1
|
Zhang KK, Matin R, Gorodetsky C, Ibrahim GM, Gouveia FV. Systematic review of rodent studies of deep brain stimulation for the treatment of neurological, developmental and neuropsychiatric disorders. Transl Psychiatry 2024; 14:186. [PMID: 38605027 PMCID: PMC11009311 DOI: 10.1038/s41398-023-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.
Collapse
Affiliation(s)
- Kristina K Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Davidson B, Milosevic L, Kondrataviciute L, Kalia LV, Kalia SK. Neuroscience fundamentals relevant to neuromodulation: Neurobiology of deep brain stimulation in Parkinson's disease. Neurotherapeutics 2024; 21:e00348. [PMID: 38579455 PMCID: PMC11000190 DOI: 10.1016/j.neurot.2024.e00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Deep Brain Stimulation (DBS) has become a pivotal therapeutic approach for Parkinson's Disease (PD) and various neuropsychiatric conditions, impacting over 200,000 patients. Despite its widespread application, the intricate mechanisms behind DBS remain a subject of ongoing investigation. This article provides an overview of the current knowledge surrounding the local, circuit, and neurobiochemical effects of DBS, focusing on the subthalamic nucleus (STN) as a key target in PD management. The local effects of DBS, once thought to mimic a reversible lesion, now reveal a more nuanced interplay with myelinated axons, neurotransmitter release, and the surrounding microenvironment. Circuit effects illuminate the modulation of oscillatory activities within the basal ganglia and emphasize communication between the STN and the primary motor cortex. Neurobiochemical effects, encompassing changes in dopamine levels and epigenetic modifications, add further complexity to the DBS landscape. Finally, within the context of understanding the mechanisms of DBS in PD, the article highlights the controversial question of whether DBS exerts disease-modifying effects in PD. While preclinical evidence suggests neuroprotective potential, clinical trials such as EARLYSTIM face challenges in assessing long-term disease modification due to enrollment timing and methodology limitations. The discussion underscores the need for robust biomarkers and large-scale prospective trials to conclusively determine DBS's potential as a disease-modifying therapy in PD.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada.
| | - Luka Milosevic
- KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Laura Kondrataviciute
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Lorraine V Kalia
- CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada; Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Canada; KITE, Toronto, Canada; CRANIA, Toronto, Canada; Krembil Research Institute, University Health Network Toronto, Canada
| |
Collapse
|
3
|
Campos ACP, Pagano RL, Lipsman N, Hamani C. What do we know about astrocytes and the antidepressant effects of DBS? Exp Neurol 2023; 368:114501. [PMID: 37558154 DOI: 10.1016/j.expneurol.2023.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Treatment-resistant depression (TRD) is a debilitating condition that affects millions of individuals worldwide. Deep brain stimulation (DBS) has been widely used with excellent outcomes in neurological disorders such as Parkinson's disease, tremor, and dystonia. More recently, DBS has been proposed as an adjuvant therapy for TRD. To date, the antidepressant efficacy of DBS is still controversial, and its mechanisms of action remain poorly understood. Astrocytes are the most abundant cells in the nervous system. Once believed to be a "supporting" element for neuronal function, astrocytes are now recognized to play a major role in brain homeostasis, neuroinflammation and neuroplasticity. Because of its many roles in complex multi-factorial disorders, including TRD, understanding the effect of DBS on astrocytes is pivotal to improve our knowledge about the antidepressant effects of this therapy. In depression, the number of astrocytes and the expression of astrocytic markers are decreased. One of the potential consequences of this reduced astrocytic function is the development of aberrant glutamatergic neurotransmission, which has been documented in several models of depression-like behavior. Evidence from preclinical work suggests that DBS may directly influence astrocytic activity, modulating the release of gliotransmitters, reducing neuroinflammation, and altering structural tissue organization. Compelling evidence for an involvement of astrocytes in potential mechanisms of DBS derive from studies suggesting that pharmacological lesions or the inhibition of these cells abolishes the antidepressant-like effect of DBS. In this review, we summarize preclinical data suggesting that the modulation of astrocytes may be an important mechanism for the antidepressant-like effects of DBS.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Nir Lipsman
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Campos ACP, Pople C, Silk E, Surendrakumar S, Rabelo TK, Meng Y, Gouveia FV, Lipsman N, Giacobbe P, Hamani C. Neurochemical mechanisms of deep brain stimulation for depression in animal models. Eur Neuropsychopharmacol 2023; 68:11-26. [PMID: 36640729 DOI: 10.1016/j.euroneuro.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023]
Abstract
Deep brain stimulation (DBS) has emerged as a neuromodulation therapy for treatment-resistant depression, but its actual efficacy and mechanisms of action are still unclear. Changes in neurochemical transmission are important mechanisms of antidepressant therapies. Here, we review the preclinical DBS literature reporting behavioural and neurochemical data associated with its antidepressant-like effects. The most commonly studied target in preclinical models was the ventromedial prefrontal cortex (vmPFC). In rodents, DBS delivered to this target induced serotonin (5-HT) release and increased 5-HT1B receptor expression. The antidepressant-like effects of vmPFC DBS seemed to be independent of the serotonin transporter and potentially mediated by the direct modulation of prefrontal projections to the raphe. Adenosinergic and glutamatergic transmission might have also play a role. Medial forebrain bundle (MFB) DBS increased dopamine levels and reduced D2 receptor expression, whereas nucleus accumbens (NAcc), and lateral habenula (LHb) stimulation increased catecholamine levels in different brain regions. In rodents, subthalamic nucleus (STN) DBS induced robust depression-like responses associated with a reduction in serotonergic transmission, as revealed by a decrease in serotonin release. Some of these effects seemed to be mediated by 5HT1A receptors. In conclusion, the antidepressant-like effects of DBS in preclinical models have been well documented in multiple targets. Though variable mechanisms have been proposed, DBS-induced acute and long-term changes in neurochemical substrates seem to play an important role in the antidepressant-like effects of this therapy.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Christopher Pople
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Esther Silk
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Shanan Surendrakumar
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Thallita K Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Flavia Venetucci Gouveia
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
5
|
Serotonin 5-HT 1B receptors mediate the antidepressant- and anxiolytic-like effects of ventromedial prefrontal cortex deep brain stimulation in a mouse model of social defeat. Psychopharmacology (Berl) 2022; 239:3875-3892. [PMID: 36282287 DOI: 10.1007/s00213-022-06259-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) delivered to the ventromedial prefrontal cortex (vmPFC) induces antidepressant- and anxiolytic-like responses in various animal models. Electrophysiology and neurochemical studies suggest that these effects may be dependent, at least in part, on the serotonergic system. In rodents, vmPFC DBS reduces raphe cell firing and increases serotonin (5-HT) release and the expression of serotonergic receptors in different brain regions. METHODS We examined whether the behavioural responses of chronic vmPFC DBS are mediated by 5-HT1A or 5-HT1B receptors through a series of experiments. First, we delivered stimulation to mice undergoing chronic social defeat stress (CSDS), followed by a battery of behavioural tests. Second, we measured the expression of 5-HT1A and 5-HT1B receptors in different brain regions with western blot. Finally, we conducted pharmacological experiments to mitigate the behavioural effects of DBS using the 5-HT1A antagonist, WAY-100635, or the 5-HT1B antagonist, GR-127935. RESULTS We found that chronic DBS delivered to stressed animals reduced the latency to feed in the novelty suppressed feeding test (NSF) and immobility in the forced swim test (FST). Though no significant changes were observed in receptor expression, 5-HT1B levels in DBS-treated animals were found to be non-significantly increased in the vmPFC, hippocampus, and nucleus accumbens and reduced in the raphe compared to non-stimulated controls. Finally, while animals given vmPFC stimulation along with WAY-100635 still presented significant responses in the NSF and FST, these were mitigated following GR-127935 administration. CONCLUSIONS The antidepressant- and anxiolytic-like effects of DBS in rodents may be partially mediated by 5-HT1B receptors.
Collapse
|
6
|
Di Rosa E, Mapelli D, Ronconi L, Macchia E, Gentili C, Bisiacchi P, Edelstyn N. Anxiety predicts impulsive-compulsive behaviours in Parkinson's disease: Clinical relevance and theoretical implications. J Psychiatr Res 2022; 148:220-229. [PMID: 35134729 DOI: 10.1016/j.jpsychires.2022.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Patients with Parkinson's disease (PD) often present symptoms of anxiety, depression and apathy. These negative affect manifestations have been recently associated with the presence of impulsive compulsive behaviours (ICBs). However, their relation with the use of dopamine replacement therapy (DRT), a renewed risk factor for ICBs, is still not fully understood. Elucidating the role of these different ICBs predictors in PD could inform both prevention/intervention recommendations as well as theoretical models. In the present study, we have analysed data collected in 417 PD patients, 50 patients with Parkinsonian symptoms but with scan without evidence of dopaminergic deficit (SWEDD), and 185 healthy controls (HC). We examined each patient's clinical profile over a two-year time window, investigating the role of both negative affect and DRT on ICBs. Results confirmed the presence of higher levels of anxiety in both the clinical groups, and of higher level of ICBs in SWEDD patients, respect to both PD and HC. Mixed model analyses revealed a statistically significant association between anxiety and ICBs in the SWEDD patients who did not take any DRT. Findings suggest the independence between anxiety and DRT in ICBs development, and provide new evidence for the motivational opponency theoretical framework.
Collapse
Affiliation(s)
- Elisa Di Rosa
- Department of General Psychology, University of Padua, Padua, Italy; School of Psychology, Keele University, Staffordshire, UK.
| | - Daniela Mapelli
- Department of General Psychology, University of Padua, Padua, Italy
| | - Lucia Ronconi
- Department of General Psychology, University of Padua, Padua, Italy
| | - Eleonora Macchia
- Department of General Psychology, University of Padua, Padua, Italy
| | - Claudio Gentili
- Department of General Psychology, University of Padua, Padua, Italy; Padua Neuroscience Centre, University of Padua, Padua, Italy; Centro di Ateneo dei Servizi Clinici Universitari Psicologici, University of Padua, Padua, Italy
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padua, Padua, Italy; Padua Neuroscience Centre, University of Padua, Padua, Italy
| | - Nicky Edelstyn
- School of Psychology, Keele University, Staffordshire, UK
| |
Collapse
|
7
|
Yuen J, Rusheen AE, Price JB, Barath AS, Shin H, Kouzani AZ, Berk M, Blaha CD, Lee KH, Oh Y. Biomarkers for Deep Brain Stimulation in Animal Models of Depression. Neuromodulation 2022; 25:161-170. [PMID: 35125135 PMCID: PMC8655028 DOI: 10.1111/ner.13483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Despite recent advances in depression treatment, many patients still do not respond to serial conventional therapies and are considered "treatment resistant." Deep brain stimulation (DBS) has therapeutic potential in this context. This comprehensive review of recent studies of DBS for depression in animal models identifies potential biomarkers for improving therapeutic efficacy and predictability of conventional DBS to aid future development of closed-loop control of DBS systems. MATERIALS AND METHODS A systematic search was performed in Pubmed, EMBASE, and Cochrane Review using relevant keywords. Overall, 56 animal studies satisfied the inclusion criteria. RESULTS Outcomes were divided into biochemical/physiological, electrophysiological, and behavioral categories. Promising biomarkers include biochemical assays (in particular, microdialysis and electrochemical measurements), which provide real-time results in awake animals. Electrophysiological tests, showing changes at both the target site and downstream structures, also revealed characteristic changes at several anatomic targets (such as the medial prefrontal cortex and locus coeruleus). However, the substantial range of models and DBS targets limits the ability to draw generalizable conclusions in animal behavioral models. CONCLUSIONS Overall, DBS is a promising therapeutic modality for treatment-resistant depression. Different outcomes have been used to assess its efficacy in animal studies. From the review, electrophysiological and biochemical markers appear to offer the greatest potential as biomarkers for depression. However, to develop closed-loop DBS for depression, additional preclinical and clinical studies with a focus on identifying reliable, safe, and effective biomarkers are warranted.
Collapse
Affiliation(s)
- Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Aaron E Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | | | | | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Delcourte S, Etievant A, Haddjeri N. Role of central serotonin and noradrenaline interactions in the antidepressants' action: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 259:7-81. [PMID: 33541681 DOI: 10.1016/bs.pbr.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of antidepressant drugs, in the last 6 decades, has been associated with theories based on a deficiency of serotonin (5-HT) and/or noradrenaline (NA) systems. Although the pathophysiology of major depression (MD) is not fully understood, numerous investigations have suggested that treatments with various classes of antidepressant drugs may lead to an enhanced 5-HT and/or adapted NA neurotransmissions. In this review, particular morpho-physiological aspects of these systems are first considered. Second, principal features of central 5-HT/NA interactions are examined. In this regard, the effects of the acute and sustained antidepressant administrations on these systems are discussed. Finally, future directions including novel therapeutic strategies are proposed.
Collapse
Affiliation(s)
- Sarah Delcourte
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Adeline Etievant
- Integrative and Clinical Neurosciences EA481, University of Bourgogne Franche-Comté, Besançon, France
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
9
|
Becker M, Pinhasov A, Ornoy A. Animal Models of Depression: What Can They Teach Us about the Human Disease? Diagnostics (Basel) 2021; 11:123. [PMID: 33466814 PMCID: PMC7830961 DOI: 10.3390/diagnostics11010123] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is apparently the most common psychiatric disease among the mood disorders affecting about 10% of the adult population. The etiology and pathogenesis of depression are still poorly understood. Hence, as for most human diseases, animal models can help us understand the pathogenesis of depression and, more importantly, may facilitate the search for therapy. In this review we first describe the more common tests used for the evaluation of depressive-like symptoms in rodents. Then we describe different models of depression and discuss their strengths and weaknesses. These models can be divided into several categories: genetic models, models induced by mental acute and chronic stressful situations caused by environmental manipulations (i.e., learned helplessness in rats/mice), models induced by changes in brain neuro-transmitters or by specific brain injuries and models induced by pharmacological tools. In spite of the fact that none of the models completely resembles human depression, most animal models are relevant since they mimic many of the features observed in the human situation and may serve as a powerful tool for the study of the etiology, pathogenesis and treatment of depression, especially since only few patients respond to acute treatment. Relevance increases by the fact that human depression also has different facets and many possible etiologies and therapies.
Collapse
Affiliation(s)
- Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Albert Pinhasov
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
10
|
Khairuddin S, Ngo FY, Lim WL, Aquili L, Khan NA, Fung ML, Chan YS, Temel Y, Lim LW. A Decade of Progress in Deep Brain Stimulation of the Subcallosal Cingulate for the Treatment of Depression. J Clin Med 2020; 9:jcm9103260. [PMID: 33053848 PMCID: PMC7601903 DOI: 10.3390/jcm9103260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Major depression contributes significantly to the global disability burden. Since the first clinical study of deep brain stimulation (DBS), over 446 patients with depression have now undergone this neuromodulation therapy, and 29 animal studies have investigated the efficacy of subgenual cingulate DBS for depression. In this review, we aim to provide a comprehensive overview of the progress of DBS of the subcallosal cingulate in humans and the medial prefrontal cortex, its rodent homolog. For preclinical animal studies, we discuss the various antidepressant-like behaviors induced by medial prefrontal cortex DBS and examine the possible mechanisms including neuroplasticity-dependent/independent cellular and molecular changes. Interestingly, the response rate of subcallosal cingulate Deep brain stimulation marks a milestone in the treatment of depression. DBS achieved response and remission rates of 64–76% and 37–63%, respectively, from clinical studies monitoring patients from 6–24 months. Although some studies showed its stimulation efficacy was limited, it still holds great promise as a therapy for patients with treatment-resistant depression. Overall, further research is still needed, including more credible clinical research, preclinical mechanistic studies, precise selection of patients, and customized electrical stimulation paradigms.
Collapse
Affiliation(s)
- Sharafuddin Khairuddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Fung Yin Ngo
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Wei Ling Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia
| | - Luca Aquili
- School of Psychological and Clinical Sciences, Charles Darwin University, NT0815 Darwin, Australia;
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, UAE;
| | - Man-Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Ying-Shing Chan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
| | - Yasin Temel
- Departments of Neuroscience and Neurosurgery, Maastricht University, 6229ER Maastricht, The Netherlands;
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L4 Laboratory Block, 21 Sassoon Road, Hong Kong, China; (S.K.); (F.Y.N.); (W.L.L.); (M.-L.F.); (Y.-S.C.)
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
11
|
Cambiaghi M, Buffelli M, Masin L, Valtorta F, Comai S. Transcranial direct current stimulation of the mouse prefrontal cortex modulates serotonergic neural activity of the dorsal raphe nucleus. Brain Stimul 2020; 13:548-550. [DOI: 10.1016/j.brs.2020.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 01/05/2023] Open
|
12
|
Association between the promoter region of serotonin transporter polymorphisms and recurrent aphthous stomatitis: A meta-analysis. Arch Oral Biol 2020; 109:104555. [DOI: 10.1016/j.archoralbio.2019.104555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023]
|
13
|
Reyes-Garcés N, Diwan M, Boyacı E, Gómez-Ríos GA, Bojko B, Nobrega JN, Bambico FR, Hamani C, Pawliszyn J. In Vivo Brain Sampling Using a Microextraction Probe Reveals Metabolic Changes in Rodents after Deep Brain Stimulation. Anal Chem 2019; 91:9875-9884. [DOI: 10.1021/acs.analchem.9b01540] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nathaly Reyes-Garcés
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Mustansir Diwan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario Canada
| | - Ezel Boyacı
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - German A. Gómez-Ríos
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Barbara Bojko
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - José N. Nobrega
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario Canada
| | - Francis R. Bambico
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario Canada
| | - Clement Hamani
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
14
|
Abstract
Selective serotonin reuptake inhibitors are among the most prescribed antidepressants. Fluoxetine is the lead molecule which exerts its therapeutic effects, at least in part, by promoting neuroplasticity through increased brain-derived neurotrophic factor (BDNF)/tropomyosin-related receptor kinase B (TrkB) signalling. It is unclear however, to which extent the neuroplastic effects of fluoxetine are solely mediated by the inhibition of the serotonin transporter (5-HTT). To answer this question, the effects of fluoxetine on neuroplasticity were analysed in both wild type (WT) and 5-Htt knock-out (KO) mice. Using Western blotting and RT-qPCR approaches, we showed that fluoxetine 10 µM activated BDNF/TrkB signalling pathways in both CD1 and C57BL/6J mouse primary cortical neurons. Interestingly, effects on BDNF signalling were observed in primary cortical neurons from both 5-Htt WT and KO mice. In addition, a 3-week in vivo fluoxetine treatment (15 mg/kg/d; i.p.) increased the expression of plasticity genes in brains of both 5-Htt WT and KO mice, and tended to equally enhance hippocampal cell proliferation in both genotypes, without reaching significance. Our results further suggest that fluoxetine-induced neuroplasticity does not solely depend on 5-HTT blockade, but might rely, at least in part, on 5-HTT-independent direct activation of TrkB.
Collapse
|
15
|
Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med 2019; 11:e9575. [PMID: 30862663 PMCID: PMC6460356 DOI: 10.15252/emmm.201809575] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) has been successfully used to treat movement disorders, such as Parkinson's disease, for more than 25 years and heralded the advent of electrical neuromodulation to treat diseases with dysregulated neuronal circuits. DBS is now superseding ablative techniques, such as stereotactic radiofrequency lesions. While serendipity has played a role in developing DBS as a therapy, research during the past two decades has shown that electrical neuromodulation is far more than a functional lesion that can be switched on and off. This understanding broadens the field to enable new types of stimulation, clinical indications, and research. This review highlights the complex effects of DBS from the single cell to the neuronal network. Specifically, we examine the electrical, cellular, molecular, and neurochemical mechanisms of DBS as applied to Parkinson's disease and other emerging applications.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Karl L Kiening
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Jia L, Sun Z, Shi D, Wang M, Jia J, He Y, Xue F, Ren Y, Yang J, Ma X. Effects of different patterns of electric stimulation of the ventromedial prefrontal cortex on hippocampal–prefrontal coherence in a rat model of depression. Behav Brain Res 2019; 356:179-188. [DOI: 10.1016/j.bbr.2018.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/16/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022]
|
17
|
Dandekar MP, Fenoy AJ, Carvalho AF, Soares JC, Quevedo J. Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Mol Psychiatry 2018; 23:1094-1112. [PMID: 29483673 DOI: 10.1038/mp.2018.2] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
Although deep brain stimulation (DBS) is an established treatment choice for Parkinson's disease (PD), essential tremor and movement disorders, its effectiveness for the management of treatment-resistant depression (TRD) remains unclear. Herein, we conducted an integrative review on major neuroanatomical targets of DBS pursued for the treatment of intractable TRD. The aim of this review article is to provide a critical discussion of possible underlying mechanisms for DBS-generated antidepressant effects identified in preclinical studies and clinical trials, and to determine which brain target(s) elicited the most promising outcomes considering acute and maintenance treatment of TRD. Major electronic databases were searched to identify preclinical and clinical studies that have investigated the effects of DBS on depression-related outcomes. Overall, 92 references met inclusion criteria, and have evaluated six unique DBS targets namely the subcallosal cingulate gyrus (SCG), nucleus accumbens (NAc), ventral capsule/ventral striatum or anterior limb of internal capsule (ALIC), medial forebrain bundle (MFB), lateral habenula (LHb) and inferior thalamic peduncle for the treatment of unrelenting TRD. Electrical stimulation of these pertinent brain regions displayed differential effects on mood transition in patients with TRD. In addition, 47 unique references provided preclinical evidence for putative neurobiological mechanisms underlying antidepressant effects of DBS applied to the ventromedial prefrontal cortex, NAc, MFB, LHb and subthalamic nucleus. Preclinical studies suggest that stimulation parameters and neuroanatomical locations could influence DBS-related antidepressant effects, and also pointed that modulatory effects on monoamine neurotransmitters in target regions or interconnected brain networks following DBS could have a role in the antidepressant effects of DBS. Among several neuromodulatory targets that have been investigated, DBS in the neuroanatomical framework of the SCG, ALIC and MFB yielded more consistent antidepressant response rates in samples with TRD. Nevertheless, more well-designed randomized double-blind, controlled trials are warranted to further assess the efficacy, safety and tolerability of these more promising DBS targets for the management of TRD as therapeutic effects have been inconsistent across some controlled studies.
Collapse
Affiliation(s)
- M P Dandekar
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - A J Fenoy
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - A F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - J C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| |
Collapse
|
18
|
Volle J, Bregman T, Scott B, Diwan M, Raymond R, Fletcher PJ, Nobrega JN, Hamani C. Deep brain stimulation and fluoxetine exert different long-term changes in the serotonergic system. Neuropharmacology 2018; 135:63-72. [PMID: 29505786 DOI: 10.1016/j.neuropharm.2018.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 01/19/2023]
Abstract
Both selective serotonin reuptake inhibitors (SSRIs) and ventromedial prefrontal cortex (vmPFC) deep brain stimulation (DBS) modulate serotonergic activity. We compared the acute (1 day) and long-term (12 days) effects of vmPFC stimulation and fluoxetine on serotonin (5-HT) release and receptor expression in rats. Samples to measure serotonin levels were collected from the hippocampus using microdialysis. Serotonin transporter (SERT), 5-HT1A and 5-HT1B mRNA were measured using in situ hybridization. [3H]8-OH-DPAT and [125I]cyanopindolol autoradiography were used to measure 5-HT1A and 5-HT1B binding. Our results show that after fluoxetine injections serotonin levels were approximately 150% higher than at baseline. Twelve days later, pre-injection 5-HT extracellular concentration was substantially higher than on day 1. In contrast, serotonin levels following DBS were only 50% higher than at baseline. While pre-stimulation 5-HT on day 12 was significantly higher than on treatment day 1, no stimulation-induced 5-HT peak was recorded. SERT expression in the dorsal raphe was increased after acute fluoxetine and decreased following a single day of DBS. Neither fluoxetine nor DBS administered acutely substantially changed 5-HT1A or 5-HT1B binding. Chronic fluoxetine treatment, however, was associated with a decrease in [3H]8-OH-DPAT prefrontal cortex and hippocampus expression. In contrast, chronic DBS induced a significant increase in [125I]cyanopindolol binding in the prefrontal cortex, globus pallidus, substantia nigra and raphe nuclei. mRNA expression of 5-HT1A and 5-HT1B in raphe nuclei was not altered by either treatment. These results suggest that fluoxetine and DBS modulate activity of the serotonergic system but likely exert their effects through different mechanisms.
Collapse
Affiliation(s)
- Julien Volle
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Tatiana Bregman
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Brian Scott
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Mustansir Diwan
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Biopsychology Section, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Clement Hamani
- Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Harqauil Neuromodulation Centre, Hurvitz Brain Science Program, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|