1
|
Fathi Azar E, Hejazi-Shirmard M, Mirzaie H. Cognitive enhancement through technology: A review of transcranial electrical stimulation (TES) interventions in children and adolescents with specific learning disabilities. Child Care Health Dev 2024; 50:e13318. [PMID: 39118316 DOI: 10.1111/cch.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND In recent years, the exploration of innovative interventions for addressing problems of children and adolescents with specific learning disabilities (SLD) has garnered significant attention within the realm of neurocognitive research. Transcranial electrical stimulation (TES) has emerged as a promising tool for enhancing cognitive skills in children, offering a non-invasive and safe method that may particularly benefit those with learning difficulties. We aimed to appraise the extent and the quality of studies about impact of TES on cognitive skills including academic skills in children and adolescents with SLD. METHODS A literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles published between January 2000 and January 2024 were searched in PubMed, Embase, Scopus, Web of Science and Google Scholar. The study eligibility criteria were previously established according to the PICO model. The Physiotherapy Evidence Database (PEDro) scale and Cochrane Collaboration tool (ROB2) were used to assess the methodological quality and the risk of bias of the included studies, respectively. RESULTS The initial search yielded 1571 studies among which 30 studies were systematically reviewed. The total number of participants was 224 individuals (intervention: 114; control: 110). Findings showed significant improvements in reading skills such as text reading, high-frequency word reading speed and efficiency and mathematical skills. Conversely, other cognitive skills such as working memory were not improved in people with dyslexia and dyscalculia. DISCUSSION TES interventions can positively affect cognitive skills in children and adolescents with SLD; However, due to the small number of studies, medium methodological quality and high risk of bias, caution should be taken when interpreting the results.
Collapse
Affiliation(s)
- Elahe Fathi Azar
- Department of Occupational Therapy, School of Rehabilitation Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahnaz Hejazi-Shirmard
- Department of Occupational Therapy, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hooshang Mirzaie
- Department of Occupational Therapy, School of Rehabilitation Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gholamali Nezhad F, Martin J, Tassone VK, Swiderski A, Demchenko I, Khan S, Chaudhry HE, Palmisano A, Santarnecchi E, Bhat V. Transcranial alternating current stimulation for neuropsychiatric disorders: a systematic review of treatment parameters and outcomes. Front Psychiatry 2024; 15:1419243. [PMID: 39211537 PMCID: PMC11360874 DOI: 10.3389/fpsyt.2024.1419243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Background Transcranial alternating current stimulation (tACS) alters cortical excitability with low-intensity alternating current and thereby modulates aberrant brain oscillations. Despite the recent increase in studies investigating the feasibility and efficacy of tACS in treating neuropsychiatric disorders, its mechanisms, as well as optimal stimulation parameters, are not fully understood. Objectives This systematic review aimed to compile human research on tACS for neuropsychiatric disorders to delineate typical treatment parameters for these conditions and evaluate its outcomes. Methods A search for published studies and unpublished registered clinical trials was conducted through OVID (MEDLINE, PsycINFO, and Embase), ClinicalTrials.gov, and the International Clinical Trials Registry Platform. Studies utilizing tACS to treat neuropsychiatric disorders in a clinical trial setting were included. Results In total, 783 published studies and 373 clinical trials were screened; 53 published studies and 70 clinical trials were included. Published studies demonstrated a low risk of bias, as assessed by the Joanna Briggs Institute Critical Appraisal Tools. Neurocognitive, psychotic, and depressive disorders were the most common disorders treated with tACS. Both published studies (58.5%) and registered clinical trials (52%) most commonly utilized gamma frequency bands and tACS was typically administered at an intensity of 2 mA peak-to-peak, once daily for 20 or fewer sessions. Although the targeted brain locations and tACS montages varied across studies based on the outcome measures and specific pathophysiology of the disorders, the dorsolateral prefrontal cortex (DLPFC) was the most common target in both published studies (30.2%) and registered clinical trials (25.6%). Across studies that published results on tACS outcome measures, tACS resulted in enhanced symptoms and/or improvements in overall psychopathology for neurocognitive (all 11 studies), psychotic (11 out of 14 studies), and depressive (7 out of 8 studies) disorders. Additionally, 17 studies reported alterations in the power spectrum of the electroencephalogram around the entrained frequency band at the targeted locations following tACS. Conclusion Behavioral and cognitive symptoms have been positively impacted by tACS. The most consistent changes were reported in cognitive symptoms following gamma-tACS over the DLPFC. However, the paucity of neuroimaging studies for each neuropsychiatric condition highlights the necessity for replication studies employing biomarker- and mechanism-centric approaches.
Collapse
Affiliation(s)
- Fatemeh Gholamali Nezhad
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Josh Martin
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Vanessa K. Tassone
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alyssa Swiderski
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Somieya Khan
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Hamzah E. Chaudhry
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Annalisa Palmisano
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Battisti A, Lazzaro G, Varuzza C, Vicari S, Menghini D. Effects of online tDCS and hf-tRNS on reading performance in children and adolescents with developmental dyslexia: a study protocol for a cross sectional, within-subject, randomized, double-blind, and sham-controlled trial. Front Neurol 2024; 15:1338430. [PMID: 38533416 PMCID: PMC10964771 DOI: 10.3389/fneur.2024.1338430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Background Developmental Dyslexia (DD) is a brain-based developmental disorder causing severe reading difficulties. The extensive data on the neurobiology of DD have increased interest in brain-directed approaches, such as transcranial direct current stimulation (tDCS), which have been proposed for DD. While positive outcomes have been observed, results remain heterogeneous. Various methodological approaches have been employed to address this issue. However, no studies have compared the effects of different transcranial electrical stimulation techniques (e.g., tDCS and transcranial random noise stimulation, tRNS), on reading in children and adolescents with DD. Methods The present within-subject, double-blind, and sham-controlled trial aims to investigate the effects of tDCS and hf-tRNS on reading in children and adolescents with DD. Participants will undergo three conditions with a one-week interval session: (A) single active tDCS session; (B) single active hf-tRNS session; and (C) single sham session (tDCS/hf-tRNS). Left anodal/right cathodal tDCS and bilateral tRNS will be applied over the temporo-parietal regions for 20 min each. Reading measures will be collected before and during each session. Safety and blinding parameters will be recordered. Discussion We hypothesize that tRNS will demonstrate comparable effectiveness to tDCS in improving reading compared to sham conditions. Additionally, we anticipate that hf-tRNS will exhibit a similar safety profile to tDCS. This study will contribute novel insights into the effectiveness of hf-tRNS, expediting the validation of brain-based treatments for DD.
Collapse
Affiliation(s)
- Andrea Battisti
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Human Sciences, LUMSA University, Rome, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristiana Varuzza
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Wu M, Auksztulewicz R, Riecke L. Multimodal acoustic-electric trigeminal nerve stimulation modulates conscious perception. Neuroimage 2024; 285:120476. [PMID: 38030051 DOI: 10.1016/j.neuroimage.2023.120476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/05/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
Multimodal stimulation can reverse pathological neural activity and improve symptoms in neuropsychiatric diseases. Recent research shows that multimodal acoustic-electric trigeminal-nerve stimulation (TNS) (i.e., musical stimulation synchronized to electrical stimulation of the trigeminal nerve) can improve consciousness in patients with disorders of consciousness. However, the reliability and mechanism of this novel approach remain largely unknown. We explored the effects of multimodal acoustic-electric TNS in healthy human participants by assessing conscious perception before and after stimulation using behavioral and neural measures in tactile and auditory target-detection tasks. To explore the mechanisms underlying the putative effects of acoustic-electric stimulation, we fitted a biologically plausible neural network model to the neural data using dynamic causal modeling. We observed that (1) acoustic-electric stimulation improves conscious tactile perception without a concomitant change in auditory perception, (2) this improvement is caused by the interplay of the acoustic and electric stimulation rather than any of the unimodal stimulation alone, and (3) the effect of acoustic-electric stimulation on conscious perception correlates with inter-regional connection changes in a recurrent neural processing model. These results provide evidence that acoustic-electric TNS can promote conscious perception. Alterations in inter-regional cortical connections might be the mechanism by which acoustic-electric TNS achieves its consciousness benefits.
Collapse
Affiliation(s)
- Min Wu
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands.
| | - Ryszard Auksztulewicz
- Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands
| |
Collapse
|
5
|
Rufener KS, Zaehle T, Krauel K. Combined multi-session transcranial alternating current stimulation (tACS) and language skills training improves individual gamma band activity and literacy skills in developmental dyslexia. Dev Cogn Neurosci 2023; 64:101317. [PMID: 37898018 PMCID: PMC10630593 DOI: 10.1016/j.dcn.2023.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Developmental dyslexia is characterized by the pathologically diminished ability to acquire reading and spelling skills. Accurate processing of acoustic information at the phonemic scale is crucial for successful sound-to-letter-mapping which, in turn, is elemental in reading and spelling. Altered activation patterns in the auditory cortex are thought to provide the neurophysiological basis for the inaccurate phonemic perception. Recently, transcranial electrical stimulation has been shown to be an effective method to ameliorate cortical activation patterns in the auditory cortex. In a sample of children and adolescents with dyslexia, we investigated the effect of multi-session transcranial alternating current stimulation delivered concurrently with a phonological training and in combination with a behavioral literacy skills training. Over a 5-week period the participants received 10 training sessions while gamma-tACS was administered over bilateral auditory cortex. We found that gamma-tACS shifted the peak frequency of auditory gamma oscillations reflecting a more fine-grained processing of time-critical acoustic information. This amelioration was accompanied by increased phonemic processing skills. Moreover, individuals who received gamma-tACS showed significant improvements in their spelling skills four months after the intervention. Our results demonstrate that multi-session gamma-tACS enhances the effects of a behavioral intervention and induces long-term improvement on literacy skills in dyslexia.
Collapse
Affiliation(s)
- Katharina S Rufener
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; DZPG (German Center for Mental Health), partner site Halle-Jena, Magdeburg, Germany.
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Department of Medical Psychology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; DZPG (German Center for Mental Health), partner site Halle-Jena, Magdeburg, Germany
| | - Kerstin Krauel
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; DZPG (German Center for Mental Health), partner site Halle-Jena, Magdeburg, Germany
| |
Collapse
|
6
|
Lee S, Shirinpour S, Alekseichuk I, Perera N, Linn G, Schroeder CE, Falchier AY, Opitz A. Predicting the phase distribution during multi-channel transcranial alternating current stimulation in silico and in vivo. Comput Biol Med 2023; 166:107516. [PMID: 37769460 PMCID: PMC10955626 DOI: 10.1016/j.compbiomed.2023.107516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) is a widely used noninvasive brain stimulation (NIBS) technique to affect neural activity. TACS experiments have been coupled with computational simulations to predict the electromagnetic fields within the brain. However, existing simulations are focused on the magnitude of the field. As the possibility of inducing the phase gradient in the brain using multiple tACS electrodes arises, a simulation framework is necessary to investigate and predict the phase gradient of electric fields during multi-channel tACS. OBJECTIVE Here, we develop such a framework for phasor simulation using phasor algebra and evaluate its accuracy using in vivo recordings in monkeys. METHODS We extract the phase and amplitude of electric fields from intracranial recordings in two monkeys during multi-channel tACS and compare them to those calculated by phasor analysis using finite element models. RESULTS Our findings demonstrate that simulated phases correspond well to measured phases (r = 0.9). Further, we systematically evaluated the impact of accurate electrode placement on modeling and data agreement. Finally, our framework can predict the amplitude distribution in measurements given calibrated tissues' conductivity. CONCLUSIONS Our validated general framework for simulating multi-phase, multi-electrode tACS provides a streamlined tool for principled planning of multi-channel tACS experiments.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Biomedical Engineering, University of Minnesota, MN, USA.
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, MN, USA
| | - Nipun Perera
- Department of Biomedical Engineering, University of Minnesota, MN, USA
| | - Gary Linn
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry NYU Grossman School of Medicine, New York City, NY, USA
| | - Charles E Schroeder
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Departments of Neurological Surgery and Psychiatry, Columbia University College of Physicians and Surgeons, NY, USA
| | - Arnaud Y Falchier
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, MN, USA.
| |
Collapse
|
7
|
Kho SK, Keeble DRT, Wong HK, Estudillo AJ. Investigating the role of the fusiform face area and occipital face area using multifocal transcranial direct current stimulation. Neuropsychologia 2023; 189:108663. [PMID: 37611740 DOI: 10.1016/j.neuropsychologia.2023.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
The functional role of the occipital face area (OFA) and the fusiform face area (FFA) in face recognition is inconclusive to date. While some research has shown that the OFA and FFA are involved in early (i.e., featural processing) and late (i.e., holistic processing) stages of face recognition respectively, other research suggests that both regions are involved in both early and late stages of face recognition. Thus, the current study aims to further examine the role of the OFA and the FFA using multifocal transcranial direct current stimulation (tDCS). In Experiment 1, we used computer-generated faces. Thirty-five participants completed whole face and facial features (i.e., eyes, nose, mouth) recognition tasks after OFA and FFA stimulation in a within-subject design. No difference was found in recognition performance after either OFA or FFA stimulation. In Experiment 2 with 60 participants, we used real faces, provided stimulation following a between-subjects design and included a sham control group. Results showed that FFA stimulation led to enhanced efficiency of facial features recognition. Additionally, no effect of OFA stimulation was found for either facial feature or whole face recognition. These results suggest the involvement of FFA in the recognition of facial features.
Collapse
Affiliation(s)
- Siew Kei Kho
- Department of Psychology, Bournemouth University, UK; School of Psychology, University of Nottingham, Malaysia.
| | | | - Hoo Keat Wong
- School of Psychology, University of Nottingham, Malaysia
| | - Alejandro J Estudillo
- Department of Psychology, Bournemouth University, UK; School of Psychology, University of Nottingham, Malaysia.
| |
Collapse
|
8
|
Medeiros W, Barros T, Caixeta FV. Bibliometric mapping of non-invasive brain stimulation techniques (NIBS) for fluent speech production. Front Hum Neurosci 2023; 17:1164890. [PMID: 37425291 PMCID: PMC10323431 DOI: 10.3389/fnhum.2023.1164890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Language production is a finely regulated process, with many aspects which still elude comprehension. From a motor perspective, speech involves over a hundred different muscles functioning in coordination. As science and technology evolve, new approaches are used to study speech production and treat its disorders, and there is growing interest in the use of non-invasive modulation by means of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Methods Here we analyzed data obtained from Scopus (Elsevier) using VOSViewer to provide an overview of bibliographic mapping of citation, co-occurrence of keywords, co-citation and bibliographic coupling of non-invasive brain stimulation (NIBS) use in speech research. Results In total, 253 documents were found, being 55% from only three countries (USA, Germany and Italy), with emerging economies such as Brazil and China becoming relevant in this topic recently. Most documents were published in this last decade, with 2022 being the most productive yet, showing brain stimulation has untapped potential for the speech research field. Discussion Keyword analysis indicates a move away from basic research on the motor control in healthy speech, toward clinical applications such as stuttering and aphasia treatment. We also observe a recent trend in cerebellar modulation for clinical treatment. Finally, we discuss how NIBS have established over the years and gained prominence as tools in speech therapy and research, and highlight potential methodological possibilities for future research.
Collapse
|
9
|
Lee S, Shirinpour S, Alekseichuk I, Perera N, Linn G, Schroeder CE, Falchier AY, Opitz A. Experimental validation of computational models for the prediction of phase distribution during multi-channel transcranial alternating current stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536090. [PMID: 37066288 PMCID: PMC10104155 DOI: 10.1101/2023.04.07.536090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a widely used noninvasive brain stimulation (NIBS) technique to affect neural activity. Neural oscillations exhibit phase-dependent associations with cognitive functions, and tools to manipulate local oscillatory phases can affect communication across remote brain regions. A recent study demonstrated that multi-channel tACS can generate electric fields with a phase gradient or traveling waves in the brain. Computational simulations using phasor algebra can predict the phase distribution inside the brain and aid in informing parameters in tACS experiments. However, experimental validation of computational models for multi-phase tACS is still lacking. Here, we develop such a framework for phasor simulation and evaluate its accuracy using in vivo recordings in nonhuman primates. We extract the phase and amplitude of electric fields from intracranial recordings in two monkeys during multi-channel tACS and compare them to those calculated by phasor analysis using finite element models. Our findings demonstrate that simulated phases correspond well to measured phases (r = 0.9). Further, we systematically evaluated the impact of accurate electrode placement on modeling and data agreement. Finally, our framework can predict the amplitude distribution in measurements given calibrated tissues’ conductivity. Our validated general framework for simulating multi-phase, multi-electrode tACS provides a streamlined tool for principled planning of multi-channel tACS experiments.
Collapse
|
10
|
Brancucci A, Rivolta D, Nitsche MA, Manippa V. The effects of transcranial random noise stimulation on motor function: A comprehensive review of the literature. Physiol Behav 2023; 261:114073. [PMID: 36608913 DOI: 10.1016/j.physbeh.2023.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
The present review considers all papers published on the topic up to the end of the year 2022. Transcranial random noise stimulation (tRNS) is a non-invasive neuromodulation technique introduced about 15 years ago whose use is becoming increasingly widespread in neuroscience. It consists of the application over the scalp of a weak, white noise-like current, through electrodes having a surface of several square centimetres, for a duration ranging from seconds to minutes. Despite its relatively low spatial and temporal resolution, tRNS has well defined effects on central motor excitability, which critically depend on stimulation parameters. These effects seem to be chiefly based on an effect on neuronal membrane sodium channels and can last much longer than the stimulation itself. While the effects at the cellular level in the motor cortex are becoming progressively clear, much more studies are needed to understand the effects of tRNS on motor behaviour and performance, where initial research results are nevertheless promising, in both basic and applied research.
Collapse
Affiliation(s)
- Alfredo Brancucci
- Dipartimento di Scienze Motorie, Umane e della Salute, Università di Roma "Foro Italico", Italy.
| | - Davide Rivolta
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli studi di Bari "Aldo Moro", Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Germany
| | - Valerio Manippa
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli studi di Bari "Aldo Moro", Italy; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
11
|
Wang Y, Zhang Y, Hou P, Dong G, Shi L, Li W, Wei R, Li X. Excitability changes induced in the human auditory cortex by transcranial alternating current stimulation. Neurosci Lett 2023; 792:136960. [PMID: 36372094 DOI: 10.1016/j.neulet.2022.136960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Transcranial alternating current stimulation (tACS) has been widely studied for its ability to regulate motor, perceptual, and cognitive functions. Given the unique frequency specificity of tACS, it is expected to directly target rhythmic activity in the typical electroencephalogram (EEG) range. After tACS stimulation, changes in stimulation-induced and evoked activities can be inspected. Detecting changes in auditory evoked activity after different frequencies of tACS stimulation will be helpful for further revealing the influence of tACS on the excitation/inhibition of γ activity in the auditory cortex. Using a randomized repeated measures design, this study assessed the effects of alpha(α)-tACS and gamma(γ)-tACS on the auditory steady-state response (ASSR) in 11 normal-hearing participants. Participants attended four sessions held at least one week apart, receiving tACS or sham treatment. The results indicated that α-tACS had an inhibitory effect on 40-Hz ASSR compared to both γ-tACS and sham tACS, which occurred 30 min after stimulation. Taken together, these findings contribute to the understanding of tACS-induced excitability changes in the human auditory cortex, helping reveal the neurophysiological changes after tACS.
Collapse
Affiliation(s)
- Yao Wang
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China; School of Precision Instruments and Optoelectronics Engineering Tianjin University, Tianjin University, Tianjin 300072, China
| | - Yue Zhang
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Peiyun Hou
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Gaoyuan Dong
- School of Electrical and Electronic Engineering, Tiangong University, Tianjin 300387, China
| | - Limeng Shi
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Weiming Li
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Ran Wei
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Xiaojie Li
- Department of Biomedical Engineering, School of Life Sciences, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
12
|
Rahimi V, Mohammadkhani G, Alaghband Rad J, Mousavi SZ, Khalili ME. Modulation of auditory temporal processing, speech in noise perception, auditory-verbal memory, and reading efficiency by anodal tDCS in children with dyslexia. Neuropsychologia 2022; 177:108427. [PMID: 36410540 DOI: 10.1016/j.neuropsychologia.2022.108427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Dyslexia is a neurodevelopmental disorder that is prevalent in children. It is estimated that 30-50% of individuals diagnosed with dyslexia also manifest an auditory perceptual deficit characteristic of auditory processing disorder (APD). Some studies suggest that defects in basic auditory processing can lead to phonological defects as the most prominent cause of dyslexia. Thus, in some cases, there may be interrelationships between dyslexia and some of the aspects of central auditory processing. In recent years, transcranial direct current stimulation (tDCS) has been used as a safe method for the modulation of central auditory processing aspects in healthy adults and reading skills in children with dyslexia. Therefore, the objectives of our study were to investigate the effect of tDCS on the modulation of different aspects of central auditory processing, aspects of reading, and the relationship between these two domains in dyslexic children with APD. A within-subjects design was employed to investigate the effect of two electrode arrays (the anode on the left STG (AC)/cathode on the right shoulder and anode on the left STG/cathode on the right STG) on auditory temporal processing; speech-in-noise perception, short-term auditory memory; and high-frequency word, low-frequency word, pseudoword, and text reading. The results of this clinical trial showed the modulation of the studied variables in central auditory processing and the accuracy and speed of reading variables compared to the control and sham statuses in both electrode arrays. Our results also showed that the improvement of the accuracy and speed of text reading, as well as the accuracy of pseudoword reading were related to the improvement of speech in noise perception and temporal processing. The results of this research can be effective in clarifying the basis of the neurobiology of dyslexia and, in particular, the hypothesis of the role of basic auditory processing and subsequently the role of the auditory cortex in dyslexia. These results might provide a framework to facilitate behavioral rehabilitation in dyslexic children with APD.
Collapse
Affiliation(s)
- Vida Rahimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran.
| | - Javad Alaghband Rad
- Department of Psychiatry, Tehran University of Medical Sciences, Roozbeh Hospital, Tehran, Iran
| | - Seyyedeh Zohre Mousavi
- Department of Speech Therapy, School of Rehabilitation, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Ehsan Khalili
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
13
|
Egashira Y, Kaga Y, Gunji A, Kita Y, Kimura M, Hironaga N, Takeichi H, Hayashi S, Kaneko Y, Takahashi H, Hanakawa T, Okada T, Inagaki M. Detection of deviance in Japanese kanji compound words. Front Hum Neurosci 2022; 16:913945. [PMID: 36046210 PMCID: PMC9421146 DOI: 10.3389/fnhum.2022.913945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Reading fluency is based on the automatic visual recognition of words. As a manifestation of the automatic processing of words, an automatic deviance detection of visual word stimuli can be observed in the early stages of visual recognition. To clarify whether this phenomenon occurs with Japanese kanji compounds—since their lexicality is related to semantic association—we investigated the brain response by utilizing three types of deviants: differences in font type, lexically correct or incorrect Japanese kanji compound words and pseudo-kanji characters modified from correct and incorrect compounds. We employed magnetoencephalography (MEG) to evaluate the spatiotemporal profiles of the related brain regions. The study included 22 adult native Japanese speakers (16 females). The abovementioned three kinds of stimuli containing 20% deviants were presented during the MEG measurement. Activity in the occipital pole region of the brain was observed upon the detection of font-type deviance within 250 ms of stimulus onset. Although no significant activity upon detecting lexically correct/incorrect kanji compounds or pseudo-kanji character deviations was observed, the activity in the posterior transverse region of the collateral sulcus (pCoS)—which is a fusiform neighboring area—was larger when detecting lexically correct kanji compounds than when detecting pseudo-kanji characters. Taken together, these results support the notion that the automatic detection of deviance in kanji compounds may be limited to a low-level feature, such as the stimulus stroke thickness.
Collapse
Affiliation(s)
- Yuka Egashira
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- *Correspondence: Yuka Egashira,
| | - Yoshimi Kaga
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Atsuko Gunji
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- College of Education, Yokohama National University, Yokohama, Japan
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Yosuke Kita
- Cognitive Brain Research Unit (CBRU), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology, Faculty of Letters, Keio University, Minato-ku, Japan
| | - Motohiro Kimura
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Naruhito Hironaga
- Brain Center, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroshige Takeichi
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- Open Systems Information Science Team, Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters (R-IH), RIKEN, Yokohama, Japan
| | - Sayuri Hayashi
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Yuu Kaneko
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Hidetoshi Takahashi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- Department of Child and Adolescent Psychiatry, Kochi Medical School, Kochi University, Nankoku-shi, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Okada
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Masumi Inagaki
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
- Department of Pediatrics, Tottori Prefectural Rehabilitation Center, Tottori, Japan
| |
Collapse
|
14
|
Succoio M, Sacchettini R, Rossi A, Parenti G, Ruoppolo M. Galactosemia: Biochemistry, Molecular Genetics, Newborn Screening, and Treatment. Biomolecules 2022; 12:biom12070968. [PMID: 35883524 PMCID: PMC9313126 DOI: 10.3390/biom12070968] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 12/16/2022] Open
Abstract
Galactosemia is an inborn disorder of carbohydrate metabolism characterized by the inability to metabolize galactose, a sugar contained in milk (the main source of nourishment for infants), and convert it into glucose, the sugar used by the body as the primary source of energy. Galactosemia is an autosomal recessive genetic disease that can be diagnosed at birth, even in the absence of symptoms, with newborn screening by assessing the level of galactose and the GALT enzyme activity, as GALT defect constitutes the most frequent cause of galactosemia. Currently, galactosemia cannot be cured, but only treated by means of a diet with a reduced content of galactose and lactose. Although the diet is able to reverse the neonatal clinical picture, it does not prevent the development of long-term complications. This review provides an overview of galactose metabolism, molecular genetics, newborn screening and therapy of galactosemia. Novel treatments for galactosemia currently being investigated in (pre)clinical studies and potentially able to prevent long-term complications are also presented.
Collapse
Affiliation(s)
- Mariangela Succoio
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (M.S.); (R.S.)
| | - Rosa Sacchettini
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (M.S.); (R.S.)
| | - Alessandro Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (A.R.); (G.P.)
| | - Giancarlo Parenti
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (A.R.); (G.P.)
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Margherita Ruoppolo
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy; (M.S.); (R.S.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
15
|
Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neurosci Biobehav Rev 2022; 138:104702. [PMID: 35595071 DOI: 10.1016/j.neubiorev.2022.104702] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/12/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022]
Abstract
Van der Groen, O., Potok, W., Wenderoth, N., Edwards, G., Mattingley, J.B. and Edwards, D. Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. NEUROSCI BIOBEHAV REV X (X) XXX-XXX 2021.- Transcranial random noise stimulation (tRNS) is a non-invasive electrical brain stimulation method that is increasingly employed in studies of human brain function and behavior, in health and disease. tRNS is effective in modulating perception acutely and can improve learning. By contrast, its effectiveness for modulating higher cognitive processes is variable. Prolonged stimulation with tRNS, either as one longer application, or multiple shorter applications, may engage plasticity mechanisms that can result in long-term benefits. Here we provide an overview of the current understanding of the effects of tRNS on the brain and behavior and provide some specific recommendations for future research.
Collapse
|
16
|
Preisig BC, Hervais-Adelman A. The Predictive Value of Individual Electric Field Modeling for Transcranial Alternating Current Stimulation Induced Brain Modulation. Front Cell Neurosci 2022; 16:818703. [PMID: 35273479 PMCID: PMC8901488 DOI: 10.3389/fncel.2022.818703] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
There is considerable individual variability in the reported effectiveness of non-invasive brain stimulation. This variability has often been ascribed to differences in the neuroanatomy and resulting differences in the induced electric field inside the brain. In this study, we addressed the question whether individual differences in the induced electric field can predict the neurophysiological and behavioral consequences of gamma band tACS. In a within-subject experiment, bi-hemispheric gamma band tACS and sham stimulation was applied in alternating blocks to the participants' superior temporal lobe, while task-evoked auditory brain activity was measured with concurrent functional magnetic resonance imaging (fMRI) and a dichotic listening task. Gamma tACS was applied with different interhemispheric phase lags. In a recent study, we could show that anti-phase tACS (180° interhemispheric phase lag), but not in-phase tACS (0° interhemispheric phase lag), selectively modulates interhemispheric brain connectivity. Using a T1 structural image of each participant's brain, an individual simulation of the induced electric field was computed. From these simulations, we derived two predictor variables: maximal strength (average of the 10,000 voxels with largest electric field values) and precision of the electric field (spatial correlation between the electric field and the task evoked brain activity during sham stimulation). We found considerable variability in the individual strength and precision of the electric fields. Importantly, the strength of the electric field over the right hemisphere predicted individual differences of tACS induced brain connectivity changes. Moreover, we found in both hemispheres a statistical trend for the effect of electric field strength on tACS induced BOLD signal changes. In contrast, the precision of the electric field did not predict any neurophysiological measure. Further, neither strength, nor precision predicted interhemispheric integration. In conclusion, we found evidence for the dose-response relationship between individual differences in electric fields and tACS induced activity and connectivity changes in concurrent fMRI. However, the fact that this relationship was stronger in the right hemisphere suggests that the relationship between the electric field parameters, neurophysiology, and behavior may be more complex for bi-hemispheric tACS.
Collapse
Affiliation(s)
- Basil C. Preisig
- Department of Psychology, Neurolinguistics, University of Zurich, Zurich, Switzerland
- Donders Institute for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich, University of Zurich, Zurich, Switzerland
| | - Alexis Hervais-Adelman
- Department of Psychology, Neurolinguistics, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Turker S, Hartwigsen G. The use of noninvasive brain stimulation techniques to improve reading difficulties in dyslexia: A systematic review. Hum Brain Mapp 2022; 43:1157-1173. [PMID: 34716977 PMCID: PMC8764483 DOI: 10.1002/hbm.25700] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
Noninvasive brain stimulation (NIBS) allows to actively and noninvasively modulate brain function. Aside from inhibiting specific processes, NIBS may also enhance cognitive functions, which might be used for the prevention and intervention of learning disabilities such as dyslexia. However, despite the growing interest in modulating learning abilities, a comprehensive, up-to-date review synthesizing NIBS studies with dyslexics is missing. Here, we fill this gap and elucidate the potential of NIBS as treatment option in dyslexia. The findings of the 15 included studies suggest that repeated sessions of reading training combined with different NIBS protocols may induce long-lasting improvements of reading performance in child and adult dyslexics, opening promising avenues for future research. In particular, the "classical" reading areas seem to be most successfully modulated through NIBS, and facilitatory protocols can improve various reading-related subprocesses. Moreover, we emphasize the need to further explore the potential to modulate auditory cortex function as a preintervention and intervention approach for affected children, for example, to avoid the development of auditory and phonological difficulties at the core of dyslexia. Finally, we outline how future studies may increase our understanding of the neurobiological basis of NIBS-induced improvements in dyslexia.
Collapse
Affiliation(s)
- Sabrina Turker
- Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Alexander von Humboldt FoundationBerlinGermany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
18
|
Lazzaro G, Battisti A, Varuzza C, Celestini L, Pani P, Costanzo F, Vicari S, Kadosh RC, Menghini D. Boosting Numerical Cognition in Children and Adolescents with Mathematical Learning Disabilities by a Brain-Based Intervention: A Study Protocol for a Randomized, Sham-Controlled Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10969. [PMID: 34682715 PMCID: PMC8536003 DOI: 10.3390/ijerph182010969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 01/29/2023]
Abstract
Numbers are everywhere, and supporting difficulties in numerical cognition (e.g., mathematical learning disability (MLD)) in a timely, effective manner is critical for their daily use. To date, only low-efficacy cognitive-based interventions are available. The extensive data on the neurobiology of MLD have increased interest in brain-directed approaches. The overarching goal of this study protocol is to provide the scientific foundation for devising brain-based and evidence-based treatments in children and adolescents with MLD. In this double-blind, between-subject, sham-controlled, randomized clinical trial, transcranial random noise stimulation (tRNS) plus cognitive training will be delivered to participants. Arithmetic, neuropsychological, psychological, and electrophysiological measures will be collected at baseline (T0), at the end of the interventions (T1), one week (T2) and three months later (T3). We expect that tRNS plus cognitive training will significantly improve arithmetic measures at T1 and at each follow-up (T2, T3) compared with placebo and that such improvements will correlate robustly and positively with changes in the neuropsychological, psychological, and electrophysiological measures. We firmly believe that this clinical trial will produce reliable and positive results to accelerate the validation of brain-based treatments for MLD that have the potential to impact quality of life.
Collapse
Affiliation(s)
- Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
- Department of Human Science, LUMSA University, 00193 Rome, Italy
| | - Andrea Battisti
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
| | - Cristiana Varuzza
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
| | - Laura Celestini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy;
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, 30AD04 Elizabeth Fry Building, University of Surrey, Guildford GU2 7XH, UK;
- Department of Experimental Psychology, University of Oxford, New Radcliffe House, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (A.B.); (C.V.); (L.C.); (F.C.); (S.V.)
| |
Collapse
|
19
|
Serniclaes W, López-Zamora M, Bordoy S, L Luque J. Allophonic perception of VOT contrasts in Spanish children with dyslexia. Brain Behav 2021; 11:e02194. [PMID: 34018705 PMCID: PMC8213943 DOI: 10.1002/brb3.2194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Previous studies have evidenced a different mode of speech perception in dyslexia, characterized by the use of allophonic rather than phonemic units. People with dyslexia perceive phonemic features (such as voicing) less accurately than typical readers, but they perceive allophonic features (i.e., language-independent differences between speech sounds) more accurately. METHOD In this study, we investigated the perception of voicing contrasts in a sample of 204 Spanish children with or without dyslexia. Identification and discrimination data were collected for synthetic sounds varying along three different voice onset time (VOT) continua (ba/pa, de/te, and di/ti). Empirical data will be contrasted with a mathematical model of allophonic perception building up from neural oscillations and auditory temporal processing. RESULTS Children with dyslexia exhibited a general deficit in categorical precision; that is, they discriminated among phonemically contrastive pairs (around 0-ms VOT) less accurately than did chronological age controls, irrespective of the stimulus continuum. Children with dyslexia also exhibited a higher sensitivity in the discrimination of allophonic features (around ±30-ms VOT), but only for the stimulus continuum that was based on a nonlexical contrast (ba/pa). CONCLUSION Fitting the neural network model to the data collected for this continuum suggests that allophonic perception is due to a deficit in "subharmonic coupling" between high-frequency oscillations. Relationships with "temporal sampling framework" theory are discussed.
Collapse
Affiliation(s)
- Willy Serniclaes
- Institute of Neuroscience and Cognition, CNRS, UMR 8002, Université Sorbonne Paris Cité, Paris, France.,Unité de Recherche en Neurosciences Cognitives, Centre de Recherches en Cognition et Neurosciences, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Miguel López-Zamora
- Departamento de Psicología Evolutiva y de la Educación, Facultad de CC de la Educación, Universidad de Granada, Granada, Spain
| | - Soraya Bordoy
- Departamento de Psicología Evolutiva y de la Educación, Facultad de Psicología y Logopedia, Universidad de Málaga, Málaga, Spain
| | - Juan L Luque
- Departamento de Psicología Evolutiva y de la Educación, Facultad de Psicología y Logopedia, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
20
|
Zhang M, Amon A, Hanssen S, Wu M, Bonte M, Riecke L. No evidence for modulation of sound rise-time perception by 4-Hz brain oscillations. Brain Stimul 2021; 14:364-365. [PMID: 33581282 DOI: 10.1016/j.brs.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022] Open
Affiliation(s)
- Manli Zhang
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV, Maastricht, the Netherlands
| | - Anita Amon
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV, Maastricht, the Netherlands
| | - Saskia Hanssen
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV, Maastricht, the Netherlands; Faculty of Health Medicine and Life Sciences, Maastricht University, 6229 EV, Maastricht, the Netherlands
| | - Min Wu
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV, Maastricht, the Netherlands
| | - Milene Bonte
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV, Maastricht, the Netherlands
| | - Lars Riecke
- Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV, Maastricht, the Netherlands.
| |
Collapse
|
21
|
Delnoy B, Coelho AI, Rubio-Gozalbo ME. Current and Future Treatments for Classic Galactosemia. J Pers Med 2021; 11:jpm11020075. [PMID: 33525536 PMCID: PMC7911353 DOI: 10.3390/jpm11020075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Type I (classic) galactosemia, galactose 1-phosphate uridylyltransferase (GALT)-deficiency is a hereditary disorder of galactose metabolism. The current therapeutic standard of care, a galactose-restricted diet, is effective in treating neonatal complications but is inadequate in preventing burdensome complications. The development of several animal models of classic galactosemia that (partly) mimic the biochemical and clinical phenotypes and the resolution of the crystal structure of GALT have provided important insights; however, precise pathophysiology remains to be elucidated. Novel therapeutic approaches currently being explored focus on several of the pathogenic factors that have been described, aiming to (i) restore GALT activity, (ii) influence the cascade of events and (iii) address the clinical picture. This review attempts to provide an overview on the latest advancements in therapy approaches.
Collapse
Affiliation(s)
- Britt Delnoy
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.D.); (A.I.C.)
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
- GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Ana I. Coelho
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.D.); (A.I.C.)
| | - Maria Estela Rubio-Gozalbo
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.D.); (A.I.C.)
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
- GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 HX Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-3872920
| |
Collapse
|
22
|
Santos FH, Mosbacher JA, Menghini D, Rubia K, Grabner RH, Cohen Kadosh R. Effects of transcranial stimulation in developmental neurocognitive disorders: A critical appraisal. PROGRESS IN BRAIN RESEARCH 2021; 264:1-40. [PMID: 34167652 DOI: 10.1016/bs.pbr.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Non-invasive brain stimulation (NIBS) has been highlighted as a powerful tool to promote neuroplasticity, and an attractive approach to support cognitive remediation. Here we provide a systematic review of 26 papers using NIBS to ameliorate cognitive dysfunctions in three prevalent neurodevelopmental disorders: Attention-Deficit/Hyperactivity Disorder (ADHD), Developmental Dyslexia and Developmental Dyscalculia. An overview of the state of research shows a predominance of studies using repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) techniques, and an unequal distribution among clinical conditions. Regarding the utility of NIBS, the results are promising but also ambiguous. Twenty-three papers reported beneficial effects, but many of these effects were found only once or were only partially replicated and some studies even reported detrimental effects. Furthermore, most studies differed in at least one core aspect, the NIBS applied, the questionnaires and cognitive tests conducted, or the age group investigated, and sample sizes were mostly small. Hence, further studies are needed to rigorously examine the potential of NIBS in the remediation of cognitive functions. Finally, we discuss potential caveats and future directions. We reason that if adequately addressing these challenges NIBS can be feasible, with potential benefits in treating neurodevelopmental disorders.
Collapse
Affiliation(s)
- Flavia H Santos
- School of Psychology, University College Dublin, Dublin, Ireland
| | - Jochen A Mosbacher
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria.
| | - Deny Menghini
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Katya Rubia
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Roland H Grabner
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Rufener KS, Zaehle T. Dysfunctional auditory gamma oscillations in developmental dyslexia: A potential target for a tACS-based intervention. PROGRESS IN BRAIN RESEARCH 2021; 264:211-232. [PMID: 34167657 DOI: 10.1016/bs.pbr.2021.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interventions in developmental dyslexia typically consist of orthography-based reading and writing trainings. However, their efficacy is limited and, consequently, the symptoms persist into adulthood. Critical for this lack of efficacy is the still ongoing debate about the core deficit in dyslexia and its underlying neurobiological causes. There is ample evidence on phonological as well as auditory temporal processing deficits in dyslexia and, on the other hand, cortical gamma oscillations in the auditory cortex as functionally relevant for the extraction of linguistically meaningful information units from the acoustic signal. The present work aims to shed more light on the link between auditory gamma oscillations, phonological awareness, and literacy skills in dyslexia. By mean of EEG, individual gamma frequencies were assessed in a group of children and adolescents diagnosed with dyslexia as well as in an age-matched control group with typical literacy skills. Furthermore, phonological awareness was assessed in both groups, while in dyslexic participants also reading and writing performance was measured. We found significantly lower gamma peak frequencies as well as lower phonological awareness scores in dyslexic participants compared to age-matched controls. Additionally, results showed a positive correlation between the individual gamma frequency and phonological awareness. Our data suggest a hierarchical structure of neural gamma oscillations, phonological awareness, and literacy skills. Thereby, the results emphasize altered gamma oscillation not only as a core deficit in dyslexia but also as a potential target for future causal interventions. We discuss these findings considering non-invasive brain stimulation techniques and suggest transcranial alternating current stimulation as a promising approach to normalize dysfunctional oscillations in dyslexia.
Collapse
Affiliation(s)
| | - Tino Zaehle
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
24
|
Marchesotti S, Nicolle J, Merlet I, Arnal LH, Donoghue JP, Giraud AL. Selective enhancement of low-gamma activity by tACS improves phonemic processing and reading accuracy in dyslexia. PLoS Biol 2020; 18:e3000833. [PMID: 32898188 PMCID: PMC7478834 DOI: 10.1371/journal.pbio.3000833] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
The phonological deficit in dyslexia is associated with altered low-gamma oscillatory function in left auditory cortex, but a causal relationship between oscillatory function and phonemic processing has never been established. After confirming a deficit at 30 Hz with electroencephalography (EEG), we applied 20 minutes of transcranial alternating current stimulation (tACS) to transiently restore this activity in adults with dyslexia. The intervention significantly improved phonological processing and reading accuracy as measured immediately after tACS. The effect occurred selectively for a 30-Hz stimulation in the dyslexia group. Importantly, we observed that the focal intervention over the left auditory cortex also decreased 30-Hz activity in the right superior temporal cortex, resulting in reinstating a left dominance for the oscillatory response. These findings establish a causal role of neural oscillations in phonological processing and offer solid neurophysiological grounds for a potential correction of low-gamma anomalies and for alleviating the phonological deficit in dyslexia.
Collapse
Affiliation(s)
| | - Johanna Nicolle
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | | | - Luc H. Arnal
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
- Institut de l’Audition, Institut Pasteur, INSERM, Paris, France
| | - John P. Donoghue
- Brown University, Providence, Rhode Island, United States of America
| | - Anne-Lise Giraud
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
The Effects of 1 mA tACS and tRNS on Children/Adolescents and Adults: Investigating Age and Sensitivity to Sham Stimulation. Neural Plast 2020; 2020:8896423. [PMID: 32855633 PMCID: PMC7443018 DOI: 10.1155/2020/8896423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to investigate the effect of transcranial random noise (tRNS) and transcranial alternating current (tACS) stimulation on motor cortex excitability in healthy children and adolescents. Additionally, based on our recent results on the individual response to sham in adults, we explored this effect in the pediatric population. We included 15 children and adolescents (10-16 years) and 28 adults (20-30 years). Participants were stimulated four times with 20 Hz and 140 Hz tACS, tRNS, and sham stimulation (1 mA) for 10 minutes over the left M1HAND. Single-pulse MEPs (motor evoked potential), short-interval intracortical inhibition, and facilitation were measured by TMS before and after stimulation (baseline, 0, 30, 60 minutes). We also investigated aspects of tolerability. According to the individual MEPs response immediately after sham stimulation compared to baseline (Wilcoxon signed-rank test), subjects were regarded as responders or nonresponders to sham. We did not find a significant age effect. Regardless of age, 140 Hz tACS led to increased excitability. Incidence and intensity of side effects did not differ between age groups or type of stimulation. Analyses on responders and nonresponders to sham stimulation showed effects of 140 Hz, 20 Hz tACS, and tRNS on single-pulse MEPs only for nonresponders. In this study, children and adolescents responded to 1 mA tRNS and tACS comparably to adults regarding the modulation of motor cortex excitability. This study contributes to the findings that noninvasive brain stimulation is well tolerated in children and adolescents including tACS, which has not been studied before. Finally, our study supports a modulating role of sensitivity to sham stimulation on responsiveness to a broader stimulation and age range.
Collapse
|
26
|
Effects of Transcranial Electrical Stimulation on Human Auditory Processing and Behavior-A Review. Brain Sci 2020; 10:brainsci10080531. [PMID: 32784358 PMCID: PMC7464917 DOI: 10.3390/brainsci10080531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can adjust the membrane potential by applying a weak current on the scalp to change the related nerve activity. In recent years, tES has proven its value in studying the neural processes involved in human behavior. The study of central auditory processes focuses on the analysis of behavioral phenomena, including sound localization, auditory pattern recognition, and auditory discrimination. To our knowledge, studies on the application of tES in the field of hearing and the electrophysiological effects are limited. Therefore, we reviewed the neuromodulatory effect of tES on auditory processing, behavior, and cognitive function and have summarized the physiological effects of tES on the auditory cortex.
Collapse
|
27
|
Jones KT, Johnson EL, Tauxe ZS, Rojas DC. Modulation of auditory gamma-band responses using transcranial electrical stimulation. J Neurophysiol 2020; 123:2504-2514. [PMID: 32459551 DOI: 10.1152/jn.00003.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Auditory gamma-band (>30 Hz) activity is a biomarker of cortical excitation/inhibition (E/I) balance in autism, schizophrenia, and bipolar disorder. We provide a comprehensive account of the effects of transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS) on gamma responses. Forty-five healthy young adults listened to 40-Hz auditory click trains while electroencephalography (EEG) data were collected to measure stimulus-related gamma activity immediately before and after 10 min of 1 mA tACS (40 Hz), tDCS, or sham stimulation to left auditory cortex. tACS, but not tDCS, increased gamma power and phase locking to the auditory stimulus. However, both tACS and tDCS strengthened the gamma phase connectome, and effects persisted beyond the stimulus. Finally, tDCS strengthened the coupling of gamma activity to alpha oscillations after termination of the stimulus. No effects were observed in prestimulus gamma power, the gamma amplitude connectome, or any band-limited alpha measure. Whereas both stimulation techniques synchronize gamma responses between regions, tACS also tunes the magnitude and timing of gamma responses to the stimulus. Results reveal dissociable neurophysiological changes following tACS and tDCS and demonstrate that clinical biomarkers can be altered with noninvasive neurostimulation, especially frequency-tuned tACS.NEW & NOTEWORTHY Gamma frequency-tuned transcranial alternating current stimulation (tACS) adjusts the magnitude and timing of auditory gamma responses, as compared with both sham stimulation and transcranial direct current stimulation (tDCS). However, both tACS and tDCS strengthen the gamma phase connectome, which is disrupted in numerous neurological and psychiatric disorders. These findings reveal dissociable neurophysiological changes following two noninvasive neurostimulation techniques commonly applied in clinical and research settings.
Collapse
Affiliation(s)
- Kevin T Jones
- Colorado State University, Department of Psychology, Fort Collins, Colorado.,University of California-San Francisco, Department of Neurology, Neuroscape, San Francisco, California
| | - Elizabeth L Johnson
- University of California-Berkeley, Helen Wills Neuroscience Institute, Berkeley, California.,Wayne State University, Institute of Gerontology, Life-Span Cognitive Neuroscience Program, Detroit, Michigan
| | - Zoe S Tauxe
- Colorado State University, Department of Psychology, Fort Collins, Colorado.,University of California-San Diego, Department of Psychology, San Diego, California
| | - Donald C Rojas
- Colorado State University, Department of Psychology, Fort Collins, Colorado
| |
Collapse
|
28
|
Houweling T, Becker R, Hervais-Adelman A. The noise-resilient brain: Resting-state oscillatory activity predicts words-in-noise recognition. BRAIN AND LANGUAGE 2020; 202:104727. [PMID: 31918321 DOI: 10.1016/j.bandl.2019.104727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The role of neuronal oscillations in the processing of speech has recently come to prominence. Since resting-state (RS) brain activity has been shown to predict both task-related brain activation and behavioural performance, we set out to establish whether inter-individual differences in spectrally-resolved RS-MEG power are associated with variations in words-in-noise recognition in a sample of 88 participants made available by the Human Connectome Project. Positive associations with resilience to noise were observed with power in the range 21 and 29 Hz in a number of areas along the left temporal gyrus and temporo-parietal association areas peaking in left posterior superior temporal gyrus (pSTG). Significant associations were also found in the right posterior superior temporal gyrus in the frequency range 30-40 Hz. We propose that individual differences in words-in-noise performance are related to baseline excitability levels of the neural substrates of phonological processing.
Collapse
Affiliation(s)
- Thomas Houweling
- Neurolinguistics, Department of Psychology, University of Zürich, Binzmühlestrasse 14, 8050 Zürich, Switzerland.
| | - Robert Becker
- Neurolinguistics, Department of Psychology, University of Zürich, Binzmühlestrasse 14, 8050 Zürich, Switzerland
| | - Alexis Hervais-Adelman
- Neurolinguistics, Department of Psychology, University of Zürich, Binzmühlestrasse 14, 8050 Zürich, Switzerland
| |
Collapse
|
29
|
Preisig BC, Sjerps MJ, Hervais-Adelman A, Kösem A, Hagoort P, Riecke L. Bilateral Gamma/Delta Transcranial Alternating Current Stimulation Affects Interhemispheric Speech Sound Integration. J Cogn Neurosci 2019; 32:1242-1250. [PMID: 31682569 DOI: 10.1162/jocn_a_01498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Perceiving speech requires the integration of different speech cues, that is, formants. When the speech signal is split so that different cues are presented to the right and left ear (dichotic listening), comprehension requires the integration of binaural information. Based on prior electrophysiological evidence, we hypothesized that the integration of dichotically presented speech cues is enabled by interhemispheric phase synchronization between primary and secondary auditory cortex in the gamma frequency band. We tested this hypothesis by applying transcranial alternating current stimulation (TACS) bilaterally above the superior temporal lobe to induce or disrupt interhemispheric gamma-phase coupling. In contrast to initial predictions, we found that gamma TACS applied in-phase above the two hemispheres (interhemispheric lag 0°) perturbs interhemispheric integration of speech cues, possibly because the applied stimulation perturbs an inherent phase lag between the left and right auditory cortex. We also observed this disruptive effect when applying antiphasic delta TACS (interhemispheric lag 180°). We conclude that interhemispheric phase coupling plays a functional role in interhemispheric speech integration. The direction of this effect may depend on the stimulation frequency.
Collapse
Affiliation(s)
- Basil C Preisig
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,University of Zurich
| | - Matthias J Sjerps
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | | - Anne Kösem
- Lyon Neuroscience Research Center (CRNL), Lyon, France
| | - Peter Hagoort
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | |
Collapse
|