1
|
Hvingelby V, Khalil F, Massey F, Hoyningen A, Xu SS, Candelario-McKeown J, Akram H, Foltynie T, Limousin P, Zrinzo L, Krüger MT. Directional deep brain stimulation electrodes in Parkinson's disease: meta-analysis and systematic review of the literature. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-333947. [PMID: 39304337 DOI: 10.1136/jnnp-2024-333947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/25/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Since their introduction in 2015, directional leads have practically replaced conventional leads for deep brain stimulation (DBS) in Parkinson's disease (PD). Yet, the benefits of directional DBS (dDBS) over omnidirectional DBS (oDBS) remain unclear. This meta-analysis and systematic review compares the literature on dDBS and oDBS for PD. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Database searches included Pubmed, Cochrane (CENTRAL) and EmBase, using relevant keywords such as 'directional', 'segmented', 'brain stimulation' and 'neuromodulation'. The screening was based on the title and abstract. RESULTS 23 papers reporting on 1273 participants (1542 leads) were included. The therapeutic window was 0.70 mA wider when using dDBS (95% CI 0.13 to 1.26 mA, p=0.02), with a lower therapeutic current (0.41 mA, 95% CI 0.27 to 0.54 mA, p=0.01) and a higher side-effect threshold (0.56 mA, 95% CI 0.38 to 0.73 mA, p<0.01). However, there was no relevant difference in mean Unified Parkinson's Disease Rating Scale III change after dDBS (45.8%, 95% CI 30.7% to 60.9%) compared with oDBS (39.0%, 95% CI 36.9% to 41.2%, p=0.39), in the medication-OFF state. Median follow-up time for dDBS and oDBS studies was 6 months and 3 months, respectively (range 3-12 for both). The use of directionality often improves dyskinesia, dysarthria, dysesthesia and pyramidal side effects. Directionality was used in 55% of directional leads at 3-6 months, remaining stable over time (56% at a mean of 14.1 months). CONCLUSIONS These findings suggest that stimulation parameters favour dDBS. However, these do not appear to have a significant impact on motor scores, and the availability of long-term data is limited. dDBS is widely accepted, but clinical data justifying its increased complexity and cost are currently sparse. PROSPERO REGISTRATION NUMBER CRD42023438056.
Collapse
Affiliation(s)
- Victor Hvingelby
- Department of Clinical Medicine, Aarhus Universitet, Aarhus, Denmark
- Aarhus Universitetshospital, Aarhus, Denmark
| | - Fareha Khalil
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Flavia Massey
- University College London Medical School, London, UK
| | - Alexander Hoyningen
- Department of Neurosurgery, Kantonsspital St Gallen, Sankt Gallen, Switzerland
- Department of Basic Neuroscience, University of Geneva, Geneve, Switzerland
| | - San San Xu
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | | | - Harith Akram
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Movement Disorders, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK
| | - Thomas Foltynie
- Movement Disorders, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK
| | - Patricia Limousin
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Marie T Krüger
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Functional Neurosurgery, Albert-Ludwigs-Universitat Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Tinkhauser G, Pollo C, Debove I, Nowacki A, Krack P. Should asleep deep brain stimulation in Parkinson's disease be preferred over the awake approach? Pros. Swiss Med Wkly 2024; 154:3823. [PMID: 39137442 DOI: 10.57187/s.3823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
No abstract available.
Collapse
Affiliation(s)
- Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Vogel D, Nordin T, Feiler S, Wårdell K, Coste J, Lemaire JJ, Hemm S. Probabilistic stimulation mapping from intra-operative thalamic deep brain stimulation data in essential tremor. J Neural Eng 2024; 21:036017. [PMID: 38701768 DOI: 10.1088/1741-2552/ad4742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Deep brain stimulation (DBS) is a therapy for Parkinson's disease (PD) and essential tremor (ET). The mechanism of action of DBS is still incompletely understood. Retrospective group analysis of intra-operative data recorded from ET patients implanted in the ventral intermediate nucleus of the thalamus (Vim) is rare. Intra-operative stimulation tests generate rich data and their use in group analysis has not yet been explored.Objective.To implement, evaluate, and apply a group analysis workflow to generate probabilistic stimulation maps (PSMs) using intra-operative stimulation data from ET patients implanted in Vim.Approach.A group-specific anatomical template was constructed based on the magnetic resonance imaging scans of 6 ET patients and 13 PD patients. Intra-operative test data (total:n= 1821) from the 6 ET patients was analyzed: patient-specific electric field simulations together with tremor assessments obtained by a wrist-based acceleration sensor were transferred to this template. Occurrence and weighted mean maps were generated. Voxels associated with symptomatic response were identified through a linear mixed model approach to form a PSM. Improvements predicted by the PSM were compared to those clinically assessed. Finally, the PSM clusters were compared to those obtained in a multicenter study using data from chronic stimulation effects in ET.Main results.Regions responsible for improvement identified on the PSM were in the posterior sub-thalamic area (PSA) and at the border between the Vim and ventro-oral nucleus of the thalamus (VO). The comparison with literature revealed a center-to-center distance of less than 5 mm and an overlap score (Dice) of 0.4 between the significant clusters. Our workflow and intra-operative test data from 6 ET-Vim patients identified effective stimulation areas in PSA and around Vim and VO, affirming existing medical literature.Significance.This study supports the potential of probabilistic analysis of intra-operative stimulation test data to reveal DBS's action mechanisms and to assist surgical planning.
Collapse
Affiliation(s)
- Dorian Vogel
- Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, Switzerland
| | - Teresa Nordin
- Department of Biomedical Engineering, Linköping University, Campus US, Linköping, Sweden
| | - Stefanie Feiler
- Dynamics and statistics of complex systems, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, Switzerland
| | - Karin Wårdell
- Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, Switzerland
- Department of Biomedical Engineering, Linköping University, Campus US, Linköping, Sweden
| | - Jérôme Coste
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
- Service de Neurochirurgie, Hôpital Gabriel-Montpied, Centre Hospitalier Universitaire de Clermont-Ferrand, 58 rue Montalembert, Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
- Service de Neurochirurgie, Hôpital Gabriel-Montpied, Centre Hospitalier Universitaire de Clermont-Ferrand, 58 rue Montalembert, Clermont-Ferrand, France
| | - Simone Hemm
- Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, Switzerland
- Department of Biomedical Engineering, Linköping University, Campus US, Linköping, Sweden
| |
Collapse
|
4
|
Bočková M, Lamoš M, Chrastina J, Daniel P, Kupcová S, Říha I, Šmahovská L, Baláž M, Rektor I. Coupling between beta band and high frequency oscillations as a clinically useful biomarker for DBS. NPJ Parkinsons Dis 2024; 10:40. [PMID: 38383550 PMCID: PMC10882016 DOI: 10.1038/s41531-024-00656-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Beta hypersynchrony was recently introduced into clinical practice in Parkinson's disease (PD) to identify the best stimulation contacts and for adaptive deep brain stimulation (aDBS) sensing. However, many other oscillopathies accompany the disease, and beta power sensing may not be optimal for all patients. The aim of this work was to study the potential clinical usefulness of beta power phase-amplitude coupling (PAC) with high frequency oscillations (HFOs). Subthalamic nucleus (STN) local field potentials (LFPs) from externalized DBS electrodes were recorded and analyzed in PD patients (n = 19). Beta power and HFOs were evaluated in a resting-state condition; PAC was then studied and compared with the electrode contact positions, structural connectivity, and medication state. Beta-HFO PAC (mainly in the 200-500 Hz range) was observed in all subjects. PAC was detectable more specifically in the motor part of the STN compared to beta power and HFOs. Moreover, the presence of PAC better corresponds to the stimulation setup based on the clinical effect. PAC is also sensitive to the laterality of symptoms and dopaminergic therapy, where the greater PAC cluster reflects the more affected side and medication "off" state. Coupling between beta power and HFOs is known to be a correlate of the PD "off" state. Beta-HFO PAC seems to be more sensitive than beta power itself and could be more helpful in the selection of the best clinical stimulation contact and probably also as a potential future input signal for aDBS.
Collapse
Affiliation(s)
- Martina Bočková
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Chrastina
- Department of Neurosurgery, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Pavel Daniel
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Silvia Kupcová
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivo Říha
- Department of Neurosurgery, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Lucia Šmahovská
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Baláž
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Ivan Rektor
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic.
| |
Collapse
|
5
|
Torres V, Del Giudice K, Roldán P, Rumià J, Muñoz E, Cámara A, Compta Y, Sánchez-Gómez A, Valldeoriola F. Image-guided programming deep brain stimulation improves clinical outcomes in patients with Parkinson's disease. NPJ Parkinsons Dis 2024; 10:29. [PMID: 38280901 PMCID: PMC10821897 DOI: 10.1038/s41531-024-00639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment for patients with Parkinson's disease (PD). However, some patients may not respond optimally to clinical programming adjustments. Advances in DBS technology have led to more complex and time-consuming programming. Image-guided programming (IGP) could optimize and improve programming leading to better clinical outcomes in patients for whom DBS programming is not ideal due to sub-optimal response. We conducted a prospective single-center study including 31 PD patients with subthalamic nucleus (STN) DBS and suboptimal responses refractory to clinical programming. Programming settings were adjusted according to the volumetric reconstruction of the stimulation field using commercial postoperative imaging software. Clinical outcomes were assessed at baseline and at 3-month follow-up after IGP, using motor and quality of life (QoL) scales. Additionally, between these two assessment points, follow-up visits for fine-tuning amplitude intensity and medication were conducted at weeks 2, 4, 6, and 9. After IGP, twenty-six patients (83.9%) experienced motor and QoL improvements, with 25.8% feeling much better and 38.7% feeling moderately better according to the patient global impression scale. Five patients (16.1%) had no clinical or QoL changes after IGP. The MDS-UPDRS III motor scale showed a 21.9% improvement and the DBS-IS global score improved by 41.5%. IGP optimizes STN-DBS therapy for PD patients who are experiencing suboptimal clinical outcomes. These findings support using IGP as a standard tool in clinical practice, which could save programming time and improve patients' QoL.
Collapse
Affiliation(s)
- Viviana Torres
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Kirsys Del Giudice
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Pedro Roldán
- Neurosurgery Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Rumià
- Neurosurgery Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Esteban Muñoz
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Ana Cámara
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
| | - Almudena Sánchez-Gómez
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain.
| | - Francesc Valldeoriola
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Institut de Neurociencies, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
6
|
Maçaneiro MT, Azevedo AC, Poerner BM, da Silva MD, Koerbel A. Directional deep brain stimulation in the management of Parkinson's disease: efficacy and constraints-an analytical appraisal. Neurosurg Rev 2024; 47:43. [PMID: 38216697 DOI: 10.1007/s10143-023-02268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/14/2023] [Accepted: 12/24/2023] [Indexed: 01/14/2024]
Abstract
Deep brain stimulation (DBS) is a widely employed treatment for Parkinson's disease. However, conventional DBS utilizing ring-shaped leads can often result in undesirable side effects by stimulating nearby brain structures, thus limiting its effectiveness. To address this issue, a novel DBS electrode was developed to allow for directional stimulation, avoiding neighboring structures. This literature review aims to analyze the disparities between conventional and directional DBS and discuss the benefits and limitations associated with this innovative electrode design, focusing on the stimulation-induced side effects it can or cannot mitigate. A comprehensive search was conducted in MEDLINE/PubMed, ScienceDirect, and EBSCO databases using the Boolean search criteria: "Deep brain stimulation" AND "Parkinson" AND "Directional." Following the application of inclusion and exclusion criteria, the selected articles were downloaded for full-text reading. Subsequently, the results were organized and analyzed to compose this article. Numerous studies have demonstrated that directional DBS effectively reduces side effects associated with brain stimulation, prevents the stimulation of non-targeted structures, and expands the therapeutic window, among other advantages. However, it has been observed that directional DBS may be more challenging to program and requires higher energy consumption. Furthermore, there is a lack of standardization among different manufacturers of directional DBS electrodes. Various stimulation-induced side effects, including dysarthria, dyskinesia, paresthesias, and symptoms of pyramidal tract activation, have been shown to be mitigated with the use of directional DBS. Moreover, directional electrodes offer a wider therapeutic window and a reduced incidence of undesired effects, requiring the same or lower minimum current for symptom relief compared to conventional DBS. The utilization of directional leads in DBS offers numerous advantages over conventional electrodes without significant drawbacks for patients undergoing directional DBS therapy.
Collapse
Affiliation(s)
| | - Ana Clara Azevedo
- Medical Department at Universidade da Região de Joinville - UNIVILLE, Joinville, Santa Catarina, Brazil
| | - Bruna Maurício Poerner
- Medical Department at Universidade da Região de Joinville - UNIVILLE, Joinville, Santa Catarina, Brazil
| | - Milena Dangui da Silva
- Medical Department at Universidade da Região de Joinville - UNIVILLE, Joinville, Santa Catarina, Brazil
| | - Andrei Koerbel
- Universidade da Região de Joinville - UNIVILLE, Joinville, Santa Catarina, Brazil
| |
Collapse
|
7
|
Brandt GA, Stopic V, van der Linden C, Strelow JN, Petry-Schmelzer JN, Baldermann JC, Visser-Vandewalle V, Fink GR, Barbe MT, Dembek TA. A Retrospective Comparison of Multiple Approaches to Anatomically Informed Contact Selection in Subthalamic Deep Brain Stimulation for Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:575-587. [PMID: 38427498 DOI: 10.3233/jpd-230200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Conventional deep brain stimulation (DBS) programming via trial-and-error warrants improvement to ensure swift achievement of optimal outcomes. The definition of a sweet spot for subthalamic DBS in Parkinson's disease (PD-STN-DBS) may offer such advancement. Objective This investigation examines the association of long-term motor outcomes with contact selection during monopolar review and different strategies for anatomically informed contact selection in a retrospective real-life cohort of PD-STN-DBS. Methods We compared contact selection based on a monopolar review (MPR) to multiple anatomically informed contact selection strategies in a cohort of 28 PD patients with STN-DBS. We employed a commercial software package for contact selection based on visual assessment of individual anatomy following two predefined strategies and two algorithmic approaches with automatic targeting of either the sensorimotor STN or our previously published sweet spot. Similarity indices between chronic stimulation and contact selection strategies were correlated to motor outcomes at 12 months follow-up. Results Lateralized motor outcomes of chronic DBS were correlated to the similarity between chronic stimulation and visual contact selection targeting the dorsal part of the posterior STN (rho = 0.36, p = 0.007). Similar relationships could not be established for MPR or any of the other investigated strategies. Conclusions Our data demonstrates that a visual contact selection following a predefined strategy can be linked to beneficial long-term motor outcomes in PD-STN-DBS. Since similar correlations could not be observed for the other approaches to anatomically informed contact selection, we conclude that clear definitions and prospective validation of any approach to imaging-based DBS-programming is warranted.
Collapse
Affiliation(s)
- Gregor A Brandt
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Vasilija Stopic
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Christina van der Linden
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Joshua N Strelow
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Jan N Petry-Schmelzer
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Michael T Barbe
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Till A Dembek
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
8
|
Hidding U, Lezius S, Schaper M, Buhmann C, Gerloff C, Pötter-Nerger M, Hamel W, Moll CKE, Choe CU. Combined Short-Pulse and Directional Deep Brain Stimulation of the Thalamic Ventral Intermediate Area for Essential Tremor. Neuromodulation 2023; 26:1680-1688. [PMID: 36369082 DOI: 10.1016/j.neurom.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Novel deep brain stimulation (DBS) systems allow directional and short-pulse stimulation to potentially improve symptoms and reduce side effects. The aim of this study was to investigate the effect of short-pulse and directional stimulation, in addition to a combination of both, in the ventral intermediate thalamus (VIM)/posterior subthalamic area (PSA) on tremor and stimulation-induced side effects in patients with essential tremor. MATERIALS AND METHODS We recruited 11 patients with essential tremor and VIM/PSA-DBS. Tremor severity (Fahn-Tolosa-Marin), ataxia (International Cooperative Ataxia Rating Scale), and paresthesia (visual analog scale) were assessed with conventional omnidirectional and directional stimulation with pulse width of 60 μs and 30 μs. RESULTS All stimulation conditions reduced tremor. The best directional stimulation with 60 μs reduced more tremor than did most other stimulation settings. The best directional stimulation, regardless of pulse width, effectively reduced stimulation-induced ataxia compared with the conventional stimulation (ring 60 μs) or worst directional stimulation with 60 μs. All new stimulation modes reduced occurrence of paresthesia, but only the best directional stimulation with 30 μs attenuated paresthesia compared with the conventional stimulation (ring 60 μs) or worst directional stimulation with 60 μs. The best directional stimulation with 30 μs reduced tremor, ataxia, and paresthesia compared with conventional stimulation in most patients. Correlation analyses indicated that more anterior stimulation sites are associated with stronger ataxia reduction with directional 30 μs than with conventional 60 μs stimulation. CONCLUSION Directional and short-pulse stimulation, and a combination of both, revealed beneficial effects on stimulation-induced adverse effects.
Collapse
Affiliation(s)
- Ute Hidding
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Susanne Lezius
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Schaper
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian K E Moll
- Department of Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Nowacki A, Zhang D, Barlatey S, Ai-Schläppi J, Rosner J, Arnold M, Pollo C. Deep Brain Stimulation of the Central Lateral and Ventral Posterior Thalamus for Central Poststroke Pain Syndrome: Preliminary Experience. Neuromodulation 2023; 26:1747-1756. [PMID: 36266180 DOI: 10.1016/j.neurom.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The beneficial effects of thalamic deep brain stimulation (DBS) at various target sites in treating chronic central neuropathic pain (CPSP) remain unclear. This study aimed to evaluate the effectiveness of DBS at a previously untested target site in the central lateral (CL) thalamus, together with classical sensory thalamic stimulation (ventral posterior [VP] complex). MATERIALS AND METHODS We performed a monocentric retrospective study of a consecutive series of six patients with CPSP who underwent combined DBS lead implantation of the CL and VP. Patient-reported outcome measures were recorded before and after surgery using the numeric rating scale (NRS), short-form McGill pain questionnaire (sf-MPQ), EuroQol 5-D quality-of-life questionnaire, and Beck Depression Inventory. DBS leads were reconstructed and projected onto a three-dimensional stereotactic atlas. RESULTS NRS-but not sf-MPQ-rated pain intensity-was significantly reduced throughout the follow-up period of 12 months compared with baseline (p = 0.005, and p = 0.06 respectively, Friedman test). At the last available follow-up (12 to 30 months), three patients described a more than 50% reduction. Two of the three long-term responders were stimulated in the CL (1000 Hz, 90 μs, 3.5-5.0 mA), whereas the third preferred VP complex stimulation (50 Hz, 200 μs, 0.7-1.2 mA). No persistent procedure- or stimulation-associated side effects were noted. CONCLUSIONS These preliminary findings suggest that DBS of the CL might constitute a promising alternative target in cases in which classical VP complex stimulation does not yield satisfactory postoperative pain reduction. The results need to be confirmed in larger, prospective series of patients.
Collapse
Affiliation(s)
- Andreas Nowacki
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland.
| | - David Zhang
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Sabry Barlatey
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Janine Ai-Schläppi
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Jan Rosner
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland; Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Marcel Arnold
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| |
Collapse
|
10
|
Peeters J, Van Bogaert T, Boogers A, Dembek TA, Gransier R, Wouters J, Vandenberghe W, De Vloo P, Nuttin B, Mc Laughlin M. EEG-based biomarkers for optimizing deep brain stimulation contact configuration in Parkinson's disease. Front Neurosci 2023; 17:1275728. [PMID: 37869517 PMCID: PMC10585033 DOI: 10.3389/fnins.2023.1275728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Objective Subthalamic deep brain stimulation (STN-DBS) is a neurosurgical therapy to treat Parkinson's disease (PD). Optimal therapeutic outcomes are not achieved in all patients due to increased DBS technological complexity; programming time constraints; and delayed clinical response of some symptoms. To streamline the programming process, biomarkers could be used to accurately predict the most effective stimulation configuration. Therefore, we investigated if DBS-evoked potentials (EPs) combined with imaging to perform prediction analyses could predict the best contact configuration. Methods In 10 patients, EPs were recorded in response to stimulation at 10 Hz for 50 s on each DBS-contact. In two patients, we recorded from both hemispheres, resulting in recordings from a total of 12 hemispheres. A monopolar review was performed by stimulating on each contact and measuring the therapeutic window. CT and MRI data were collected. Prediction models were created to assess how well the EPs and imaging could predict the best contact configuration. Results EPs at 3 ms and at 10 ms were recorded. The prediction models showed that EPs can be combined with imaging data to predict the best contact configuration and hence, significantly outperformed random contact selection during a monopolar review. Conclusion EPs can predict the best contact configuration. Ultimately, these prediction tools could be implemented into daily practice to ease the DBS programming of PD patients.
Collapse
Affiliation(s)
- Jana Peeters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Tine Van Bogaert
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Alexandra Boogers
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Till Anselm Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Robin Gransier
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Philippe De Vloo
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart Nuttin
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Nordin T, Blomstedt P, Hemm S, Wårdell K. How Sample Size Impacts Probabilistic Stimulation Maps in Deep Brain Stimulation. Brain Sci 2023; 13:brainsci13050756. [PMID: 37239228 DOI: 10.3390/brainsci13050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Probabilistic stimulation maps of deep brain stimulation (DBS) effect based on voxel-wise statistics (p-maps) have increased in literature over the last decade. These p-maps require correction for Type-1 errors due to multiple testing based on the same data. Some analyses do not reach overall significance, and this study aims to evaluate the impact of sample size on p-map computation. A dataset of 61 essential tremor patients treated with DBS was used for the investigation. Each patient contributed with four stimulation settings, one for each contact. From the dataset, 5 to 61 patients were randomly sampled with replacement for computation of p-maps and extraction of high- and low-improvement volumes. For each sample size, the process was iterated 20 times with new samples generating in total 1140 maps. The overall p-value corrected for multiple comparisons, significance volumes, and dice coefficients (DC) of the volumes within each sample size were evaluated. With less than 30 patients (120 simulations) in the sample, the variation in overall significance was larger and the median significance volumes increased with sample size. Above 120 simulations, the trends stabilize but present some variations in cluster location, with a highest median DC of 0.73 for n = 57. The variation in location was mainly related to the region between the high- and low-improvement clusters. In conclusion, p-maps created with small sample sizes should be evaluated with caution, and above 120 simulations in single-center studies are probably required for stable results.
Collapse
Affiliation(s)
- Teresa Nordin
- Department of Biomedical Engineering, Linköping University, 58185 Linköping, Sweden
| | - Patric Blomstedt
- Department of Clinical Science, Neuroscience, Umeå University, 90185 Umeå, Sweden
| | - Simone Hemm
- Department of Biomedical Engineering, Linköping University, 58185 Linköping, Sweden
- Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
12
|
Averna A, Debove I, Nowacki A, Peterman K, Duchet B, Sousa M, Bernasconi E, Alva L, Lachenmayer ML, Schuepbach M, Pollo C, Krack P, Nguyen TAK, Tinkhauser G. Spectral Topography of the Subthalamic Nucleus to Inform Next-Generation Deep Brain Stimulation. Mov Disord 2023; 38:818-830. [PMID: 36987385 PMCID: PMC7615852 DOI: 10.1002/mds.29381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing-based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN). OBJECTIVES The aims were to systematically investigate the spectral topography, including a wide range of sub-bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS. METHODS STN-LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub-bands (delta, theta, alpha, low-beta, high-beta, low-gamma, high-gamma, and fast-gamma (FG) as well as low- and fast high-frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS. RESULTS The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior-superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub-bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher-frequency hot spots were predictive for the best rigidity response to DBS. CONCLUSIONS The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next-generation sensing-based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alberto Averna
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Katrin Peterman
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Benoit Duchet
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Mário Sousa
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Elena Bernasconi
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Laura Alva
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Martin L. Lachenmayer
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | | | - Claudio Pollo
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Thuy-Anh K. Nguyen
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Debove I, Petermann K, Nowacki A, Nguyen TK, Tinkhauser G, Michelis JP, Muellner J, Amstutz D, Bargiotas P, Fichtner J, Schlaeppi JA, Krack P, Schuepbach M, Pollo C, Lachenmayer ML. Deep Brain Stimulation: When to Test Directional? Mov Disord Clin Pract 2023; 10:434-439. [PMID: 36949800 PMCID: PMC10026308 DOI: 10.1002/mdc3.13667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/09/2022] [Accepted: 01/08/2023] [Indexed: 01/26/2023] Open
Abstract
Background Directional deep brain stimulation (DBS) allows for steering of the stimulation field, but extensive and time-consuming testing of all segmented contacts is necessary to identify the possible benefit of steering. It is therefore important to determine under which circumstances directional current steering is advantageous. Methods Fifty two Parkinson's disease patients implanted in the STN with a directional DBS system underwent a standardized monopolar programming session 5 to 9 months after implantation. Individual contacts were tested for a potential advantage of directional stimulation. Results were used to build a prediction model for the selection of ring levels that would benefit from directional stimulation. Results On average, there was no significant difference in therapeutic window between ring-level contact and best directional contact. However, according to our standardized protocol, 35% of the contacts and 66% of patients had a larger therapeutic window under directional stimulation compared to ring-mode. The segmented contacts warranting directional current steering could be predicted with a sensitivity of 79% and a specificity of 57%. Conclusion To reduce time required for DBS programming, we recommend additional directional contact testing initially only on ring-level contacts with a therapeutic window of less than 2.0 mA.
Collapse
Affiliation(s)
- Ines Debove
- Department of Neurology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Katrin Petermann
- Department of Neurology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Thuy‐Anh Khoa Nguyen
- Department of Neurosurgery, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
- ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland
| | - Gerd Tinkhauser
- Department of Neurology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Joan Philipp Michelis
- Department of Neurology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Julia Muellner
- Department of Neurology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Deborah Amstutz
- Department of Neurology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Panagiotis Bargiotas
- Department of Neurology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
- Department of Neurology, Medical SchoolUniversity of CyprusNicosiaCyprus
| | - Jens Fichtner
- Department of Neurosurgery, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
- Cantonal Medical Service, Department of Health of the Canton of BernBernSwitzerland
| | - Janine Ai Schlaeppi
- Department of Neurosurgery, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Paul Krack
- Department of Neurology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Michael Schuepbach
- Department of Neurology, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University HospitalUniversity of BernBernSwitzerland
| | | |
Collapse
|
14
|
Kremer NI, van Laar T, Lange SF, Statius Muller S, la Bastide-van Gemert S, Oterdoom DM, Drost G, van Dijk JMC. STN-DBS electrode placement accuracy and motor improvement in Parkinson's disease: systematic review and individual patient meta-analysis. J Neurol Neurosurg Psychiatry 2023; 94:236-244. [PMID: 36207065 DOI: 10.1136/jnnp-2022-329192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective neurosurgical treatment for Parkinson's disease. Surgical accuracy is a critical determinant to achieve an adequate DBS effect on motor performance. A two-millimetre surgical accuracy is commonly accepted, but scientific evidence is lacking. A systematic review and meta-analysis of study-level and individual patient data (IPD) was performed by a comprehensive search in MEDLINE, EMBASE and Cochrane Library. Primary outcome measures were (1) radial error between the implanted electrode and target; (2) DBS motor improvement on the Unified Parkinson's Disease Rating Scale part III (motor examination). On a study level, meta-regression analysis was performed. Also, publication bias was assessed. For IPD meta-analysis, a linear mixed effects model was used. Forty studies (1391 patients) were included, reporting radial errors of 0.45-1.86 mm. Errors within this range did not significantly influence the DBS effect on motor improvement. Additional IPD analysis (206 patients) revealed that a mean radial error of 1.13±0.75 mm did not significantly change the extent of DBS motor improvement. Our meta-analysis showed a huge publication bias on accuracy data in DBS. Therefore, the current literature does not provide an unequivocal upper threshold for acceptable accuracy of STN-DBS surgery. Based on the current literature, DBS-electrodes placed within a 2 mm range of the intended target do not have to be repositioned to enhance motor improvement after STN-DBS for Parkinson's disease. However, an indisputable upper cut-off value for surgical accuracy remains to be established. PROSPERO registration number is CRD42018089539.
Collapse
Affiliation(s)
- Naomi I Kremer
- Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Teus van Laar
- Neurology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Stèfan F Lange
- Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sijmen Statius Muller
- Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Dl Marinus Oterdoom
- Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gea Drost
- Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Neurology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Probabilistic Subthalamic Nucleus Stimulation Sweet Spot Integration Into a Commercial Deep Brain Stimulation Programming Software Can Predict Effective Stimulation Parameters. Neuromodulation 2023; 26:348-355. [PMID: 35088739 DOI: 10.1016/j.neurom.2021.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Subthalamic nucleus (STN) deep brain stimulation (DBS) programming in patients with Parkinson disease (PD) may be challenging, especially when using segmented leads. In this study, we integrated a previously validated probabilistic STN sweet spot into a commercially available software to evaluate its predictive value for clinically effective DBS programming. MATERIALS AND METHODS A total of 14 patients with PD undergoing bilateral STN DBS with segmented leads were included. A nonlinear co-registration of a previously defined probabilistic sweet spot onto the manually segmented STN was performed together with lead reconstruction and tractography of the corticospinal tract (CST) in each patient. Contacts were ranked (level and direction), and corresponding effect and side-effect thresholds were predicted based on the overlap of the volume of activated tissue (VTA) with the sweet spot and CST. Image-based findings were correlated with postoperative clinical testing results during monopolar contact review and chronic stimulation parameter settings used after 12 months. RESULTS Image-based contact prediction showed high interrater reliability (Cohen kappa 0.851-0.91). Image-based and clinical ranking of the most efficient ring level and direction of stimulation were matched in 72% (95% CI 57.0-83.3) and 65% (95% CI 44.9-81.2), respectively, across the whole cohort. The mean difference between the predicted and clinically observed effect thresholds was 0.79 ± 0.69 mA (p = 0.72). The median difference between the predicted and clinically observed side-effect thresholds was -0.5 mA (p < 0.001, Wilcoxon paired signed rank test). CONCLUSIONS Integration of a probabilistic STN functional sweet spot into a surgical programming software shows a promising capability to predict the best level and directional contact(s) as well as stimulation settings in DBS for PD and could be used to optimize programming with segmented lead technology. This integrated image-based programming approach still needs to be evaluated on a bigger data set and in a future prospective multicenter cohort.
Collapse
|
16
|
Peeters J, Boogers A, Van Bogaert T, Dembek TA, Gransier R, Wouters J, Vandenberghe W, De Vloo P, Nuttin B, Mc Laughlin M. Towards biomarker-based optimization of deep brain stimulation in Parkinson's disease patients. Front Neurosci 2023; 16:1091781. [PMID: 36711127 PMCID: PMC9875598 DOI: 10.3389/fnins.2022.1091781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Background Subthalamic deep brain stimulation (DBS) is an established therapy to treat Parkinson's disease (PD). To maximize therapeutic outcome, optimal DBS settings must be carefully selected for each patient. Unfortunately, this is not always achieved because of: (1) increased technological complexity of DBS devices, (2) time restraints, or lack of expertise, and (3) delayed therapeutic response of some symptoms. Biomarkers to accurately predict the most effective stimulation settings for each patient could streamline this process and improve DBS outcomes. Objective To investigate the use of evoked potentials (EPs) to predict clinical outcomes in PD patients with DBS. Methods In ten patients (12 hemispheres), a monopolar review was performed by systematically stimulating on each DBS contact and measuring the therapeutic window. Standard imaging data were collected. EEG-based EPs were then recorded in response to stimulation at 10 Hz for 50 s on each DBS-contact. Linear mixed models were used to assess how well both EPs and image-derived information predicted the clinical data. Results Evoked potential peaks at 3 ms (P3) and at 10 ms (P10) were observed in nine and eleven hemispheres, respectively. Clinical data were well predicted using either P3 or P10. A separate model showed that the image-derived information also predicted clinical data with similar accuracy. Combining both EPs and image-derived information in one model yielded the highest predictive value. Conclusion Evoked potentials can accurately predict clinical DBS responses. Combining EPs with imaging data further improves this prediction. Future refinement of this approach may streamline DBS programming, thereby improving therapeutic outcomes. Clinical trial registration ClinicalTrials.gov, identifier NCT04658641.
Collapse
Affiliation(s)
- Jana Peeters
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Alexandra Boogers
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Tine Van Bogaert
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Robin Gransier
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium,Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Philippe De Vloo
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium,Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart Nuttin
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium,Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium,*Correspondence: Myles Mc Laughlin,
| |
Collapse
|
17
|
Nordenström S, Petermann K, Debove I, Nowacki A, Krack P, Pollo C, Nguyen TAK. Programming of subthalamic nucleus deep brain stimulation for Parkinson's disease with sweet spot-guided parameter suggestions. Front Hum Neurosci 2022; 16:925283. [PMID: 36393984 PMCID: PMC9663652 DOI: 10.3389/fnhum.2022.925283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/30/2022] [Indexed: 10/24/2023] Open
Abstract
Deep Brain Stimulation (DBS) is an effective treatment for advanced Parkinson's disease. However, identifying stimulation parameters, such as contact and current amplitudes, is time-consuming based on trial and error. Directional leads add more stimulation options and render this process more challenging with a higher workload for neurologists and more discomfort for patients. In this study, a sweet spot-guided algorithm was developed that automatically suggested stimulation parameters. These suggestions were retrospectively compared to clinical monopolar reviews. A cohort of 24 Parkinson's disease patients underwent bilateral DBS implantation in the subthalamic nucleus at our center. First, the DBS' leads were reconstructed with the open-source toolbox Lead-DBS. Second, a sweet spot for rigidity reduction was set as the desired stimulation target for programming. This sweet spot and estimations of the volume of tissue activated were used to suggest (i) the best lead level, (ii) the best contact, and (iii) the effect thresholds for full therapeutic effect for each contact. To assess these sweet spot-guided suggestions, the clinical monopolar reviews were considered as ground truth. In addition, the sweet spot-guided suggestions for best lead level and best contact were compared against reconstruction-guided suggestions, which considered the lead location with respect to the subthalamic nucleus. Finally, a graphical user interface was developed as an add-on to Lead-DBS and is publicly available. With the interface, suggestions for all contacts of a lead can be generated in a few seconds. The accuracy for suggesting the best out of four lead levels was 56%. These sweet spot-guided suggestions were not significantly better than reconstruction-guided suggestions (p = 0.3). The accuracy for suggesting the best out of eight contacts was 41%. These sweet spot-guided suggestions were significantly better than reconstruction-guided suggestions (p < 0.001). The sweet spot-guided suggestions of each contact's effect threshold had a mean error of 1.2 mA. On an individual lead level, the suggestions can vary more with mean errors ranging from 0.3 to 4.8 mA. Further analysis is warranted to improve the sweet spot-guided suggestions and to account for more symptoms and stimulation-induced side effects.
Collapse
Affiliation(s)
- Simon Nordenström
- Department of Neurosurgery, University Hospital Bern, Bern, Switzerland
| | - Katrin Petermann
- Department of Neurology, University Hospital Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, University Hospital Bern, Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, University Hospital Bern, Bern, Switzerland
| | - Paul Krack
- Department of Neurology, University Hospital Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, University Hospital Bern, Bern, Switzerland
| | - T. A. Khoa Nguyen
- Department of Neurosurgery, University Hospital Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland
| |
Collapse
|
18
|
Nordin T, Vogel D, Österlund E, Johansson J, Blomstedt P, Fytagoridis A, Hemm S, Wårdell K. Probabilistic maps for deep brain stimulation - Impact of methodological differences. Brain Stimul 2022; 15:1139-1152. [PMID: 35987327 DOI: 10.1016/j.brs.2022.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Group analysis of patients with deep brain stimulation (DBS) has the potential to help understand and optimize the treatment of patients with movement disorders. Probabilistic stimulation maps (PSM) are commonly used to analyze the correlation between tissue stimulation and symptomatic effect but are applied with different methodological variations. OBJECTIVE To compute a group-specific MRI template and PSMs for investigating the impact of PSM model parameters. METHODS Improvement and occurrence of dizziness in 68 essential tremor patients implanted in caudal zona incerta were analyzed. The input data includes the best parameters for each electrode contact (screening), and the clinically used settings. Patient-specific electric field simulations (n = 488) were computed for all DBS settings. The electric fields were transformed to a group-specific MRI template for analysis and visualization. The different comparisons were based on PSMs representing occurrence (N-map), mean improvement (M-map), weighted mean improvement (wM-map), and voxel-wise t-statistics (p-map). These maps were used to investigate the impact from input data (clinical/screening settings), clustering methods, sampling resolution, and weighting function. RESULTS Screening or clinical settings showed the largest impacts on the PSMs. The average differences of wM-maps were 12.4 and 18.2% points for the left and right sides respectively. Extracting clusters based on wM-map or p-map showed notable variation in volumes, while positioning was similar. The impact on the PSMs was small from weighting functions, except for a clear shift in the positioning of the wM-map clusters. CONCLUSION The distribution of the input data and the clustering method are most important to consider when creating PSMs for studying the relationship between anatomy and DBS outcome.
Collapse
Affiliation(s)
- Teresa Nordin
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden.
| | - Dorian Vogel
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Erik Österlund
- Department of Clinical Neuroscience, Neurosurgery, Karolinska Institute, Stockholm, Sweden
| | - Johannes Johansson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Patric Blomstedt
- Department of Clinical Science, Neuroscience, Umeå University, Umeå, Sweden
| | - Anders Fytagoridis
- Department of Clinical Neuroscience, Neurosurgery, Karolinska Institute, Stockholm, Sweden
| | - Simone Hemm
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Institute for Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Combining Multimodal Biomarkers to Guide Deep Brain Stimulation Programming in Parkinson Disease. Neuromodulation 2022; 26:320-332. [PMID: 35219571 PMCID: PMC7614142 DOI: 10.1016/j.neurom.2022.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/24/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) programming of multicontact DBS leads relies on a very time-consuming manual screening procedure, and strategies to speed up this process are needed. Beta activity in subthalamic nucleus (STN) local field potentials (LFP) has been suggested as a promising marker to index optimal stimulation contacts in patients with Parkinson disease. OBJECTIVE In this study, we investigate the advantage of algorithmic selection and combination of multiple resting and movement state features from STN LFPs and imaging markers to predict three relevant clinical DBS parameters (clinical efficacy, therapeutic window, side-effect threshold). MATERIALS AND METHODS STN LFPs were recorded at rest and during voluntary movements from multicontact DBS leads in 27 hemispheres. Resting- and movement-state features from multiple frequency bands (alpha, low beta, high beta, gamma, fast gamma, high frequency oscillations [HFO]) were used to predict the clinical outcome parameters. Subanalyses included an anatomical stimulation sweet spot as an additional feature. RESULTS Both resting- and movement-state features contributed to the prediction, with resting (fast) gamma activity, resting/movement-modulated beta activity, and movement-modulated HFO being most predictive. With the proposed algorithm, the best stimulation contact for the three clinical outcome parameters can be identified with a probability of almost 90% after considering half of the DBS lead contacts, and it outperforms the use of beta activity as single marker. The combination of electrophysiological and imaging markers can further improve the prediction. CONCLUSION LFP-guided DBS programming based on algorithmic selection and combination of multiple electrophysiological and imaging markers can be an efficient approach to improve the clinical routine and outcome of DBS patients.
Collapse
|
20
|
Garza R, Amil AS, Nowacki A, Pollo C, Khoa Nguyen TA. Patient-Specific Anisotropic Volume of Tissue Activated with the Lead-DBS Toolbox. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6285-6288. [PMID: 34892550 DOI: 10.1109/embc46164.2021.9629810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deep brain stimulation is an effective neurosurgical intervention for movement disorders such as Parkinson's disease. Despite its success, the underlying mechanisms are still debated. One tool to better understand them is the Volume of Tissue Activated (VTA), that estimates the region activated by electrical stimulation. Different estimation approaches exist, these typically assume isotropic tissue properties and modelling of anisotropy is often lacking.The present work was aimed at developing and testing a method for patient-specific VTA estimation that incorporated an anisotropic conduction model. Our method was implemented within the open-source toolbox Lead-DBS and is accessible to the public.The present method was further tested with two patient cases and compared to a standard Lead-DBS pipeline for VTA estimation. This showed encouraging similarities in one test scenario and expected differences in another test scenario. Further validation with a wider cohort is warranted.
Collapse
|
21
|
DiODe v2: Unambiguous and Fully-Automated Detection of Directional DBS Lead Orientation. Brain Sci 2021; 11:brainsci11111450. [PMID: 34827449 PMCID: PMC8615850 DOI: 10.3390/brainsci11111450] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Directional deep brain stimulation (DBS) leads are now widely used, but the orientation of directional leads needs to be taken into account when relating DBS to neuroanatomy. Methods that can reliably and unambiguously determine the orientation of directional DBS leads are needed. In this study, we provide an enhanced algorithm that determines the orientation of directional DBS leads from postoperative CT scans. To resolve the ambiguity of symmetric CT artifacts, which in the past, limited the orientation detection to two possible solutions, we retrospectively evaluated four different methods in 150 Cartesia™ directional leads, for which the true solution was known from additional X-ray images. The method based on shifts of the center of mass (COM) of the directional marker compared to its expected geometric center correctly resolved the ambiguity in 100% of cases. In conclusion, the DiODe v2 algorithm provides an open-source, fully automated solution for determining the orientation of directional DBS leads.
Collapse
|
22
|
Masuda H, Shirozu H, Ito Y, Fukuda M, Fujii Y. Surgical Strategy for Directional Deep Brain Stimulation. Neurol Med Chir (Tokyo) 2021; 62:1-12. [PMID: 34719582 PMCID: PMC8754682 DOI: 10.2176/nmc.ra.2021-0214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deep brain stimulation (DBS) is a well-established treatment for drug-resistant involuntary movements. However, the conventional quadripole cylindrical lead creates electrical fields in all directions, and the resulting spread to adjacent eloquent structures may induce unintended effects. Novel directional leads have therefore been designed to allow directional stimulation (DS). Directional leads have the advantage of widening the therapeutic window (TW), compensating for slight misplacement of the lead and requiring less electrical power to provide the same effect as a cylindrical lead. Conversely, the increase in the number of contacts from four to eight and the addition of directional elements has made stimulation programming more complex. For these reasons, new treatment strategies are required to allow effective directional DBS. During lead implantation, the directional segment should be placed in a "sweet spot," and the orientation of the directional segment is important for programming. Trial-and-error testing of a large number of contacts is unnecessary, and efficient and systematic execution of the programmed procedure is desirable. Recent improvements in imaging technologies have enabled image-guided programming. In the future, optimal stimulations are expected to be programmed by directional recording of local field potentials.
Collapse
Affiliation(s)
- Hiroshi Masuda
- Division of Functional Neurosurgery, Nishiniigata National Hospital
| | - Hiroshi Shirozu
- Division of Functional Neurosurgery, Nishiniigata National Hospital
| | - Yosuke Ito
- Division of Functional Neurosurgery, Nishiniigata National Hospital
| | - Masafumi Fukuda
- Division of Functional Neurosurgery, Nishiniigata National Hospital
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University
| |
Collapse
|
23
|
Patel B, Chiu S, Wong JK, Patterson A, Deeb W, Burns M, Zeilman P, Wagle-Shukla A, Almeida L, Okun MS, Ramirez-Zamora A. Deep brain stimulation programming strategies: segmented leads, independent current sources, and future technology. Expert Rev Med Devices 2021; 18:875-891. [PMID: 34329566 DOI: 10.1080/17434440.2021.1962286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Advances in neuromodulation and deep brain stimulation (DBS) technologies have facilitated opportunities for improved clinical benefit and side effect management. However, new technologies have added complexity to clinic-based DBS programming.Areas covered: In this article, we review basic basal ganglia physiology, proposed mechanisms of action and technical aspects of DBS. We discuss novel DBS technologies for movement disorders including the role of advanced imaging software, lead design, IPG design, novel programming techniques including directional stimulation and coordinated reset neuromodulation. Additional topics include the use of potential biomarkers, such as local field potentials, electrocorticography, and adaptive stimulation. We will also discuss future directions including optogenetically inspired DBS.Expert opinion: The introduction of DBS for the management of movement disorders has expanded treatment options. In parallel with our improved understanding of brain physiology and neuroanatomy, new technologies have emerged to address challenges associated with neuromodulation, including variable effectiveness, side-effects, and programming complexity. Advanced functional neuroanatomy, improved imaging, real-time neurophysiology, improved electrode designs, and novel programming techniques have collectively been driving improvements in DBS outcomes.
Collapse
Affiliation(s)
- Bhavana Patel
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Shannon Chiu
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Joshua K Wong
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Addie Patterson
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Wissam Deeb
- Department of Neurology, University of Massachusetts College of Medicine, Worcester, MA, USA
| | - Matthew Burns
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Pamela Zeilman
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Aparna Wagle-Shukla
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Leonardo Almeida
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| |
Collapse
|
24
|
Sobesky L, Goede L, Odekerken VJJ, Wang Q, Li N, Neudorfer C, Rajamani N, Al-Fatly B, Reich M, Volkmann J, de Bie RMA, Kühn AA, Horn A. Subthalamic and pallidal deep brain stimulation: are we modulating the same network? Brain 2021; 145:251-262. [PMID: 34453827 DOI: 10.1093/brain/awab258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/05/2021] [Accepted: 06/21/2021] [Indexed: 11/14/2022] Open
Abstract
The subthalamic nucleus and internal pallidum are main target sites for deep brain stimulation in Parkinson's disease. Multiple trials that investigated subthalamic versus pallidal stimulation were unable to settle on a definitive optimal target between the two. One reason could be that the effect is mediated via a common functional network. To test this hypothesis, we calculated connectivity profiles seeding from deep brain stimulation electrodes in 94 patients that underwent subthalamic and 28 patients with pallidal treatment based on a normative connectome atlas calculated from 1,000 healthy subjects. In each cohort, we calculated connectivity profiles that were associated with optimal clinical improvements. The two maps showed striking similarity and were able to cross-predict outcomes in the respective other cohort (R = 0.37 at p < 0.001; R = 0.34 at p = 0.032). Next, we calculated an agreement map which retained regions common to both target sites. Crucially, this map was able to explain an additional amount of variance in clinical improvements of either cohort when compared to the maps calculated on the two cohorts alone. Finally, we tested profiles and predictive utility of connectivity maps calculated from different motor symptom subscores with a specific focus on bradykinesia and rigidity. While our study is based on retrospective data and indirect connectivity metrics, it may deliver empirical data to support the hypothesis of a largely overlapping network associated with effective deep brain stimulation in Parkinson's disease irrespective of the specific target.
Collapse
Affiliation(s)
- Leon Sobesky
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Lukas Goede
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Vincent J J Odekerken
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Qiang Wang
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Clemens Neudorfer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Bassam Al-Fatly
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Martin Reich
- Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Clinic of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Rob M A de Bie
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| |
Collapse
|
25
|
Waldthaler J, Bopp M, Kühn N, Bacara B, Keuler M, Gjorgjevski M, Carl B, Timmermann L, Nimsky C, Pedrosa DJ. Imaging-based programming of subthalamic nucleus deep brain stimulation in Parkinson's disease. Brain Stimul 2021; 14:1109-1117. [PMID: 34352356 DOI: 10.1016/j.brs.2021.07.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The need for imaging-guided optimization of Deep Brain Stimulation (DBS) parameters is increasing with recent developments of sophisticated lead designs offering highly individualized, but time-consuming and complex programming. OBJECTIVE The objective of this study was to compare changes in motor symptoms of Parkinson's Disease (PD) and the corresponding volume of the electrostatic field (VEsF) achieved by DBS programming using GUIDE XT™, a commercially available software for visualization of DBS leads within the patient-specific anatomy from fusions of preoperative magnetic resonance imaging (MRI) and postoperative computed tomography (CT) scans, versus standard-of-care clinical programming. METHODS Clinical evaluation was performed to identify the optimal set of parameters based on clinical effects in 29 patients with PD and bilateral directional leads for Subthalamic Nucleus (STN) DBS. A second DBS program was generated in GUIDE XT™ based on a VEsF optimally located within the dorsolateral STN. Reduction of motor symptoms (Movement Disorders Society Unified Parkinson's Disease Rating Scale, MDS-UPDRS) and the overlap of the corresponding VEsF of both programs were compared. RESULTS Clinical and imaging-guided programming resulted in a significant reduction in the MDS-UPDRS scores compared to off-state. Motor symptom control with GUIDE XT™-derived DBS program was non-inferior to standard clinical programming. The overlap of the two VEsF did not correlate with the difference in motor symptom reduction by the programs. CONCLUSIONS Imaging-guided programming of directional DBS leads using GUIDE XT™ is possible without computational background and leads to non-inferior motor symptom control compared with clinical programming. DBS programs based on patient-specific imaging data may thus serve as starting point for clinical testing and may promote more efficient DBS programming.
Collapse
Affiliation(s)
- Josefine Waldthaler
- Department of Neurology, University of Marburg, Germany; CMBB - Center for Mind, Brain and Behavior, University of Marburg, Germany.
| | - Miriam Bopp
- CMBB - Center for Mind, Brain and Behavior, University of Marburg, Germany; Department of Neurosurgery, University of Marburg, Germany
| | - Nele Kühn
- Department of Neurology, University of Marburg, Germany
| | | | - Merle Keuler
- Department of Neurology, University of Marburg, Germany
| | | | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Germany; Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Lars Timmermann
- Department of Neurology, University of Marburg, Germany; CMBB - Center for Mind, Brain and Behavior, University of Marburg, Germany
| | - Christopher Nimsky
- CMBB - Center for Mind, Brain and Behavior, University of Marburg, Germany; Department of Neurosurgery, University of Marburg, Germany
| | - David J Pedrosa
- Department of Neurology, University of Marburg, Germany; CMBB - Center for Mind, Brain and Behavior, University of Marburg, Germany
| |
Collapse
|
26
|
Krüger MT, Avecillas-Chasin JM, Heran MKS, Naseri Y, Sandhu MK, Polyhronopoulos NE, Sarai N, Honey CR. Directional Deep Brain Stimulation Can Target the Thalamic "Sweet Spot" for Improving Neuropathic Dental Pain. Oper Neurosurg (Hagerstown) 2021; 21:81-86. [PMID: 33956987 DOI: 10.1093/ons/opab136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/12/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Neuropathic dental pain (NDP) is a chronic pain condition that is notoriously difficult to treat. To date, there are no deep brain stimulation (DBS) studies on this specific pain condition and no optimal target or "sweet spot" has ever been defined. OBJECTIVE To determine the optimal thalamic target for improving this condition by utilizing the steering abilities of a directional DBS electrode (Vercise CartesiaTM Model DB-2202-45, Boston Scientific). METHODS A literature search and review of our database identified 3 potential thalamic targets. A directional lead was implanted in a patient with NDP and its current steering used to test the effects in each nucleus. The patient reported her pain after 2 wk of stimulation in a prospective randomized blinded trial of one. Quality of life measurements were performed before and after 3 mo on their best setting. RESULTS We identified 3 potential nuclei: the centromedian (CM), ventral posterior medial (VPM), and anterior pulvinar. The best results were during VPM stimulation (>90% reduction in pain) and CM stimulation (50% reduction). Following 3 mo of VPM-DBS in combination of lateral CM stimulation, their pain disability index dropped (from 25 to 0) and short form 36 improved (from 67.5 to 90). CONCLUSION VPM stimulation in combination with CM stimulation is a promising target for NDP. DBS electrode directionality can be used to test multiple targets and select a patient specific "sweet spot" for NDP treatment.
Collapse
Affiliation(s)
- Marie T Krüger
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Division of Neurosurgery, University of British Columbia, Vancouver, Canada.,Department of Stereotactic and Functional Neurosurgery, Freiburg Medical Center, Freiburg, Germany
| | - Josue M Avecillas-Chasin
- Division of Neurosurgery, University of British Columbia, Vancouver, Canada.,Department of Neurosurgery, Mount Sinai Hospital, New York, New York, USA
| | - Manraj K S Heran
- Division of Neuroradiology, University of British Columbia, Vancouver, Canada
| | - Yashar Naseri
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Department of Stereotactic and Functional Neurosurgery, Freiburg Medical Center, Freiburg, Germany
| | - Mini K Sandhu
- Division of Neurosurgery, University of British Columbia, Vancouver, Canada
| | | | - Natasha Sarai
- Division of Neurosurgery, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
27
|
Wenzel GR, Roediger J, Brücke C, Marcelino ALDA, Gülke E, Pötter-Nerger M, Scholtes H, Wynants K, Juárez Paz LM, Kühn AA. CLOVER-DBS: Algorithm-Guided Deep Brain Stimulation-Programming Based on External Sensor Feedback Evaluated in a Prospective, Randomized, Crossover, Double-Blind, Two-Center Study. JOURNAL OF PARKINSONS DISEASE 2021; 11:1887-1899. [PMID: 34151855 DOI: 10.3233/jpd-202480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent technological advances in deep brain stimulation (DBS) (e.g., directional leads, multiple independent current sources) lead to increasing DBS-optimization burden. Techniques to streamline and facilitate programming could leverage these innovations. OBJECTIVE We evaluated clinical effectiveness of algorithm-guided DBS-programming based on wearable-sensor-feedback compared to standard-of-care DBS-settings in a prospective, randomized, crossover, double-blind study in two German DBS centers. METHODS For 23 Parkinson's disease patients with clinically effective DBS, new algorithm-guided DBS-settings were determined and compared to previously established standard-of-care DBS-settings using UPDRS-III and motion-sensor-assessment. Clinical and imaging data with lead-localizations were analyzed to evaluate characteristics of algorithm-derived programming compared to standard-of-care. Six different versions of the algorithm were evaluated during the study and 10 subjects programmed with uniform algorithm-version were analyzed as a subgroup. RESULTS Algorithm-guided and standard-of-care DBS-settings effectively reduced motor symptoms compared to off-stimulation-state. UPDRS-III scores were reduced significantly more with standard-of-care settings as compared to algorithm-guided programming with heterogenous algorithm versions in the entire cohort. A subgroup with the latest algorithm version showed no significant differences in UPDRS-III achieved by the two programming-methods. Comparing active contacts in standard-of-care and algorithm-guided DBS-settings, contacts in the latter had larger location variability and were farther away from a literature-based optimal stimulation target. CONCLUSION Algorithm-guided programming may be a reasonable approach to replace monopolar review, enable less trained health-professionals to achieve satisfactory DBS-programming results, or potentially reduce time needed for programming. Larger studies and further improvements of algorithm-guided programming are needed to confirm these results.
Collapse
Affiliation(s)
- Gregor R Wenzel
- Department of Neurology, Movement disorders & Neuromodulation section, Charité -University Medicine Berlin, Germany
| | - Jan Roediger
- Department of Neurology, Movement disorders & Neuromodulation section, Charité -University Medicine Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité -University Medicine Berlin, Germany
| | - Christof Brücke
- Department of Neurology, Movement disorders & Neuromodulation section, Charité -University Medicine Berlin, Germany
| | - Ana Luísa de A Marcelino
- Department of Neurology, Movement disorders & Neuromodulation section, Charité -University Medicine Berlin, Germany
| | - Eileen Gülke
- Department of Neurology, Universitätsklinikum Hamburg-Eppendorf, Germany
| | | | | | | | | | - Andrea A Kühn
- Department of Neurology, Movement disorders & Neuromodulation section, Charité -University Medicine Berlin, Germany
| |
Collapse
|
28
|
de Roquemaurel A, Wirth T, Vijiaratnam N, Ferreira F, Zrinzo L, Akram H, Foltynie T, Limousin P. Stimulation Sweet Spot in Subthalamic Deep Brain Stimulation - Myth or Reality? A Critical Review of Literature. Stereotact Funct Neurosurg 2021; 99:425-442. [PMID: 34120117 DOI: 10.1159/000516098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION While deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been extensively used for more than 20 years in Parkinson's disease (PD), the optimal area of stimulation to relieve motor symptoms remains elusive. OBJECTIVE We aimed at localizing the sweet spot within the subthalamic region by performing a systematic review of the literature. METHOD PubMed database was searched for published studies exploring optimal stimulation location for STN DBS in PD, published between 2000 and 2019. A standardized assessment procedure based on methodological features was applied to select high-quality publications. Studies conducted more than 3 months after the DBS procedure, employing lateralized scores and/or stimulation condition, and reporting the volume of tissue activated or the position of the stimulating contact within the subthalamic region were considered in the final analysis. RESULTS Out of 439 references, 24 were finally retained, including 21 studies based on contact location and 3 studies based on volume of tissue activated (VTA). Most studies (all VTA-based studies and 13 of the 21 contact-based studies) suggest the superior-lateral STN and the adjacent white matter as the optimal sites for stimulation. Remaining contact-based studies were either inconclusive (5/21), favoured the caudal zona incerta (1/21), or suggested a better outcome of STN stimulation than adjacent white matter stimulation (2/21). CONCLUSION Using a standardized methodological approach, our review supports the presence of a sweet spot located within the supero-lateral STN and extending to the adjacent white matter.
Collapse
Affiliation(s)
- Alexis de Roquemaurel
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Thomas Wirth
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Neurology department, Strasbourg University Hospital, Strasbourg, France.,INSERM-U964/CNRS-UMR7104/University of Strasbourg, Illkirch-Graffenstaden, France
| | - Nirosen Vijiaratnam
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Francisca Ferreira
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Harith Akram
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
29
|
Dembek TA, Baldermann JC, Petry-Schmelzer JN, Jergas H, Treuer H, Visser-Vandewalle V, Dafsari HS, Barbe MT. Sweetspot Mapping in Deep Brain Stimulation: Strengths and Limitations of Current Approaches. Neuromodulation 2021; 25:877-887. [PMID: 33476474 DOI: 10.1111/ner.13356] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Open questions remain regarding the optimal target, or sweetspot, for deep brain stimulation (DBS) in, for example, Parkinson's disease. Previous studies introduced different methods of mapping DBS effects to determine sweetspots. While having a direct impact on surgical targeting and postoperative programming in DBS, these methods so far have not been compared. MATERIALS AND METHODS This study investigated five previously published DBS mapping approaches regarding their potential to correctly identify a predefined target. Methods were investigated in silico in eight different use-case scenarios, which incorporated different types of clinical data, noise, and differences in underlying neuroanatomy. Dice coefficients were calculated to determine the overlap between identified sweetspots and the predefined target. Additionally, out-of-sample predictive capabilities were assessed using the amount of explained variance R2 . RESULTS The five investigated methods resulted in highly variable sweetspots. Methods based on voxel-wise statistics against average outcomes showed the best performance overall. While predictive capabilities were high, even in the best of cases Dice coefficients remained limited to values around 0.5, highlighting the overall limitations of sweetspot identification. CONCLUSIONS This study highlights the strengths and limitations of current approaches to DBS sweetspot mapping. Those limitations need to be taken into account when considering the clinical implications. All future approaches should be investigated in silico before being applied to clinical data.
Collapse
Affiliation(s)
- Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | | | | | - Hannah Jergas
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Harald Treuer
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Haidar S Dafsari
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Michael T Barbe
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Elias GJB, Boutet A, Joel SE, Germann J, Gwun D, Neudorfer C, Gramer RM, Algarni M, Paramanandam V, Prasad S, Beyn ME, Horn A, Madhavan R, Ranjan M, Lozano CS, Kühn AA, Ashe J, Kucharczyk W, Munhoz RP, Giacobbe P, Kennedy SH, Woodside DB, Kalia SK, Fasano A, Hodaie M, Lozano AM. Probabilistic Mapping of Deep Brain Stimulation: Insights from 15 Years of Therapy. Ann Neurol 2020; 89:426-443. [PMID: 33252146 DOI: 10.1002/ana.25975] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) depends on precise delivery of electrical current to target tissues. However, the specific brain structures responsible for best outcome are still debated. We applied probabilistic stimulation mapping to a retrospective, multidisorder DBS dataset assembled over 15 years at our institution (ntotal = 482 patients; nParkinson disease = 303; ndystonia = 64; ntremor = 39; ntreatment-resistant depression/anorexia nervosa = 76) to identify the neuroanatomical substrates of optimal clinical response. Using high-resolution structural magnetic resonance imaging and activation volume modeling, probabilistic stimulation maps (PSMs) that delineated areas of above-mean and below-mean response for each patient cohort were generated and defined in terms of their relationships with surrounding anatomical structures. Our results show that overlap between PSMs and individual patients' activation volumes can serve as a guide to predict clinical outcomes, but that this is not the sole determinant of response. In the future, individualized models that incorporate advancements in mapping techniques with patient-specific clinical variables will likely contribute to the optimization of DBS target selection and improved outcomes for patients. ANN NEUROL 2021;89:426-443.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | | | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Dave Gwun
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Robert M Gramer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Musleh Algarni
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Vijayashankar Paramanandam
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Sreeram Prasad
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | | | - Manish Ranjan
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Christopher S Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Andrea A Kühn
- Movement Disorders and Neuromodulation Unit, Department for Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Jeff Ashe
- GE Global Research, Toronto, Ontario, Canada
| | - Walter Kucharczyk
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Renato P Munhoz
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
| | - D Blake Woodside
- Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Aubignat M, Lefranc M, Tir M, Krystkowiak P. Deep brain stimulation programming in Parkinson's disease: Introduction of current issues and perspectives. Rev Neurol (Paris) 2020; 176:770-779. [DOI: 10.1016/j.neurol.2020.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
|
32
|
Structure-function relationship of the posterior subthalamic area with directional deep brain stimulation for essential tremor. NEUROIMAGE-CLINICAL 2020; 28:102486. [PMID: 33395977 PMCID: PMC7674616 DOI: 10.1016/j.nicl.2020.102486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/10/2020] [Accepted: 10/25/2020] [Indexed: 11/21/2022]
Abstract
Directional DBS of the DRTT and the zona incerta is correlated with tremor suppression. Activation patterns for tremor suppression and side effects involve mostly the dentato-rubro-thalamic tract and the zona incerta. Concomitant side effects often limit the therapeutic window of directional deep brain stimulation.
Deep Brain Stimulation of the posterior subthalamic area is an emergent target for the treatment of Essential Tremor. Due to the heterogeneous and complex anatomy of the posterior subthalamic area, it remains unclear which specific structures mediate tremor suppression and different side effects. The objective of the current work was to yield a better understanding of what anatomical structures mediate the different clinical effects observed during directional deep brain stimulation of that area. We analysed a consecutive series of 12 essential tremor patients. Imaging analysis and systematic clinical testing performed 4–6 months postoperatively yielded location, clinical efficacy and corresponding therapeutic windows for 160 directional contacts. Overlap ratios between individual activation volumes and neighbouring thalamic and subthalamic nuclei as well as individual fiber tracts were calculated. Further, we generated stimulation heatmaps to assess the area of activity and structures stimulated during tremor suppression and occurrence of side effects. Stimulation of the dentato-rubro-thalamic tract and the zona incerta was most consistently correlated with tremor suppression. Both individual and group analysis demonstrated a similar pattern of activation for tremor suppression and different sorts of side-effects. Unlike current clinical concepts, induction of spasms and paresthesia were not correlated with stimulation of the corticospinal tract and the medial lemniscus. Furthermore, we noticed a significant difference in the therapeutic window between the best and worst directional contacts. The best directional contacts did not provide significantly larger therapeutic windows than omnidirectional stimulation at the same level. Deep brain stimulation of the posterior subthalamic area effectively suppresses all aspects of ET but can be associated with concomitant side effects limiting the therapeutic window. Activation patterns for tremor suppression and side effects were similar and predominantly involved the dentato-rubro-thalamic tract and the zona incerta. We found no different activation patterns between different types of side effects and no clear correlation between structure and function. Future studies with use of more sophisticated modelling of activation volumes taking into account fiber heterogeneity and orientation may eventually better delineate these different clusters, which may allow for a refined targeting and programming within this area.
Collapse
|
33
|
Horn A, Fox MD. Opportunities of connectomic neuromodulation. Neuroimage 2020; 221:117180. [PMID: 32702488 PMCID: PMC7847552 DOI: 10.1016/j.neuroimage.2020.117180] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/12/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
The process of altering neural activity - neuromodulation - has long been used to treat patients with brain disorders and answer scientific questions. Deep brain stimulation in particular has provided clinical benefit to over 150,000 patients. However, our understanding of how neuromodulation impacts the brain is evolving. Instead of focusing on the local impact at the stimulation site itself, we are considering the remote impact on brain regions connected to the stimulation site. Brain connectivity information derived from advanced magnetic resonance imaging data can be used to identify these connections and better understand clinical and behavioral effects of neuromodulation. In this article, we review studies combining neuromodulation and brain connectomics, highlighting opportunities where this approach may prove particularly valuable. We focus on deep brain stimulation, but show that the same principles can be applied to other forms of neuromodulation, such as transcranial magnetic stimulation and MRI-guided focused ultrasound. We outline future perspectives and provide testable hypotheses for future work.
Collapse
Affiliation(s)
- Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Sectio Charité - University Medicine Berlin,, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Michael D Fox
- Berenson-Allen Center for Non-invasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, United States; Martinos Center for Biomedical Imaging, Departments of Neurology and Radiology, Harvard Medical School and Massachusetts General Hospital, United States; Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Harvard Medical School and Brigham and Women's Hospital, United States.
| |
Collapse
|
34
|
Dembek TA, Asendorf AL, Wirths J, Barbe MT, Visser-Vandewalle V, Treuer H. Temporal Stability of Lead Orientation in Directional Deep Brain Stimulation. Stereotact Funct Neurosurg 2020; 99:167-170. [PMID: 33049735 DOI: 10.1159/000510883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/12/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Directional deep brain stimulation (DBS) enlarges the therapeutic window by increasing side-effect thresholds and improving clinical benefits. To determine the optimal stimulation settings and interpret clinical observations, knowledge of the lead orientation in relation to the patient's anatomy is required. OBJECTIVE To determine if directional leads remain in a fixed orientation after implantation or whether orientation changes over time. METHOD Clinical records of 187 patients with directional DBS electrodes were screened for CT scans in addition to the routine postoperative CT. The orientation angle of each electrode at a specific point in time was reconstructed from CT artifacts using the DiODe algorithm implemented in Lead-DBS. The orientation angles over time were compared with the originally measured orientations from the routine postoperative CT. RESULTS Multiple CT scans were identified in 18 patients and the constancy of the orientation angle was determined for 29 leads at 48 points in time. The median time difference between the observations and the routine postoperative CT scan was 82 (range 1-811) days. The mean difference of the orientation angles compared to the initial measurement was -1.1 ± 3.9° (range -7.6 to 8.7°). Linear regression showed no relevant drift of the absolute value of the orientation angle over time (0.8°/year, adjusted R2: 0.040, p = 0.093). CONCLUSION The orientation of directional leads was stable and showed no clinically relevant changes either in the first weeks after implantation or over longer periods of time.
Collapse
Affiliation(s)
- Till A Dembek
- Department of Neurology, University Hospital Cologne, and Faculty of Medicine, University of Cologne, Cologne, Germany,
| | - Adrian L Asendorf
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jochen Wirths
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Michael T Barbe
- Department of Neurology, University Hospital Cologne, and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Harald Treuer
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, and Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
35
|
Gonzalez-Escamilla G, Muthuraman M, Ciolac D, Coenen VA, Schnitzler A, Groppa S. Neuroimaging and electrophysiology meet invasive neurostimulation for causal interrogations and modulations of brain states. Neuroimage 2020; 220:117144. [DOI: 10.1016/j.neuroimage.2020.117144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
|
36
|
Nguyen TAK, Schüpbach M, Mercanzini A, Dransart A, Pollo C. Directional Local Field Potentials in the Subthalamic Nucleus During Deep Brain Implantation of Parkinson's Disease Patients. Front Hum Neurosci 2020; 14:521282. [PMID: 33192384 PMCID: PMC7556345 DOI: 10.3389/fnhum.2020.521282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022] Open
Abstract
Segmented deep brain stimulation leads feature directional electrodes that allow for a finer spatial control of electrical stimulation compared to traditional ring-shaped electrodes. These segmented leads have demonstrated enlarged therapeutic windows and have thus the potential to improve the treatment of Parkinson's disease patients. Moreover, they provide a unique opportunity to record directional local field potentials. Here, we investigated whether directional local field potentials can help identify the best stimulation direction to assist device programming. Four Parkinson's disease patients underwent routine implantation of the subthalamic nucleus. Firstly, local field potentials were recorded in three directions for two conditions: In one condition, the patient was at rest; in the other condition, the patient's arm was moved. Secondly, current thresholds for therapeutic and side effects were identified intraoperatively for directional stimulation. Therapeutic windows were calculated from these two thresholds. Thirdly, the spectral power of the total beta band (13-35 Hz) and its sub-bands low, high, and peak beta were analyzed post hoc. Fourthly, the spectral power was used by different algorithms to predict the ranking of directions. The spectral power profiles were patient-specific, and spectral peaks were found both in the low beta band (13-20 Hz) and in the high beta band (20.5-35 Hz). The direction with the highest spectral power in the total beta band was most indicative of the 1st best direction when defined by therapeutic window. Based on the total beta band, the resting condition and the moving condition were similarly predictive about the direction ranking and classified 83.3% of directions correctly. However, different algorithms were needed to predict the ranking defined by therapeutic window or therapeutic current threshold. Directional local field potentials may help predict the best stimulation direction. Further studies with larger sample sizes are needed to better distinguish the informative value of different conditions and the beta sub-bands.
Collapse
Affiliation(s)
- T. A. Khoa Nguyen
- Department of Neurosurgery, University Hospital of Bern, Bern, Switzerland
| | - Michael Schüpbach
- Department of Neurology, University Hospital of Bern, Bern, Switzerland
| | - André Mercanzini
- Microsystems Laboratory 4, School of Engineering, EPF Lausanne, Lausanne, Switzerland
- Aleva Neurotherapeutics SA, Lausanne, Switzerland
| | | | - Claudio Pollo
- Department of Neurosurgery, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Nowacki A, Schober M, Nader L, Saryyeva A, Nguyen TK, Green AL, Pollo C, Krauss JK, Fontaine D, Aziz TZ. Deep Brain Stimulation for Chronic Cluster Headache: Meta‐Analysis of Individual Patient Data. Ann Neurol 2020; 88:956-969. [DOI: 10.1002/ana.25887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Andreas Nowacki
- Department of Neurosurgery, Inselspital Bern University Hospital, University Bern Bern Switzerland
| | - Martin Schober
- Department of Neurosurgery, Inselspital Bern University Hospital, University Bern Bern Switzerland
| | - Lydia Nader
- Thuy Hospital Universitario Central de Asturias Oviedo Spain
| | - Assel Saryyeva
- Department of Neurosurgery Medical School Hannover Hannover Germany
| | - Thuy‐Anh Khoa Nguyen
- Department of Neurosurgery, Inselspital Bern University Hospital, University Bern Bern Switzerland
- ARTORG Center for Biomedical Engineering Research University of Bern Bern Switzerland
| | - Alexander L. Green
- Nuffield Department of Clinical Neuroscience University of Oxford Oxford UK
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital Bern University Hospital, University Bern Bern Switzerland
| | | | - Denys Fontaine
- Department of Neurosurgery, Centre Hospitalier Universitaire de Nice, FHU INOVPAIN University Cote d'Azur Nice France
| | - Tipu Z. Aziz
- Nuffield Department of Clinical Neuroscience University of Oxford Oxford UK
| |
Collapse
|
38
|
Normative vs. patient-specific brain connectivity in deep brain stimulation. Neuroimage 2020; 224:117307. [PMID: 32861787 DOI: 10.1016/j.neuroimage.2020.117307] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 11/22/2022] Open
Abstract
Brain connectivity profiles seeding from deep brain stimulation (DBS) electrodes have emerged as informative tools to estimate outcome variability across DBS patients. Given the limitations of acquiring and processing patient-specific diffusion-weighted imaging data, a number of studies have employed normative atlases of the human connectome. To date, it remains unclear whether patient-specific connectivity information would strengthen the accuracy of such analyses. Here, we compared similarities and differences between patient-specific, disease-matched and normative structural connectivity data and their ability to predict clinical improvement. Data from 33 patients suffering from Parkinson's Disease who underwent surgery at three different centers were retrospectively collected. Stimulation-dependent connectivity profiles seeding from active contacts were estimated using three modalities, namely patient-specific diffusion-MRI data, age- and disease-matched or normative group connectome data (acquired in healthy young subjects). Based on these profiles, models of optimal connectivity were calculated and used to estimate clinical improvement in out of sample data. All three modalities resulted in highly similar optimal connectivity profiles that could largely reproduce findings from prior research based on this present novel multi-center cohort. In a data-driven approach that estimated optimal whole-brain connectivity profiles, out-of-sample predictions of clinical improvements were calculated. Using either patient-specific connectivity (R = 0.43 at p = 0.001), an age- and disease-matched group connectome (R = 0.25, p = 0.048) and a normative connectome based on healthy/young subjects (R = 0.31 at p = 0.028), significant predictions could be made. Our results of patient-specific connectivity and normative connectomes lead to similar main conclusions about which brain areas are associated with clinical improvement. Still, although results were not significantly different, they hint at the fact that patient-specific connectivity may bear the potential of explaining slightly more variance than group connectomes. Furthermore, use of normative connectomes involves datasets with high signal-to-noise acquired on specialized MRI hardware, while clinical datasets as the ones used here may not exactly match their quality. Our findings support the role of DBS electrode connectivity profiles as a promising method to investigate DBS effects and to potentially guide DBS programming.
Collapse
|
39
|
Treu S, Strange B, Oxenford S, Neumann WJ, Kühn A, Li N, Horn A. Deep brain stimulation: Imaging on a group level. Neuroimage 2020; 219:117018. [PMID: 32505698 DOI: 10.1016/j.neuroimage.2020.117018] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Deep Brain Stimulation (DBS) is an established treatment option for movement disorders and is under investigation for treatment in a growing number of other brain diseases. It has been shown that exact electrode placement crucially affects the efficacy of DBS and this should be considered when investigating novel indications or DBS targets. To measure clinical improvement as a function of electrode placement, neuroscientific methodology and specialized software tools are needed. Such tools should have the goal to make electrode placement comparable across patients and DBS centers, and include statistical analysis options to validate and define optimal targets. Moreover, to allow for comparability across different centers, these need to be performed within an algorithmically and anatomically standardized and openly available group space. With the publication of Lead-DBS software in 2014, an open-source tool was introduced that allowed for precise electrode reconstructions based on pre- and postoperative neuroimaging data. Here, we introduce Lead Group, implemented within the Lead-DBS environment and specifically designed to meet aforementioned demands. In the present article, we showcase the various processing streams of Lead Group in a retrospective cohort of 51 patients suffering from Parkinson's disease, who were implanted with DBS electrodes to the subthalamic nucleus (STN). Specifically, we demonstrate various ways to visualize placement of all electrodes in the group and map clinical improvement values to subcortical space. We do so by using active coordinates and volumes of tissue activated, showing converging evidence of an optimal DBS target in the dorsolateral STN. Second, we relate DBS outcome to the impact of each electrode on local structures by measuring overlap of stimulation volumes with the STN. Finally, we explore the software functions for connectomic mapping, which may be used to relate DBS outcomes to connectivity estimates with remote brain areas. The manuscript is accompanied by a walkthrough tutorial which allows users to reproduce all main results presented here. All data and code needed to reproduce results are openly available.
Collapse
Affiliation(s)
- Svenja Treu
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain; Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany.
| | - Bryan Strange
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Spain
| | - Simon Oxenford
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Andrea Kühn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; Exzellenzcluster NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ningfei Li
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Andreas Horn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| |
Collapse
|
40
|
Petry-Schmelzer JN, Krause M, Dembek TA, Horn A, Evans J, Ashkan K, Rizos A, Silverdale M, Schumacher W, Sack C, Loehrer PA, Fink GR, Fonoff ET, Martinez-Martin P, Antonini A, Barbe MT, Visser-Vandewalle V, Ray-Chaudhuri K, Timmermann L, Dafsari HS. Non-motor outcomes depend on location of neurostimulation in Parkinson's disease. Brain 2020; 142:3592-3604. [PMID: 31553039 DOI: 10.1093/brain/awz285] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 01/29/2023] Open
Abstract
Deep brain stimulation of the subthalamic nucleus is an effective and established therapy for patients with advanced Parkinson's disease improving quality of life, motor symptoms and non-motor symptoms. However, there is a considerable degree of interindividual variability for these outcomes, likely due to variability in electrode placement and stimulation settings. Here, we present probabilistic mapping data from a prospective, open-label, multicentre, international study to investigate the influence of the location of subthalamic nucleus deep brain stimulation on non-motor symptoms in patients with Parkinson's disease. A total of 91 Parkinson's disease patients undergoing bilateral deep brain stimulation of the subthalamic nucleus were included, and we investigated NMSScale, NMSQuestionnaire, Scales for Outcomes in Parkinson's disease-motor examination, -activities of daily living, and -motor complications, and Parkinson's disease Questionnaire-8 preoperatively and at 6-month follow-up after surgery. Leads were localized in standard space using the Lead-DBS toolbox and individual volumes of tissue activated were calculated based on clinical stimulation settings. Probabilistic stimulation maps and non-parametric permutation statistics were applied to identify voxels with significant above or below average improvement for each scale and analysed using the DISTAL atlas. All outcomes improved significantly at follow-up. Significant spatial distribution patterns of neurostimulation were observed for NMSScale total score and its mood/apathy and attention/memory domains. For both domains, voxels associated with below average improvement were mainly located dorsal to the subthalamic nucleus. In contrast, above average improvement for mood/apathy was observed in the ventral border region of the subthalamic nucleus and in its sensorimotor subregion and for attention/memory in the associative subregion. A trend was observed for NMSScale sleep domain showing voxels with above average improvement located ventral to the subthalamic nucleus. Our study provides evidence that the interindividual variability of mood/apathy, attention/memory, and sleep outcomes after subthalamic nucleus deep brain stimulation depends on the location of neurostimulation. This study highlights the importance of holistic assessments of motor and non-motor aspects of Parkinson's disease to tailor surgical targeting and stimulation parameter settings to patients' personal profiles.
Collapse
Affiliation(s)
- Jan Niklas Petry-Schmelzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Max Krause
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Till A Dembek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Andreas Horn
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Julian Evans
- Department of Neurology and Neurosurgery, Salford Royal Foundation Thrust, Greater Manchester, UK
| | - Keyoumars Ashkan
- National Parkinson Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Alexandra Rizos
- National Parkinson Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Monty Silverdale
- Department of Neurology and Neurosurgery, Salford Royal Foundation Thrust, Greater Manchester, UK
| | - Wibke Schumacher
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Carolin Sack
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Philipp A Loehrer
- Department of Neurology, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Gereon R Fink
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Erich T Fonoff
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Pablo Martinez-Martin
- National Center of Epidemiology and CIBERNED, Carlos III Institute of Health, Madrid, Spain
| | - Angelo Antonini
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Michael T Barbe
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Veerle Visser-Vandewalle
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne, Germany
| | - K Ray-Chaudhuri
- National Parkinson Foundation Centre of Excellence, King's College Hospital, London, UK.,The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Lars Timmermann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.,Department of Neurology, University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Haidar S Dafsari
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.,National Parkinson Foundation Centre of Excellence, King's College Hospital, London, UK
| | | |
Collapse
|