department of Neurosciences, KU Leuven, B-3000, Leuven, Belgium
| | - Jolien Breukers
- Division Animal and Human Health Engineering, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, B-3000, Leuven, Belgium
| | - Sara Op de Beeck
- Division Animal and Human Health Engineering, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, B-3000, Leuven, Belgium
| | - Ioana Gabriela Nica
- Division Animal and Human Health Engineering, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, B-3000, Leuven, Belgium
| | - Jean-Marie Aerts
- Division Animal and Human Health Engineering, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, B-3000, Leuven, Belgium
| | - Laura Seynaeve
- Department of Neurology, Laboratory for Epilepsy Research, University Hospitals & KU Leuven, B-3000, Leuven, Belgium
| | - Tom Haeck
- Medical Imaging Research Center (MIRC), KU Leuven, B-3000, Leuven, Belgium.,Center for Processing Speech and Images (PSI), Department of Electrical Engineering (ESAT), KU Leuven, B-3000, Leuven, Belgium
| | - Boateng Asamoah
- ExpORL, Department of Neurosciences, KU Leuven, B-3000, Leuven, Belgium
| | - Myles Mc Laughlin
- ExpORL, Department of Neurosciences, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
35
|
Lavano A, Guzzi G, Chirchiglia D. Cortical neuromodulation for neuropathic pain and Parkinson disease: Where are we? Neurol Neurochir Pol 2018; 52:75-78. [PMID: 29180075 DOI: 10.1016/j.pjnns.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/05/2017] [Indexed: 11/29/2022]
Abstract
Cortex neuromodulation is promising approach for treatment of some neurological conditions, especially neuropathic pain and Parkinson's disease. Effects of non-invasive cortical stimulation are short lived; transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) may be useful to assess the suitability for invasive cortical stimulation. Direct cortical stimulation (DCS) is the method able to provide long-lasting effects in treatment of neuropathic pain and some symptoms of Parkinson's disease through the use of totally implantable systems that ensure a chronic stimulation.
Collapse
Affiliation(s)
- Angelo Lavano
- Department of Neurosurgery, University "Magna Graecia" of Catanzaro, Italy.
| | - Giusy Guzzi
- Department of Neurosurgery, University "Magna Graecia" of Catanzaro, Italy
| | | |
Collapse
|
36
|
Tavakoli AV, Yun K. Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols. Front Cell Neurosci 2017; 11:214. [PMID: 28928634 PMCID: PMC5591642 DOI: 10.3389/fncel.2017.00214] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/04/2017] [Indexed: 12/20/2022] Open
Abstract
Perception, cognition and consciousness can be modulated as a function of oscillating neural activity, while ongoing neuronal dynamics are influenced by synaptic activity and membrane potential. Consequently, transcranial alternating current stimulation (tACS) may be used for neurological intervention. The advantageous features of tACS include the biphasic and sinusoidal tACS currents, the ability to entrain large neuronal populations, and subtle control over somatic effects. Through neuromodulation of phasic, neural activity, tACS is a powerful tool to investigate the neural correlates of cognition. The rapid development in this area requires clarity about best practices. Here we briefly introduce tACS and review the most compelling findings in the literature to provide a starting point for using tACS. We suggest that tACS protocols be based on functional brain mechanisms and appropriate control experiments, including active sham and condition blinding.
Collapse
Affiliation(s)
- Amir V Tavakoli
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadena, CA, United States.,Department of Psychology, University of California, Los AngelesLos Angeles, CA, United States
| | - Kyongsik Yun
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadena, CA, United States.,Computation and Neural Systems, California Institute of TechnologyPasadena, CA, United States.,Bio-Inspired Technologies and Systems, Jet Propulsion Laboratory, California Institute of TechnologyPasadena, CA, United States
| |
Collapse
|
37
|
On the effectiveness of event-related beta tACS on episodic memory formation and motor cortex excitability. Brain Stimul 2017; 10:910-918. [DOI: 10.1016/j.brs.2017.04.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/18/2017] [Accepted: 04/27/2017] [Indexed: 11/21/2022] Open
|
38
|
Veniero D, Benwell CSY, Ahrens MM, Thut G. Inconsistent Effects of Parietal α-tACS on Pseudoneglect across Two Experiments: A Failed Internal Replication. Front Psychol 2017. [PMID: 28642729 PMCID: PMC5463322 DOI: 10.3389/fpsyg.2017.00952] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transcranial electrical stimulation (tES) is being investigated as an experimental and clinical interventional technique in human participants. While promising, important limitations have been identified, including weak effect sizes and high inter- and intra-individual variability of outcomes. Here, we compared two "inhibitory" tES-techniques with supposedly different mechanisms of action as to their effects on performance in a visuospatial attention task, and report on a direct replication attempt. In two experiments, 2 × 20 healthy participants underwent tES in three separate sessions testing different protocols (10 min stimulation each) with a montage targeting right parietal cortex (right parietal-left frontal, electrode-sizes: 3cm × 3cm-7 cm × 5 cm), while performing a perceptual line bisection (landmark) task. The tES-protocols were compared as to their ability to modulate pseudoneglect (thought to be under right hemispheric control). In experiment 1, sham-tES was compared to transcranial alternating current stimulation at alpha frequency (10 Hz; α-tACS) (expected to entrain "inhibitory" alpha oscillations) and to cathodal transcranial direct current stimulation (c-tDCS) (shown to suppress neuronal spiking activity). In experiment 2, we attempted to replicate the findings of experiment 1, and establish frequency-specificity by adding a 45 Hz-tACS condition to α-tACS and sham. In experiment 1, right parietal α-tACS led to the expected changes in spatial attention bias, namely a rightward shift in subjective midpoint estimation (relative to sham). However, this was not confirmed in experiment 2 and in the complete sample. Right parietal c-tDCS and 45 Hz-tACS had no effect. These results highlight the importance of replication studies, adequate statistical power and optimizing tES-interventions for establishing the robustness and reliability of electrical stimulation effects, and best practice.
Collapse
Affiliation(s)
- Domenica Veniero
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| | | | - Merle M Ahrens
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom.,School of Psychology, University of GlasgowGlasgow, United Kingdom
| | - Gregor Thut
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| |
Collapse
|
39
|
Varlet M, Wade A, Novembre G, Keller PE. Investigation of the effects of transcranial alternating current stimulation (tACS) on self-paced rhythmic movements. Neuroscience 2017; 350:75-84. [PMID: 28323009 DOI: 10.1016/j.neuroscience.2017.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 11/27/2022]
Abstract
Human rhythmic movements spontaneously entrain to external rhythmic stimuli. Such sensory-motor entrainment can attract movements to different tempi and enhance their efficiency, with potential clinical applications for motor rehabilitation. Here we investigate whether entrainment of self-paced rhythmic movements can be induced via transcranial alternating current stimulation (tACS), which uses alternating currents to entrain spontaneous brain oscillations at specific frequencies. Participants swung a handheld pendulum at their preferred tempo with the right hand while tACS was applied over their left or right primary motor cortex at frequencies equal to their preferred tempo (Experiment 1) or in the alpha (10Hz) and beta (20Hz) ranges (Experiment 2). Given that entrainment generally occurs only if the frequency difference between two rhythms is small, stimulations were delivered at frequencies equal to participants' preferred movement tempo (≈1Hz) and ±12.5% in Experiment 1, and at 10Hz and 20Hz, and ±12.5% in Experiment 2. The comparison of participants' movement frequency, amplitude, variability, and phase synchrony with and without tACS failed to reveal entrainment or movement modifications across the two experiments. However, significant differences in stimulation-related side effects reported by participants were found between the two experiments, with phosphenes and burning sensations principally occurring in Experiment 2, and metallic tastes reported marginally more often in Experiment 1. Although other stimulation protocols may be effective, our results suggest that rhythmic movements such as pendulum swinging or locomotion that are low in goal-directedness and/or strongly driven by peripheral and mechanical constraints may not be susceptible to modulation by tACS.
Collapse
Affiliation(s)
- Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia.
| | - Alanna Wade
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| | - Giacomo Novembre
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia; Department of Neuroscience, Physiology, and Pharmacology, University College London, United Kingdom
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| |
Collapse
|
40
|
Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS, Valero-Cabré A, Sack AT, Miniussi C, Antal A, Siebner HR, Ziemann U, Herrmann CS. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clin Neurophysiol 2017; 128:843-857. [PMID: 28233641 DOI: 10.1016/j.clinph.2017.01.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/10/2016] [Accepted: 01/08/2017] [Indexed: 01/31/2023]
Abstract
Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned to fluctuations in excitability states. Moreover, offline EEG/MEG recordings prior to interventions can inform researchers and clinicians how to stimulate: by frequency-tuning NTBS to the oscillation of interest, intrinsic brain oscillations can be up- or down-regulated. In this paper, we provide an overview of existing approaches and ideas of EEG/MEG-guided interventions, and their promises and caveats. We point out potential future lines of research to address challenges.
Collapse
Affiliation(s)
- Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| | - Til Ole Bergmann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Institute for Medical Psychology and Behavioral Neurobiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Flavio Fröhlich
- Department of Psychiatry & Department of Biomedical Engineering & Department of Cell Biology and Physiology & Neuroscience Center & Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Surjo R Soekadar
- Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy & MEG Center, University Hospital of Tübingen, Tübingen, Germany
| | - John-Stuart Brittain
- Nuffield Department of Clinical Neurosciences, Charles Wolfson Neuroscience Clinical Research Facility, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Institut du Cerveau et la Moelle (ICM), CNRS UMR 7225-INSERM U-117, Université Pierre et Marie Curie, Paris, France
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Carlo Miniussi
- Center for Mind/Brain Sciences CIMeC University of Trento, Rovereto, Italy & Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Göttingen, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Center for Excellence "Hearing4all", European Medical School, Carl von Ossietzky University & Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
41
|
Guerra A, Pogosyan A, Nowak M, Tan H, Ferreri F, Di Lazzaro V, Brown P. Phase Dependency of the Human Primary Motor Cortex and Cholinergic Inhibition Cancelation During Beta tACS. Cereb Cortex 2016; 26:3977-90. [PMID: 27522077 PMCID: PMC5028010 DOI: 10.1093/cercor/bhw245] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022] Open
Abstract
The human motor cortex has a tendency to resonant activity at about 20 Hz so stimulation should more readily entrain neuronal populations at this frequency. We investigated whether and how different interneuronal circuits contribute to such resonance by using transcranial magnetic stimulation (TMS) during transcranial alternating current stimulation (tACS) at motor (20 Hz) and a nonmotor resonance frequency (7 Hz). We tested different TMS interneuronal protocols and triggered TMS pulses at different tACS phases. The effect of cholinergic short-latency afferent inhibition (SAI) was abolished by 20 Hz tACS, linking cortical beta activity to sensorimotor integration. However, this effect occurred regardless of the tACS phase. In contrast, 20 Hz tACS selectively modulated MEP size according to the phase of tACS during single pulse, GABAAergic short-interval intracortical inhibition (SICI) and glutamatergic intracortical facilitation (ICF). For SICI this phase effect was more marked during 20 Hz stimulation. Phase modulation of SICI also depended on whether or not spontaneous beta activity occurred at ~20 Hz, supporting an interaction effect between tACS and underlying circuit resonances. The present study provides in vivo evidence linking cortical beta activity to sensorimotor integration, and for beta oscillations in motor cortex being promoted by resonance in GABAAergic interneuronal circuits.
Collapse
Affiliation(s)
- Andrea Guerra
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Alek Pogosyan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Magdalena Nowak
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Florinda Ferreri
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio FIN-70100, Finland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
42
|
Electric fields of motor and frontal tDCS in a standard brain space: A computer simulation study. Neuroimage 2016; 137:140-151. [DOI: 10.1016/j.neuroimage.2016.05.032] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/15/2016] [Accepted: 05/10/2016] [Indexed: 02/01/2023] Open
|
43
|
Veniero D, Strüber D, Thut G, Herrmann CS. Noninvasive Brain Stimulation Techniques Can Modulate Cognitive Processing. ORGANIZATIONAL RESEARCH METHODS 2016. [DOI: 10.1177/1094428116658960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent methods that allow a noninvasive modulation of brain activity are able to modulate human cognitive behavior. Among these methods are transcranial electric stimulation and transcranial magnetic stimulation that both come in multiple variants. A property of both types of brain stimulation is that they modulate brain activity and in turn modulate cognitive behavior. Here, we describe the methods with their assumed neural mechanisms for readers from the economic and social sciences and little prior knowledge of these techniques. Our emphasis is on available protocols and experimental parameters to choose from when designing a study. We also review a selection of recent studies that have successfully applied them in the respective field. We provide short pointers to limitations that need to be considered and refer to the relevant papers where appropriate.
Collapse
Affiliation(s)
- Domenica Veniero
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Strüber
- Experimental Psychology Lab, Center for Excellence ‘Hearing4all’, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Gregor Thut
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Center for Excellence ‘Hearing4all’, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität, Oldenburg, Germany
| |
Collapse
|
44
|
van Dun K, Bodranghien FCAA, Mariën P, Manto MU. tDCS of the Cerebellum: Where Do We Stand in 2016? Technical Issues and Critical Review of the Literature. Front Hum Neurosci 2016; 10:199. [PMID: 27242469 PMCID: PMC4862979 DOI: 10.3389/fnhum.2016.00199] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 01/23/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is an up-and-coming electrical neurostimulation technique increasingly used both in healthy subjects and in selected groups of patients. Due to the high density of neurons in the cerebellum, its peculiar anatomical organization with the cortex lying superficially below the skull and its diffuse connections with motor and associative areas of the cerebrum, the cerebellum is becoming a major target for neuromodulation of the cerebellocerebral networks. We discuss the recent studies based on cerebellar tDCS with a focus on the numerous technical and open issues which remain to be solved. Our current knowledge of the physiological impacts of tDCS on cerebellar circuitry is criticized. We provide a comparison with transcranial Alternating Current Stimulation (tACS), another promising transcranial electrical neurostimulation technique. Although both tDCS and tACS are becoming established techniques to modulate the cerebellocerebral networks, it is surprising that their impacts on cerebellar disorders remains unclear. A major reason is that the literature lacks large trials with a double-blind, sham-controlled, and cross-over experimental design in cerebellar patients.
Collapse
Affiliation(s)
- Kim van Dun
- Clinical and Experimental Neurolinguistics, Vrije Universiteit Brussel Brussels, Belgium
| | - Florian C A A Bodranghien
- Unité d'Etude du Mouvement, Laboratoire de Neurologie Expérimentale, Université libre de Bruxelles (ULB) Brussels, Belgium
| | - Peter Mariën
- Clinical and Experimental Neurolinguistics, Vrije Universiteit BrusselBrussels, Belgium; Department of Neurology and Memory Clinic, ZNA Middelheim General HospitalAntwerp, Belgium
| | - Mario U Manto
- Unité d'Etude du Mouvement, Laboratoire de Neurologie Expérimentale, Université libre de Bruxelles (ULB)Brussels, Belgium; Service des Neurosciences, Université de MonsMons, Belgium
| |
Collapse
|
45
|
Schutter DJLG. Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: A systematic review. Neuroimage 2015; 140:83-8. [PMID: 26453929 DOI: 10.1016/j.neuroimage.2015.09.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 01/21/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) applies exogenous oscillatory electric field potentials to entrain neural rhythms and is used to investigate brain-function relationships and its potential to enhance perceptual and cognitive performance. However, due to current spread tACS can cause cutaneous activation of the retina and phosphenes. Several lines of evidence suggest that retinal phosphenes are capable of inducing neural entrainment, making the contributions of central and peripheral stimulation to the effects in the brain difficult to disentangle. In this literature review, the importance of this issue is further illustrated by the fact that photic stimulation can have a direct impact on perceptual and cognitive performance. This leaves open the possibility that peripheral photic stimulation can at least in part explain the central effects that are attributed to tACS. The extent to which phosphene perception contributes to the effects of exogenous oscillatory electric fields in the brain and influence perception and cognitive performance needs to be examined to understand the working mechanisms of tACS in neurophysiology and behaviour.
Collapse
Affiliation(s)
- Dennis J L G Schutter
- Radboud University, Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| |
Collapse
|
46
|
Panouillères MTN, Joundi RA, Brittain JS, Jenkinson N. Reversing motor adaptation deficits in the ageing brain using non-invasive stimulation. J Physiol 2015; 593:3645-55. [PMID: 25929230 PMCID: PMC4560588 DOI: 10.1113/jp270484] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/26/2015] [Indexed: 11/17/2022] Open
Abstract
Healthy ageing is characterised by deterioration of motor performance. In normal circumstances motor adaptation corrects for movements’ inaccuracies and as such, it is critical in maintaining optimal motor control. However, motor adaptation performance is also known to decline with age. Anodal transcranial direct current stimulation (TDCS) of the cerebellum and the primary motor cortex (M1) have been found to improve visuomotor adaptation in healthy young and older adults. However, no study has directly compared the effect of TDCS on motor adaptation between the two age populations. The aim of our study was to investigate whether the application of anodal TDCS over the lateral cerebellum and M1 affected motor adaptation in young and older adults similarly. Young and older participants performed a visuomotor rotation task and concurrently received TDCS over the left M1, the right cerebellum or received sham stimulation. Our results replicated the finding that older adults are impaired compared to the young adults in visuomotor adaptation. At the end of the adaptation session, older adults displayed a larger error (−17 deg) than the young adults (−10 deg). The stimulation of the lateral cerebellum did not change the adaptation in both age groups. In contrast, anodal TDCS over M1 improved initial adaptation in both age groups by around 30% compared to sham and this improvement lasted up to 40 min after the end of the stimulation. These results demonstrate that TDCS of M1 can enhance visuomotor adaptation, via mechanisms that remain available in the ageing population.
Collapse
Affiliation(s)
- Muriel T N Panouillères
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Raed A Joundi
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - John-Stuart Brittain
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Ned Jenkinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,School of Sport, Exercise and Rehabilitation Sciences, The University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|