1
|
Rossetti AO. Refractory and Super-Refractory Status Epilepticus: Therapeutic Options and Prognosis. Neurol Clin 2025; 43:15-30. [PMID: 39547738 DOI: 10.1016/j.ncl.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
In patients with status epilepticus (SE), the underlying biologic background represents the main prognostic variable. A swift application of a treatment protocol is recommended, including adequate doses of a benzodiazepine followed by an intravenous anti-seizure medicine. If refractory SE arises, general anesthetics should be used in generalized convulsive and non-convulsive SE in coma, while further non-sedating anti-seizure medications attempts are warranted in patients with focal forms. Ketogenic diet and/or ketamine in patients with super-refractory SE, and immunologic treatments for those with new-onset refractory SE/febrile-induced refractory epilepsy syndrome should be considered early. Pharmacologic treatment of SE after cardiac arrest should be oriented by the results of multimodal prognostication.
Collapse
Affiliation(s)
- Andrea O Rossetti
- Department of Neurology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Hadar PN, Nanda P, Walsh KG, McLaren J, Geffrey A, Simon M, Kahle K, Richardson RM, Chu CJ. Emergent responsive neurostimulation in pediatric super-refractory epilepsia partialis continua. Ann Clin Transl Neurol 2024; 11:3320-3327. [PMID: 39540465 DOI: 10.1002/acn3.52199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024] Open
Abstract
Focal status epilepticus, particularly the motor variant of epilepsia partialis continua (EPC), is a rare condition characterized by near-continuous, chronic focal motor seizures, and associated with poor outcomes. Medications, including anesthetics, are often unsuccessful. Surgical resection can result in motor deficits. We report a medically complex pediatric case of super-refractory EPC that was successfully managed with combined focal resection and responsive neuromodulation. This case introduces neuromodulation as a treatment modality for this challenging condition.
Collapse
Affiliation(s)
- Peter N Hadar
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, 02114, USA
- Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Pranav Nanda
- Harvard Medical School, Boston, Massachusetts, 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital (MGH), Boston, Massachusetts, 02114, USA
| | - Katherine G Walsh
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, 02114, USA
| | - John McLaren
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, 02114, USA
- Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Alexandra Geffrey
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, 02114, USA
- Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Mirela Simon
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, 02114, USA
- Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Kristopher Kahle
- Harvard Medical School, Boston, Massachusetts, 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital (MGH), Boston, Massachusetts, 02114, USA
| | - R Mark Richardson
- Harvard Medical School, Boston, Massachusetts, 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital (MGH), Boston, Massachusetts, 02114, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, 02114, USA
- Harvard Medical School, Boston, Massachusetts, 02115, USA
| |
Collapse
|
3
|
Smith CN, Eisenschenk S, Wang Y. Tiagabine-induced encephalopathy suppressed by vagus nerve stimulation: A case report. Epilepsy Behav Rep 2024; 28:100709. [PMID: 39295735 PMCID: PMC11408054 DOI: 10.1016/j.ebr.2024.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024] Open
Abstract
Tiagabine has been associated with reports of status epilepticus as well as encephalopathy, even when used within therapeutic doses. Vagus nerve stimulation (VNS) has been used successfully to reduce seizure frequency in the outpatient setting as well as in the acute setting of status epilepticus. It is also theorized to reduce cortical synchronization. We present a case of a patient on adjunctive tiagabine therapy who developed sudden onset encephalopathy and rhythmic delta activity soon after vagus nerve stimulation was turned off in preparation for magnetic resonance imaging. The bilateral rhythmic delta activity significantly reduced in burden after VNS was turned back on and encephalopathy also gradually improved to baseline. We hypothesize that vagus nerve stimulation successfully interrupted diffuse hypersynchrony, in the form of bilateral rhythmic delta activity, caused by tiagabine. To our knowledge, this is the first report of such a phenomenon.
Collapse
Affiliation(s)
- Christine N Smith
- Department of Neurology, University of Florida, 1149 Newell Dr, L3-100, Gainesville, FL 32611, United States
- Department of Neurology, Malcom Randall Veterans Affairs Medical Center, 1601 SW Archer Rd, Gainesville, FL 32608, United States
| | - Stephan Eisenschenk
- Department of Neurology, University of Florida, 1149 Newell Dr, L3-100, Gainesville, FL 32611, United States
- Department of Neurology, Malcom Randall Veterans Affairs Medical Center, 1601 SW Archer Rd, Gainesville, FL 32608, United States
| | - Yue Wang
- Department of Neurology, University of Florida, 1149 Newell Dr, L3-100, Gainesville, FL 32611, United States
| |
Collapse
|
4
|
Salama H, Salama A, Oscher L, Jallo GI, Shimony N. The role of neuromodulation in the management of drug-resistant epilepsy. Neurol Sci 2024; 45:4243-4268. [PMID: 38642321 DOI: 10.1007/s10072-024-07513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Drug-resistant epilepsy (DRE) poses significant challenges in terms of effective management and seizure control. Neuromodulation techniques have emerged as promising solutions for individuals who are unresponsive to pharmacological treatments, especially for those who are not good surgical candidates for surgical resection or laser interstitial therapy (LiTT). Currently, there are three neuromodulation techniques that are FDA-approved for the management of DRE. These include vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS). Device selection, optimal time, and DBS and RNS target selection can also be challenging. In general, the number and localizability of the epileptic foci, alongside the comorbidities manifested by the patients, substantially influence the selection process. In the past, the general axiom was that DBS and VNS can be used for generalized and localized focal seizures, while RNS is typically reserved for patients with one or two highly localized epileptic foci, especially if they are in eloquent areas of the brain. Nowadays, with the advance in our understanding of thalamic involvement in DRE, RNS is also very effective for general non-focal epilepsy. In this review, we will discuss the underlying mechanisms of action, patient selection criteria, and the evidence supporting the use of each technique. Additionally, we explore emerging technologies and novel approaches in neuromodulation, such as closed-loop systems. Moreover, we examine the challenges and limitations associated with neuromodulation therapies, including adverse effects, complications, and the need for further long-term studies. This comprehensive review aims to provide valuable insights on present and future use of neuromodulation.
Collapse
Affiliation(s)
- HusamEddin Salama
- Al-Quds University-School of Medicine, Abu Dis, Jerusalem, Palestine
| | - Ahmed Salama
- Al-Quds University-School of Medicine, Abu Dis, Jerusalem, Palestine
| | - Logan Oscher
- Department of Neurosurgery, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, 600 5th Street South, St. Petersburg, FL, 33701, USA
| | - George I Jallo
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neurosurgery, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, 600 5th Street South, St. Petersburg, FL, 33701, USA.
| | - Nir Shimony
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
- Semmes-Murphey Clinic, Memphis, TN, USA
| |
Collapse
|
5
|
Wu L, Citerio G, Gao G. Neuromodulation in the intensive care unit. Intensive Care Med 2024; 50:1523-1525. [PMID: 39046487 PMCID: PMC11377605 DOI: 10.1007/s00134-024-07561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Affiliation(s)
- Liang Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuan Xilu, Fengtai District, Beijing, 100070, China
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- NeuroIntensive Care Unit, Neuroscience Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Guoyi Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nansihuan Xilu, Fengtai District, Beijing, 100070, China.
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Hikmat O, Naess K, Engvall M, Klingenberg C, Rasmussen M, Brodtkorb E, Ostergaard E, de Coo I, Pias-Peleteiro L, Isohanni P, Uusimaa J, Majamaa K, Kärppä M, Ortigoza-Escobar JD, Tangeraas T, Berland S, Harrison E, Biggs H, Horvath R, Darin N, Rahman S, Bindoff LA. Status epilepticus in POLG disease: a large multinational study. J Neurol 2024; 271:5156-5164. [PMID: 38822839 PMCID: PMC11319559 DOI: 10.1007/s00415-024-12463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
We aimed to provide a detailed phenotypic description of status epilepticus (SE) in a large cohort of patients with POLG disease and identify prognostic biomarkers to improve the management of this life-threatening condition. In a multinational, retrospective study with data on patients with POLG disease from seven European countries, we identified those who had SE. The age of SE onset, accompanying clinical, laboratory, imaging and genetic findings were analysed. One hundred and ninety-five patients with genetically confirmed POLG disease were recruited, of whom 67% (130/194) had epilepsy. SE was identified in 77% (97/126), with a median age of SE onset of 7 years. SE was the presenting symptom of the disease in 43% (40/93) of those with SE, while 57% (53/93) developed SE during the disease course. Convulsive SE was reported in 97% (91/94) followed by epilepsia partialis continua in 67% (56/84). Liver impairment 78% (74/95), ataxia 69% (60/87), stroke-like episodes 57% (50/88), were the major comorbidities. In the majority (66%; 57/86) with SE this became refractory or super-refractory. The presence of seizures was associated with significantly higher mortality compared to those without (P ≤ 0.001). The median time from SE debut to death was 5 months. SE is a major clinical feature of POLG disease in early and juvenile to adult-onset disease and can be the presenting feature or arise as part of a multisystem disease. It is associated with high morbidity and mortality, with the majority of patients with SE going on to develop refractory or super-refractory SE.
Collapse
Affiliation(s)
- Omar Hikmat
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway.
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.
- European Reference Network for Hereditary Metabolic Disorders, Oslo, Norway.
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Neuropediatrics, Astrid Lindgren Childrens Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Engvall
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Claus Klingenberg
- Department of Paediatric and Adolescent Medicine, University Hospital of North Norway, Tromso, Norway
- Paediatric Research Group, Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromso, Norway
| | - Magnhild Rasmussen
- Division of Paediatric and Adolescent Medicine, Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Unit for Congenital and Hereditary Neuromuscular Disorders, Oslo University Hospital, Oslo, Norway
| | - Eylert Brodtkorb
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olav University Hospital, Trondheim, Norway
| | - Elsebet Ostergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Irenaeus de Coo
- Faculty of Health, Medicine and Life Sciences, Department of Toxicology, University of Maastricht, Maastricht, The Netherlands
| | - Leticia Pias-Peleteiro
- Neurometabolic Disorders Unit, Department of Child Neurology/ Department of Genetics and Molecular Medicine, Sant Joan de Déu Children´S Hospital, Barcelona, Spain
| | - Pirjo Isohanni
- Department of Pediatric Neurology, Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- European Reference Network for Hereditary Metabolic Disorders, Helsinki, Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatric Neurology, Clinic for Children and Adolescents and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Kari Majamaa
- Research Unit of Clinical Medicine, Neurology, and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Mikko Kärppä
- Research Unit of Clinical Medicine, Neurology, and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII, Barcelona, Spain
- European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Trine Tangeraas
- European Reference Network for Hereditary Metabolic Disorders, Oslo, Norway
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Emma Harrison
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Heather Biggs
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
- Metabolic Unit, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
- European Reference Network for Hereditary Metabolic Disorders, London, UK
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
- European Reference Network for Hereditary Metabolic Disorders, Oslo, Norway
- Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
| |
Collapse
|
7
|
Rubinos C. Emergent Management of Status Epilepticus. Continuum (Minneap Minn) 2024; 30:682-720. [PMID: 38830068 DOI: 10.1212/con.0000000000001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Status epilepticus is a neurologic emergency that can be life- threatening. The key to effective management is recognition and prompt initiation of treatment. Management of status epilepticus requires a patient-specific-approach framework, consisting of four axes: (1) semiology, (2) etiology, (3) EEG correlate, and (4) age. This article provides a comprehensive overview of status epilepticus, highlighting the current treatment approaches and strategies for management and control. LATEST DEVELOPMENTS Administering appropriate doses of antiseizure medication in a timely manner is vital for halting seizure activity. Benzodiazepines are the first-line treatment, as demonstrated by three randomized controlled trials in the hospital and prehospital settings. Benzodiazepines can be administered through IV, intramuscular, rectal, or intranasal routes. If seizures persist, second-line treatments such as phenytoin and fosphenytoin, valproate, or levetiracetam are warranted. The recently published Established Status Epilepticus Treatment Trial found that all three of these drugs are similarly effective in achieving seizure cessation in approximately half of patients. For cases of refractory and super-refractory status epilepticus, IV anesthetics, including ketamine and γ-aminobutyric acid-mediated (GABA-ergic) medications, are necessary. There is an increasing body of evidence supporting the use of ketamine, not only in the early phases of stage 3 status epilepticus but also as a second-line treatment option. ESSENTIAL POINTS As with other neurologic emergencies, "time is brain" when treating status epilepticus. Antiseizure medication should be initiated quickly to achieve seizure cessation. There is a need to explore newer generations of antiseizure medications and nonpharmacologic modalities to treat status epilepticus.
Collapse
|
8
|
Mehboob S, Sureshkumar SM, Fernandes L, Wright E, Ray M, Goodden J, Maguire M. Refractory status epilepticus arrested by vagus nerve stimulation. Pract Neurol 2024; 24:129-133. [PMID: 37875347 DOI: 10.1136/pn-2023-003896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
A 54-year-old man developed altered mental state and generalised tonic-clonic seizures after 1 week of upper respiratory tract symptoms and diarrhoea, having been previously well. His MR scan of brain showed multifocal progressive T2 cortical signal changes. He was diagnosed with new-onset refractory status epilepticus (NORSE), initially treated as being secondary to autoimmune/paraneoplastic limbic encephalitis, although subsequent investigations were negative. His seizures and electrographic epileptiform activity continued despite escalating doses of antiseizure medications, immunosuppression with corticosteroids, immunoglobulins, plasma exchange and rituximab, and thereafter anaesthetic agents. A vagus nerve stimulator (VNS) was implanted 6 weeks after admission and its voltage rapidly increased over 4 days; his seizure activity resolved in the third week after VNS implantation. This case highlights the role of VNS in the early management of NORSE.
Collapse
Affiliation(s)
- Sadaf Mehboob
- Department of Neurology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Linford Fernandes
- Department of Neurology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Elizabeth Wright
- Department of Neurology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Munni Ray
- Department of Neurophysiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - John Goodden
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Melissa Maguire
- Department of Neurology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
9
|
Schmitz B, Lattanzi S, Vonck K, Kälviäinen R, Nashef L, Ben‐Menachem E. Cenobamate in refractory epilepsy: Overview of treatment options and practical considerations. Epilepsia Open 2023; 8:1241-1255. [PMID: 37743544 PMCID: PMC10690671 DOI: 10.1002/epi4.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Management of drug resistant epilepsy (DRE) represents a challenge to the treating clinician. This manuscript addresses DRE and provides an overview of treatment options, medical, surgical, and dietary. It addresses treatment strategies in polytherapy, then focuses on the role cenobamate (CNB) may play in reducing the burden of DRE while providing practical advice for its introduction. CNB is a recently approved, third generation, anti-seizure medication (ASM), a tetrazole-derived carbamate, thought to have a dual mechanism of action, through its effect on sodium channels as well as on GABAA receptors at a non-benzodiazepine site. CNB, having a long half-life, is an effective add-on ASM in refractory focal epilepsy with a higher response rate and a higher seizure-freedom rate than is usually seen in regulatory clinical trials. Experience post-licensing, though still limited, supports the findings of clinical trials and is encouraging. Its spectrum of action in relation to generalized epilepsies and seizures remains to be established, and there are no data on its efficacy in monotherapy. At the time of writing, CNB has been prescribed for some 50 000 individuals with DRE and focal epilepsy. A larger number is needed to fully establish its safety profile. It should at all times be introduced slowly to minimize the risk of serious allergic drug reactions. It has clinically meaningful interactions which must be anticipated and managed to maximize tolerability and likelihood of successful treatment. Despite the above, it may well prove to be of major benefit in the treatment of many patients with drug resistant epilepsy.
Collapse
Affiliation(s)
- Bettina Schmitz
- Center for Epilepsy, Department for NeurologyVivantes Humboldt‐KlinikumBerlinGermany
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical MedicineMarche Polytechnic UniversityAnconaItaly
| | - Kristl Vonck
- Department of Neurology, 4BrainGhent University HospitalGentBelgium
| | - Reetta Kälviäinen
- Kuopio Epilepsy Center, Kuopio University Hospital, Member of ERN EpiCARE, and Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
| | - Lina Nashef
- Neurology DepartmentKing's College HospitalLondonUK
| | - Elinor Ben‐Menachem
- Institution for Clinical Neuroscience, Sahlgrenska AcademyUniversity of GoteborgGoteborgSweden
| |
Collapse
|
10
|
Furlanis GM, Favaro J, Bresolin N, Grioni D, Baro V, D’Amico A, Sartori S, Denaro L, Landi A. Role of Vagus Nerve Stimulation in Refractory and Super Refractory Status Epilepticus: A Pediatric Case Series. Brain Sci 2023; 13:1589. [PMID: 38002548 PMCID: PMC10669853 DOI: 10.3390/brainsci13111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Status epilepticus is a life-threatening condition that is defined as refractory (RSE) when the seizure activity continues despite treatment with benzodiazepine and a second appropriate treatment. Super refractory status epilepticus (SRSE) is an RSE that persists or recurs for ≥24 h. Few papers have reported the outcomes of pediatric patients affected by RSE and SRSE and treated with neuromodulation therapies. Vagus nerve stimulation (VNS) is an approved treatment for drug-resistant epilepsy. We present our findings of pediatric patients treated with VNS for RSE/SRSE. METHODS We present a case series of seven consecutive pediatric patients treated with VNS for SRSE since 2012 by a single surgeon in Monza and Padua. A rapid titration was started soon after implantation. We considered electroclinical data before and after VNS implantation and at the last follow-up. RESULTS We achieved the resolution of SRSE in five out of seven patients in a mean time of two weeks. At the last follow-up, these patients had a significant reduction of seizure burden without any relapse of SE. DISCUSSION AND CONCLUSIONS Based on our limited findings, we discuss the potential role of VNS therapy in similar but distinct clinical contexts. For patients with drug-resistant epilepsy and RSE/SRSE, prompt VNS consideration is suggested, offering rapid responses and potentially reducing pharmacological load. Meanwhile, in NORSE/FIRES, we suggest early neuromodulation during the acute phase if standard treatments prove ineffective or not tolerated. This approach may leverage VNS's potential anti-inflammatory effects and neuromodulation, enhancing patient-specific treatments. Expanding case studies and prolonged follow-ups are recommended to strengthen these clinical insights.
Collapse
Affiliation(s)
- Giulia Melinda Furlanis
- Pediatric and Functional Neurosurgery, Department of Neuroscience, Padua University Hospital, via Giustiniani 5, 35127 Padova, Italy; (G.M.F.); (A.L.)
| | - Jacopo Favaro
- Neurology and Neurophysiology Unit, Department of Women’s and Children’s Health, Padua University Hospital, 35128 Padova, Italy; (J.F.)
| | - Nicola Bresolin
- Pediatric and Functional Neurosurgery, Department of Neuroscience, Padua University Hospital, via Giustiniani 5, 35127 Padova, Italy; (G.M.F.); (A.L.)
| | | | - Valentina Baro
- Pediatric and Functional Neurosurgery, Department of Neuroscience, Padua University Hospital, via Giustiniani 5, 35127 Padova, Italy; (G.M.F.); (A.L.)
| | - Alberto D’Amico
- Pediatric and Functional Neurosurgery, Department of Neuroscience, Padua University Hospital, via Giustiniani 5, 35127 Padova, Italy; (G.M.F.); (A.L.)
| | - Stefano Sartori
- Neurology and Neurophysiology Unit, Department of Women’s and Children’s Health, Padua University Hospital, 35128 Padova, Italy; (J.F.)
| | - Luca Denaro
- Pediatric and Functional Neurosurgery, Department of Neuroscience, Padua University Hospital, via Giustiniani 5, 35127 Padova, Italy; (G.M.F.); (A.L.)
| | - Andrea Landi
- Pediatric and Functional Neurosurgery, Department of Neuroscience, Padua University Hospital, via Giustiniani 5, 35127 Padova, Italy; (G.M.F.); (A.L.)
| |
Collapse
|
11
|
Stavropoulos I, Pak HL, Alarcon G, Valentin A. Neuromodulation Techniques in Children with Super-Refractory Status Epilepticus. Brain Sci 2023; 13:1527. [PMID: 38002487 PMCID: PMC10670094 DOI: 10.3390/brainsci13111527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Status epilepticus (SE) is a life-threatening condition and medical emergency which can have lifelong consequences, including neuronal death and alteration of neuronal networks, resulting in long-term neurologic and cognitive deficits in children. When standard pharmacological treatment for SE is not successful in controlling seizures, the condition evolves to refractory SE (rSE) and finally to super-refractory SE (srSE) if it exceeds 24 h despite using anaesthetics. In this systematic review, we present literature data on the potential uses of clinical neuromodulation techniques for the management of srSE in children, including electroconvulsive therapy, vagus nerve stimulation, and deep brain stimulation. The evaluation of these techniques is limited by the small number of published paediatric cases (n = 25, one with two techniques) in peer-reviewed articles (n = 18). Although neuromodulation strategies have not been tested through randomised, prospective controlled clinical trials, this review presents the existing data and the potential benefits of neuromodulation therapy, suggesting that these techniques, when available, could be considered at earlier stages within the course of srSE intending to prevent long-term neurologic complications. Clinical trials aiming to establish whether early intervention can prevent long-term sequelae are necessary in order to establish the potential clinical value of neuromodulation techniques for the treatment of srSE in children.
Collapse
Affiliation(s)
- Ioannis Stavropoulos
- Department of Clinical Neurophysiology, King’s College Hospital, London SE5 9RS, UK;
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - Ho Lim Pak
- Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK;
| | - Gonzalo Alarcon
- Royal Manchester Children’s Hospital, Manchester M13 9WL, UK;
- Alder Hey Children’s Hospital, Liverpool L12 2AP, UK
| | - Antonio Valentin
- Department of Clinical Neurophysiology, King’s College Hospital, London SE5 9RS, UK;
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
- Alder Hey Children’s Hospital, Liverpool L12 2AP, UK
| |
Collapse
|
12
|
Rodriguez-Villar S, Ahmed MA, Haddad S, Mantoan L, Singh N, Mahdi-Roger M, Stavropoulos I, Selway R, Valentin A. New-onset refractory status epilepticus responsive to VNS: A case report. Epileptic Disord 2023; 25:571-574. [PMID: 37087686 DOI: 10.1002/epd2.20064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Affiliation(s)
- Sancho Rodriguez-Villar
- Critical Care Department, King's College Hospital NHS Foundation Trust, London, UK
- Faculty of Life Sciences & Medicine at King's College London, GKT School of Medical Education, London, UK
| | - Mohamed Ahmed Ahmed
- Critical Care Department, King's College Hospital NHS Foundation Trust, London, UK
| | - Saif Haddad
- Critical Care Department, King's College Hospital NHS Foundation Trust, London, UK
| | - Laura Mantoan
- Neurology Department, Kings College Hospital NHS Foundation Trust, London, UK
| | - Neeraj Singh
- Critical Care Department, King's College Hospital NHS Foundation Trust, London, UK
| | - Mohamed Mahdi-Roger
- Neurology Department, Kings College Hospital NHS Foundation Trust, London, UK
| | - Ioannis Stavropoulos
- Clinical Neurophysiology Department, King's College Hospital NHS Foundation Trust, London, UK
- Basic and Clinical Neuroscience Department, King's College London, Institute of Psychiatry, London, UK
| | - Richard Selway
- Neurosurgery Department, Kings College Hospital NHS Foundation Trust, London, UK
| | - Antonio Valentin
- Clinical Neurophysiology Department, King's College Hospital NHS Foundation Trust, London, UK
- Basic and Clinical Neuroscience Department, King's College London, Institute of Psychiatry, London, UK
| |
Collapse
|
13
|
Sarma GRK, Sharma AR, John AT. Transcutaneous electrical stimulation of auricular branch of the vagus nerve effectively and rapidly modulates the EEG patterns in patients with possible electrographic status epilepticus. Epileptic Disord 2023; 25:500-509. [PMID: 37158133 DOI: 10.1002/epd2.20068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Invasive vagal nerve stimulation (iVNS) is a known treatment approach for patients with refractory epilepsy. Transcutaneous auricular vagus nerve stimulation (tVNS) was developed to overcome the side effects and surgical complications of iVNS. tVNS is proven beneficial in refractory epilepsy. The effectiveness of tVNS, however, has never been studied in patients with Status Epilepticus. In this study, we explored the effect of tVNS in three patients with possible electrographic status epilepticus. OBJECTIVES To compare the EEG pattern before, during and after tVNS in three patients with possible electrographic status epilepticus. METHODS Three consecutive patients with possible electrographic status epilepticus were included after due consenting process. In addition to the standard care, tVNS was applied on the left ear over the cymba concha in two sessions, 6 h apart, with each session for 45 min. Continuous EEG monitoring was performed as standard of care and the findings before, during and after tVNS were documented. RESULTS The duration of status epilepticus at the time of inclusion of Patients 1, 2, and 3 was 6 weeks, 7 days, and 5 days respectively. All were in coma and on multiple antiseizure medications. Patient 1 and 3 were on anesthetic infusions. Before stimulation, one patient had burst suppression pattern and two had generalized periodic discharges at 1 Hz frequency. We observed a significant reduction/resolution of ongoing EEG patterns in all three patients during the stimulation. The abnormal patterns re-emerged approximately 20 min post cessation of tVNS. No stimulation-related side effects were detected. There was no change in clinical status, but all three patients had severe underlying conditions. SIGNIFICANCE Transcutaneous auricular Vagus Nerve Stimulation (tVNS) is a potential noninvasive adjuvant therapy that can modulate EEG patterns in patients with Status epilepticus. Larger studies in early SE are needed to assess its clinical benefits.
Collapse
Affiliation(s)
| | - Ananya Rakesh Sharma
- Department of Physiotherapy, St. Johns Medical College and Hospitals, Bengaluru, India
| | - Anil T John
- Department of Physiotherapy, St. Johns Medical College and Hospitals, Bengaluru, India
| |
Collapse
|
14
|
Lundstrom BN, Osman GM, Starnes K, Gregg NM, Simpson HD. Emerging approaches in neurostimulation for epilepsy. Curr Opin Neurol 2023; 36:69-76. [PMID: 36762660 PMCID: PMC9992108 DOI: 10.1097/wco.0000000000001138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW Neurostimulation is a quickly growing treatment approach for epilepsy patients. We summarize recent approaches to provide a perspective on the future of neurostimulation. RECENT FINDINGS Invasive stimulation for treatment of focal epilepsy includes vagus nerve stimulation, responsive neurostimulation of the cortex and deep brain stimulation of the anterior nucleus of the thalamus. A wide range of other targets have been considered, including centromedian, central lateral and pulvinar thalamic nuclei; medial septum, nucleus accumbens, subthalamic nucleus, cerebellum, fornicodorsocommissure and piriform cortex. Stimulation for generalized onset seizures and mixed epilepsies as well as increased efforts focusing on paediatric populations have emerged. Hardware with more permanently implanted lead options and sensing capabilities is emerging. A wider variety of programming approaches than typically used may improve patient outcomes. Finally, noninvasive brain stimulation with its favourable risk profile offers the potential to treat increasingly diverse epilepsy patients. SUMMARY Neurostimulation for the treatment of epilepsy is surprisingly varied. Flexibility and reversibility of neurostimulation allows for rapid innovation. There remains a continued need for excitability biomarkers to guide treatment and innovation. Neurostimulation, a part of bioelectronic medicine, offers distinctive benefits as well as unique challenges.
Collapse
Affiliation(s)
| | | | - Keith Starnes
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hugh D Simpson
- Department of Neurology, Alfred Health
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Bonardi CM, Furlanis GM, Toldo I, Guarrera B, Luisi C, Pettenazzo A, Nosadini M, Boniver C, Sartori S, Landi A. Myoclonic super-refractory status epilepticus with favourable evolution in a teenager with FIRES: Is the association of vagus nerve stimulation and cannabidiol effective? Brain Dev 2023; 45:293-299. [PMID: 36725381 DOI: 10.1016/j.braindev.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Febrile infection-related epilepsy syndrome (FIRES) is a rare and catastrophic clinical syndrome occurring in previously healthy patients. Aetiology is still unknown and outcome usually poor. We describe a case of myoclonic prolonged super refractory status epilepticus (P-SRSE) in FIRES in a patient admitted to the paediatric intensive care unit of Padova, Italy. CASE REPORT A previously healthy 14-year-old girl with onset of myoclonic status epilepticus after a mild febrile illness was admitted to our hospital with a diagnosis of FIRES. Extensive diagnostic work-up was inconclusive. Status epilepticus and electroclinical seizures recurred every time weaning from anaesthetic agents was attempted. Eventually, a vagal nerve stimulator (VNS) was implanted and cannabidiol (CBD) administered, 43 days and 70 days after P-SRSE onset, respectively. Two days after CBD introduction, status epilepticus weaned and the girl rapidly regained complete consciousness showing a brilliant and unexpected recovery. At last follow-up, 12 months later, she is 8-months seizure free on multiple antiseizure medications, has only mild neuropsychological impairment with no neurological and intellective deficit. CONCLUSIONS To our knowledge, this represents a unique case with an extremely favourable evolution with a possible effect of the association of VNS and CBD to traditional antiseizure medications.
Collapse
Affiliation(s)
- Claudia Maria Bonardi
- Paediatric Intensive Care Unit, Department of Woman's and Child's Health, Padua University Hospital, Padua, Italy
| | | | - Irene Toldo
- Paediatric Neurology and Neurophysiology Unit, Department of Woman's and Child's Health, Padua University Hospital, Padua, Italy
| | - Brando Guarrera
- Paediatric and Functional Neurosurgery Unit, Padua University Hospital, Padua, Italy
| | - Concetta Luisi
- Department of Neurosciences (DNS), University of Padua, Padua, Italy; Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Andrea Pettenazzo
- Paediatric Intensive Care Unit, Department of Woman's and Child's Health, Padua University Hospital, Padua, Italy
| | - Margherita Nosadini
- Paediatric Neurology and Neurophysiology Unit, Department of Woman's and Child's Health, Padua University Hospital, Padua, Italy
| | - Clementina Boniver
- Paediatric Neurology and Neurophysiology Unit, Department of Woman's and Child's Health, Padua University Hospital, Padua, Italy
| | - Stefano Sartori
- Paediatric Neurology and Neurophysiology Unit, Department of Woman's and Child's Health, Padua University Hospital, Padua, Italy; Department of Neurosciences (DNS), University of Padua, Padua, Italy.
| | - Andrea Landi
- Paediatric and Functional Neurosurgery Unit, Padua University Hospital, Padua, Italy; Department of Neurosciences (DNS), University of Padua, Padua, Italy
| |
Collapse
|
16
|
Mantoan Ritter L, Selway R. Perspective: Vagal nerve stimulation in the treatment of new-onset refractory status epilepticus. Front Neurol 2023; 14:1172898. [PMID: 37153661 PMCID: PMC10157031 DOI: 10.3389/fneur.2023.1172898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction Resistance to drug therapy is a major hurdle in new-onset refractory status epilepticus (NORSE) treatment and there is urgent need to develop new treatment approaches. Non-drug approaches such as neuromodulation offer significant benefits and should be investigated as new adjunct treatment modalities. An important unanswered question is whether desynchronizing networks by vagal nerve stimulation (VNS) may improve seizure control in NORSE patients. Main text We present a summary of published NORSE cases treated with VNS and our own data, discuss possible mechanisms of action, review VNS implantation timing, stimulation setting titration protocols and outcomes. Further, we propose avenues for future research. Discussion We advocate for consideration of VNS for NORSE both in early and late stages of the presentation and hypothesize a possible additional benefit from implantation in the acute phase of the disease. This should be pursued in the context of a clinical trial, harmonizing inclusion criteria, accuracy of documentation and treatment protocols. A study planned within our UK-wide NORSE-UK network will answer the question if VNS may confer benefits in aborting unremitting status epilepticus, modulate ictogenesis and reduce long-term chronic seizure burden.
Collapse
Affiliation(s)
- Laura Mantoan Ritter
- Epilepsy Centre, Clinical Neurosciences Department, King's College NHS Foundation Trust, London, United Kingdom
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- *Correspondence: Laura Mantoan Ritter
| | - Richard Selway
- Epilepsy Centre, Clinical Neurosciences Department, King's College NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
17
|
Katzell L, Beydler EM, Holbert R, Rodriguez-Roman L, Carr BR. Electroconvulsive therapy use for refractory status epilepticus in an implantable vagus nerve stimulation patient: A case report. Front Psychiatry 2023; 14:1126956. [PMID: 36816412 PMCID: PMC9935692 DOI: 10.3389/fpsyt.2023.1126956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Status epilepticus (SE) has a mortality rate of 20 to 50%, with acute symptomatic SE having a higher risk compared to chronic SE. Electroconvulsive therapy (ECT) has been utilized for the treatment of refractory SE with a success rate estimate of 57.9%. There are no known reported cases of concomitant use of vagus nerve stimulation (VNS) and ECT for the treatment of super refractory SE (SRSE) available in the literature. CASE DESCRIPTION We present a 44-year-old female with a history of developmental delay, epilepsy, an implantable VNS for 6 years, and traumatic brain injury with subsequent hygroma who presented with progressive aphasia, declining mental status, and daily generalized seizures lasting up to 20 min. Seizures had increased from her baseline of one seizure per day controlled with topiramate 200 mg three times daily and lamotrigine 400 mg twice daily. She was diagnosed with SRSE after being intubated and placed on eight anti-epileptic drugs (AEDs) that failed to abort SE. ECT was attempted to terminate SE. Due to a prior right craniotomy with subsequent right hygroma, eight treatments of ECT were performed over three sessions using a right anterior, left temporal (RALT) and subsequently a bitemporal electrode placement. The VNS remained active throughout treatment. Various ECT dosing parameters were attempted, varying pulse width and frequency. Although ECT induced mild transient encephalographic (EEG) changes following ECT stimulations, it was unable to terminate SE. DISCUSSION This case describes various treatment strategies, constraints, and device limitations when using ECT for the treatment of SE. With wide variability in efficacy rates of ECT in the treatment of SE in the literature, successful and unsuccessful cases offer information on optimizing ECT total charge dose and parameters that yielded success. This case demonstrates an instance of ECT inefficacy in the treatment of SRSE. Here, we discuss the rationale behind the various ECT settings that were selected, and constraints arising from the antiepileptic burden, VNS, and intrinsic limitations of the ECT device itself.
Collapse
Affiliation(s)
- Lauren Katzell
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Emily M Beydler
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Richard Holbert
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
| | | | - Brent R Carr
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
18
|
Haberbusch M, Kronsteiner B, Kramer AM, Kiss A, Podesser BK, Moscato F. Closed-loop vagus nerve stimulation for heart rate control evaluated in the Langendorff-perfused rabbit heart. Sci Rep 2022; 12:18794. [PMID: 36335207 PMCID: PMC9637096 DOI: 10.1038/s41598-022-23407-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
Persistent sinus tachycardia substantially increases the risk of cardiac death. Vagus nerve stimulation (VNS) is known to reduce the heart rate, and hence may be a non-pharmacological alternative for the management of persistent sinus tachycardia. To precisely regulate the heart rate using VNS, closed-loop control strategies are needed. Therefore, in this work, we developed two closed-loop VNS strategies using an in-silico model of the cardiovascular system. Both strategies employ a proportional-integral controller that operates on the current amplitude. While one control strategy continuously delivers stimulation pulses to the vagus nerve, the other applies bursts of stimuli in synchronization with the cardiac cycle. Both were evaluated in Langendorff-perfused rabbit hearts (n = 6) with intact vagal innervation. The controller performance was quantified by rise time (Tr), steady-state error (SSE), and percentual overshoot amplitude (%OS). In the ex-vivo setting, the cardiac-synchronized variant resulted in Tr = 10.7 ± 4.5 s, SSE = 12.7 ± 9.9 bpm and %OS = 5.1 ± 3.6% while continuous stimulation led to Tr = 10.2 ± 5.6 s, SSE = 10 ± 6.7 bpm and %OS = 3.2 ± 1.9%. Overall, both strategies produced a satisfying and reproducible performance, highlighting their potential use in persistent sinus tachycardia.
Collapse
Affiliation(s)
- Max Haberbusch
- grid.22937.3d0000 0000 9259 8492Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria ,grid.454395.aLudwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Bettina Kronsteiner
- grid.22937.3d0000 0000 9259 8492Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria ,grid.454395.aLudwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Anne-Margarethe Kramer
- grid.22937.3d0000 0000 9259 8492Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- grid.454395.aLudwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K. Podesser
- grid.454395.aLudwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Center for Biomedical Research, Medical University of Vienna, Vienna, Austria ,Ludwig Boltzmann Cluster for Tissue Regeneration, Vienna, Austria
| | - Francesco Moscato
- grid.22937.3d0000 0000 9259 8492Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria ,grid.454395.aLudwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria ,Ludwig Boltzmann Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
19
|
Mamaril-Davis J, Vessell M, Ball T, Palade A, Shafer C, Aguilar-Salinas P, Fowler B, Mirro E, Neimat J, Sagi V, Bina RW. Combined Responsive Neurostimulation and Focal Resection for Super Refractory Status Epilepticus: A Systematic Review and Illustrative Case Report. World Neurosurg 2022; 167:195-204.e7. [PMID: 35948220 DOI: 10.1016/j.wneu.2022.07.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Super-refractory status epilepticus (SRSE) is a neurologic emergency with high mortality and morbidity. Although medical algorithms typically are effective, when they do fail, options may be limited, and neurosurgical intervention should be considered. METHODS We report a case of SRSE treated acutely with responsive neurostimulation (RNS) and focal surgical resection after intracranial monitoring. We also conducted a systematic review of the literature for neurosurgical treatment of SRSE (e.g., neurostimulation). Only published manuscripts were considered. RESULTS Our patient's seizure semiology consisted of left facial twitching with frequent evolution to bilateral tonic-clonic convulsions. Stereoelectroencephalography and grid monitoring identified multiple seizure foci. The patient underwent right RNS placement with cortical strip leads over the lateral primary motor and premotor cortex as well as simultaneous right superior temporal and frontopolar resection. Status epilepticus resolved 21 days after surgical resection and placement of the RNS. The systematic review revealed 15 case reports describing 17 patients with SRSE who underwent acute neurosurgical intervention. There were 3 patients with SRSE with RNS placement as a single modality, all of whom experienced cessation of SE. Four patients with SRSE received vagus nerve stimulation (3 as a single modality and 1 with combined corpus callosotomy), of whom 1 had SE recurrence at 2weeks. Two patients with SRSE received deep brain stimulation, and the remaining 8 underwent surgical resection; none had recurrence of SE. CONCLUSIONS RNS System placement with or without resection can be a viable treatment option for select patients with SRSE. Early neurosurgical intervention may improve seizure outcomes and reduce complications.
Collapse
Affiliation(s)
- James Mamaril-Davis
- College of Medicine, The University of Arizona College of Medicine-Tucson, Tucson, Arizona, USA
| | - Meena Vessell
- Department of Neurosurgery, University of Louisville Restorative Neuroscience, Louisville, Kentucky, USA
| | - Tyler Ball
- Department of Neurosurgery, University of Louisville Restorative Neuroscience, Louisville, Kentucky, USA
| | - Adriana Palade
- Department of Neurology, University of Louisville, Louisville, Kentucky, USA
| | - Christopher Shafer
- Department of Neurology, University of Louisville, Louisville, Kentucky, USA
| | - Pedro Aguilar-Salinas
- Department of Neurosurgery, Banner University Medical Center/The University of Arizona, Tucson, Arizona, USA
| | | | - Emily Mirro
- Neuropace, Inc., Mountain View, California, USA
| | - Joseph Neimat
- Department of Neurosurgery, University of Louisville Restorative Neuroscience, Louisville, Kentucky, USA
| | - Vishwanath Sagi
- Department of Neurology, University of Louisville, Louisville, Kentucky, USA
| | - Robert W Bina
- Department of Neurosurgery, Banner University Medical Center/The University of Arizona-Phoenix, Phoenix, Arizona, USA.
| |
Collapse
|
20
|
Espino PH, Burneo JG, Moscol G, Gofton T, MacDougall K, Suller Marti A. Long-term outcomes after NORSE: Treatment with vagus nerve stimulation. Epilepsia Open 2022; 7:822-828. [PMID: 36177520 PMCID: PMC9712472 DOI: 10.1002/epi4.12654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022] Open
Abstract
New-onset refractory status epilepticus (NORSE) is associated with high mortality, therapy-resistant epilepsy (TRE), and poor cognitive and functional outcomes. Some patients develop multifocal TRE, for whom surgery with a curative intention, is not an option. In these patients, vagus nerve stimulation (VNS) is performed as a palliative treatment. We report the long-term outcomes regarding seizure frequency, functional and cognitive outcome, and effectiveness of VNS in two patients with TRE as a consequence of NORSE. In the first patient with cryptogenic NORSE, VNS implantation occurred during the acute stage, probably contributing to the cessation of her status epilepticus. However, in the long-term follow-up, the patient persisted with daily multifocal seizures. In the second patient, VNS implantation was delayed to manage his epilepsy when the NORSE, ultimately due to autoimmune encephalitis, had resolved. During long-term follow-up, no reduction in seizure frequency was achieved. This evidence supporting the use of VNS in patients with TRE after NORSE warrants further investigation.
Collapse
Affiliation(s)
- Poul H. Espino
- Epilepsy Program, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Jorge G. Burneo
- Epilepsy Program, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada,Neuroepidemiology Unit, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Gaby Moscol
- Epilepsy Program, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Teneille Gofton
- Epilepsy Program, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Keith MacDougall
- Epilepsy Program, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Ana Suller Marti
- Epilepsy Program, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada,Paediatrics Department, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| |
Collapse
|
21
|
Tzadok M, Verner R, Kann L, Tungala D, Gordon C, El Tahry R, Fahoum F. Rapid titration of VNS therapy reduces time-to-response in epilepsy. Epilepsy Behav 2022; 134:108861. [PMID: 35963047 DOI: 10.1016/j.yebeh.2022.108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Common titration strategies for vagus nerve stimulation (VNS) prioritize monitoring of tolerability during small increases in stimulation intensity over several months. Prioritization of tolerability is partially based on how quickly side effects can be perceived and reported by patients, and the delayed onset of clinical benefits from VNS. However, many practices assess the clinical benefit of VNS at one year after implantation, and excessive caution during the titration phase can significantly delay target dosing or prevent a patient from reaching a therapeutic dose entirely. OBJECTIVE This study aimed to characterize the relationship between titration speed and the onset of clinical response to VNS. METHODS To assess differences between more aggressive titration strategies and more conservative ones, we analyzed the relationship between time-to-dose and time-to-response using a weighted Cox regression. The target dose was empirically defined as 1.625 mA output current delivered at 250 microsecond pulse widths at 20 Hz. Patient-level outcomes and dosing data were segregated into fast (<3 months), medium (3-6 months), and slow (>6 months) cohorts based on their titration speed. RESULTS The statistical model revealed a significant relationship between titration speed and onset of clinical response, defined as a 50% reduction from baseline in seizure frequency. Frequency of adverse events reported between each cohort trended toward higher rates of adverse events in adults who were titrated quickly; however, the pediatric population appeared to be more tolerant of titration at any speed. CONCLUSIONS This analysis indicates that faster titration yields faster onset of clinical benefit and is especially practical in the pediatric population, though attempts to accelerate adult titration may still be warranted.
Collapse
Affiliation(s)
- Michal Tzadok
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.
| | - Ryan Verner
- LivaNova PLC (or a subsidiary), London, Great Britain, United Kingdom
| | - Lennart Kann
- LivaNova PLC (or a subsidiary), London, Great Britain, United Kingdom
| | - Deepika Tungala
- LivaNova PLC (or a subsidiary), London, Great Britain, United Kingdom
| | - Charles Gordon
- LivaNova PLC (or a subsidiary), London, Great Britain, United Kingdom
| | - Riëm El Tahry
- Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Centre for Refractory Epilepsy, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Firas Fahoum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
22
|
Wickstrom R, Taraschenko O, Dilena R, Payne ET, Specchio N, Nabbout R, Koh S, Gaspard N, Hirsch LJ. International consensus recommendations for management of New Onset Refractory Status Epilepticus (NORSE) incl. Febrile Infection-Related Epilepsy Syndrome (FIRES): Statements and Supporting Evidence. Epilepsia 2022; 63:2840-2864. [PMID: 35997591 PMCID: PMC9828002 DOI: 10.1111/epi.17397] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To develop consensus-based recommendations for the management of adult and paediatric patients with NORSE/FIRES based on best evidence and experience. METHODS The Delphi methodology was followed. A facilitator group of 9 experts was established, who defined the scope, users and suggestions for recommendations. Following a review of the current literature, recommendation statements concerning diagnosis, treatment and research directions were generated which were then voted on a scale of 1 (strongly disagree) to 9 (strongly agree) by a panel of 48 experts in the field. Consensus that a statement was appropriate was reached if the median score was greater or equal to 7, and inappropriate if the median score was less than or equal to 3. The analysis of evidence was mapped to the results of each statement included in the Delphi survey. RESULTS Overall, 85 recommendation statements achieved consensus. The recommendations are divided into five sections: 1) disease characteristics, 2) diagnostic testing and sampling, 3) acute treatment, 4) treatment in the post-acute phase, and 5) research, registries and future directions in NORSE/FIRES. The detailed results and discussion of all 85 statements are outlined herein. A corresponding summary of findings and practical flowsheets are presented in a companion article. SIGNIFICANCE This detailed analysis offers insight into the supporting evidence and the current gaps in the literature that are associated with expert consensus statements related to NORSE/FIRES. The recommendations generated by this consensus can be used as a guide for the diagnosis, evaluation, and management of patients with NORSE/FIRES, and for planning of future research.
Collapse
Affiliation(s)
- Ronny Wickstrom
- Neuropaediatric UnitDepartment of Women's and Children's HealthKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | - Olga Taraschenko
- Department of Neurological SciencesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Robertino Dilena
- Neuropathophysiology UnitFoundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Eric T. Payne
- Department of Pediatrics, Section of NeurologyAlberta Children's HospitalCalgaryAlbertaCanada
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of NeurosciencesBambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARERomeItaly
| | - Rima Nabbout
- Department of Pediatric Neurology, APHP, Member of EPICARE ERN, Centre de Reference Epilepsies RaresUniversite de Paris, Institut Imagine, INSERM 1163ParisFrance
| | - Sookyong Koh
- Department of Pediatrics, Children's Hospital and Medical CenterUniversity of NebraskaOmahaNebraskaUSA
| | | | - Lawrence J. Hirsch
- Department of Neurology, Comprehensive Epilepsy CenterYale UniversityNew HavenConnecticutUSA
| | | |
Collapse
|
23
|
Abstract
BACKGROUND This is an updated version of the Cochrane Review published in 2015. Epilepsy is a chronic neurological disorder, characterised by recurring, unprovoked seizures. Vagus nerve stimulation (VNS) is a neuromodulatory treatment that is used as an adjunctive therapy for treating people with drug-resistant epilepsy. VNS consists of chronic, intermittent electrical stimulation of the vagus nerve, delivered by a programmable pulse generator. OBJECTIVES To evaluate the efficacy and tolerability of VNS when used as add-on treatment for people with drug-resistant focal epilepsy. SEARCH METHODS For this update, we searched the Cochrane Register of Studies (CRS), and MEDLINE Ovid on 3 March 2022. We imposed no language restrictions. CRS Web includes randomised or quasi-randomised controlled trials from the Specialised Registers of Cochrane Review Groups, including Epilepsy, CENTRAL, PubMed, Embase, ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform. SELECTION CRITERIA We considered parallel or cross-over, randomised, double-blind, controlled trials of VNS as add-on treatment, which compared high- and low-level stimulation (including three different stimulation paradigms: rapid, mild, and slow duty-cycle), and VNS stimulation versus no stimulation, or a different intervention. We considered adults or children with drug-resistant focal seizures who were either not eligible for surgery, or who had failed surgery. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods, assessing the following outcomes: 1. 50% or greater reduction in seizure frequency 2. Treatment withdrawal (any reason) 3. Adverse effects 4. Quality of life (QoL) 5. Cognition 6. Mood MAIN RESULTS We did not identify any new studies for this update, therefore, the conclusions are unchanged. We included the five randomised controlled trials (RCT) from the last update, with a total of 439 participants. The baseline phase ranged from 4 to 12 weeks, and double-blind treatment phases from 12 to 20 weeks. We rated two studies at an overall low risk of bias, and three at an overall unclear risk of bias, due to lack of reported information about study design. Effective blinding of studies of VNS is difficult, due to the frequency of stimulation-related side effects, such as voice alteration. The risk ratio (RR) for 50% or greater reduction in seizure frequency was 1.73 (95% confidence interval (CI) 1.13 to 2.64; 4 RCTs, 373 participants; moderate-certainty evidence), showing that high frequency VNS was over one and a half times more effective than low frequency VNS. The RR for treatment withdrawal was 2.56 (95% CI 0.51 to 12.71; 4 RCTs, 375 participants; low-certainty evidence). Results for the top five reported adverse events were: hoarseness RR 2.17 (99% CI 1.49 to 3.17; 3 RCTs, 330 participants; moderate-certainty evidence); cough RR 1.09 (99% CI 0.74 to 1.62; 3 RCTs, 334 participants; moderate-certainty evidence); dyspnoea RR 2.45 (99% CI 1.07 to 5.60; 3 RCTs, 312 participants; low-certainty evidence); pain RR 1.01 (99% CI 0.60 to 1.68; 2 RCTs; 312 participants; moderate-certainty evidence); paraesthesia 0.78 (99% CI 0.39 to 1.53; 2 RCTs, 312 participants; moderate-certainty evidence). Results from two studies (312 participants) showed that a small number of favourable QOL effects were associated with VNS stimulation, but results were inconclusive between high- and low-level stimulation groups. One study (198 participants) found inconclusive results between high- and low-level stimulation for cognition on all measures used. One study (114 participants) found the majority of participants showed an improvement in mood on the Montgomery-Åsberg Depression Rating Scale compared to baseline, but results between high- and low-level stimulation were inconclusive. We found no important heterogeneity between studies for any of the outcomes. AUTHORS' CONCLUSIONS VNS for focal seizures appears to be an effective and well-tolerated treatment. Results of the overall efficacy analysis show that high-level stimulation reduced the frequency of seizures better than low-level stimulation. There were very few withdrawals, which suggests that VNS is well tolerated. Adverse effects associated with implantation and stimulation were primarily hoarseness, cough, dyspnoea, pain, paraesthesia, nausea, and headache, with hoarseness and dyspnoea more likely to occur with high-level stimulation than low-level stimulation. However, the evidence for these outcomes is limited, and of moderate to low certainty. Further high-quality research is needed to fully evaluate the efficacy and tolerability of VNS for drug-resistant focal seizures.
Collapse
Affiliation(s)
- Mariangela Panebianco
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alexandra Rigby
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anthony G Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
- Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
24
|
Wheless JW, Friedman D, Krauss GL, Rao VR, Sperling MR, Carrazana E, Rabinowicz AL. Future Opportunities for Research in Rescue Treatments. Epilepsia 2022; 63 Suppl 1:S55-S68. [PMID: 35822912 PMCID: PMC9541657 DOI: 10.1111/epi.17363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Clinical studies of rescue medications for seizure clusters are limited and are designed to satisfy regulatory requirements, which may not fully consider the needs of the diverse patient population that experiences seizure clusters or utilize rescue medication. The purpose of this narrative review is to examine the factors that contribute to, or may influence the quality of, seizure cluster research with a goal of improving clinical practice. We address five areas of unmet needs and provide advice for how they could enhance future trials of seizure cluster treatments. The topics addressed in this article are: (1) unaddressed end points to pursue in future studies, (2) roles for devices to enhance rescue medication clinical development programs, (3) tools to study seizure cluster prediction and prevention, (4) the value of other designs for seizure cluster studies, and (5) unique challenges of future trial paradigms for seizure clusters. By focusing on novel end points and technologies with value to patients, caregivers, and clinicians, data obtained from future studies can benefit the diverse patient population that experiences seizure clusters, providing more effective, appropriate care as well as alleviating demands on health care resources.
Collapse
Affiliation(s)
- James W Wheless
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Daniel Friedman
- New York University Grossman School of Medicine, New York, New York, USA
| | - Gregory L Krauss
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vikram R Rao
- University of California, San Francisco, California, USA
| | | | - Enrique Carrazana
- Neurelis, San Diego, California, USA.,John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | | |
Collapse
|
25
|
Luo T, Wang Y, Lu G, Zhou Y, Wang Y. Vagus nerve stimulation for super-refractory status epilepticus in febrile infection-related epilepsy syndrome: a pediatric case report and literature review. Childs Nerv Syst 2022; 38:1401-1404. [PMID: 34762158 DOI: 10.1007/s00381-021-05410-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022]
Abstract
Febrile infection-related epilepsy syndrome (FIRES) is a devastating epileptic encephalopathy with limited treatment options and unclear etiology. Vagus nerve stimulation (VNS) is an FDA-approved therapy for refractory epilepsy that has been shown to decrease the frequency and severity of seizures. There is a growing interest in alternate non-pharmaceutical therapies for managing super-refractory status epilepticus (SRSE). We present a 29-month-old case, diagnosed with FIRES, whose seizures were successfully controlled by utilization of VNS after ineffective response to intensive pharmacotherapy and ketogenic diet treatment. The VNS was planted after 14 days of refractory seizure activity with a following rapid parameter titration for 42 days without evident side effect, which finally controlled the seizure in the acute phase. VNS may be a potential candidate for the treatment of SRSE in FIRES.
Collapse
Affiliation(s)
- Tian Luo
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399, Wanyuan Road, Minhang District, Shanghai, China
| | - Yixue Wang
- Department of Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoping Lu
- Department of Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yuanfeng Zhou
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399, Wanyuan Road, Minhang District, Shanghai, China.
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399, Wanyuan Road, Minhang District, Shanghai, China.
| |
Collapse
|
26
|
Factors associated with mortality in patients with super-refractory status epilepticus. Sci Rep 2022; 12:9670. [PMID: 35690663 PMCID: PMC9188563 DOI: 10.1038/s41598-022-13726-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022] Open
Abstract
Super-refractory status epilepticus (SRSE) is a critical condition in which seizures persist despite anesthetic use for 24 h or longer. High mortality has been reported in patients with SRSE, but the cause of death remains unclear. We investigated the factors associated with mortality, including clinical characteristics, SE etiologies and severities, treatments, and responses in patients with SRSE in a 13-year tertiary hospital-based retrospective cohort study comparing these parameters between deceased and surviving patients. SRSE accounted for 14.2% of patients with status epilepticus, and 28.6% of SRSE patients died. Deceased patients were mostly young or middle-aged without known systemic diseases or epilepsy. All deceased patients experienced generalized convulsive status epilepticus and failure of anesthetic tapering-off, significantly higher than survivors. An increased number of second-line anesthetics besides midazolam was observed in the deceased (median, 3, interquartile range 2–3) compared to surviving (1, 1–1; p = 0.0006) patients with prolonged use durations (p = 0.047). For mortality, the cut-off number of second-line anesthetics was 1.5 (AUC = 0.906, p = 0.004). Deceased patients had significantly higher renal and cardiac complications and metabolic acidosis than survivors. In SRSE management, multi-anesthetic use should be carefully controlled to avoid systemic complications and mortality.
Collapse
|
27
|
Möbius H, Welkoborsky HJ. Vagus nerve stimulation for conservative therapy-refractive epilepsy and depression. Laryngorhinootologie 2022; 101:S114-S143. [PMID: 35605616 DOI: 10.1055/a-1660-5591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Numerous studies confirm that the vagus nerve stimulation (VNS) is an efficient, indirect neuromodulatory therapy with electrically induced current for epilepsy that cannot be treated by epilepsy surgery and is therapy-refractory and for drug therapy-refractory depression. VNS is an established, evidence-based and in the long-term cost-effective therapy in an interdisciplinary overall concept.Long-term data on the safety and tolerance of the method are available despite the heterogeneity of the patient populations. Stimulation-related side effects like hoarseness, paresthesia, cough or dyspnea depend on the stimulation strength and often decrease with continuing therapy duration in the following years. Stimulation-related side effects of VNS can be well influenced by modifying the stimulation parameters. Overall, the invasive vagus nerve stimulation may be considered as a safe and well-tolerated therapy option.For invasive and transcutaneous vagus nerve stimulation, antiepileptic and antidepressant as well as positive cognitive effects could be proven. In contrast to drugs, VNS has no negative effect on cognition. In many cases, an improvement of the quality of life is possible.iVNS therapy has a low probability of complete seizure-freedom in cases of focal and genetically generalized epilepsy. It must be considered as palliative therapy, which means that it does not lead to healing and requires the continuation of specific medication. The functional principle is a general reduction of the neuronal excitability. This effect is achieved by a slow increase of the effectiveness sometimes over several years. Responders are those patients who experience a 50% reduction of the seizure incidence. Some studies even reveal seizure-freedom in 20% of the cases. Currently, it is not possible to differentiate between potential responders and non-responders before therapy/implantation.The current technical developments of the iVNS generators of the new generation like closed-loop system (cardiac-based seizure detection, CBSD) reduce also the risk for SUDEP (sudden unexpected death in epilepsy patients), a very rare, lethal complication of epilepsies, beside the seizure severity.iVNS may deteriorate an existing sleep apnea syndrome and therefore requires possible therapy interruption during nighttime (day-night programming or magnet use) beside the close cooperation with sleep physicians.The evaluation of the numerous iVNS trials of the past two decades showed multiple positive effects on other immunological, cardiological, and gastroenterological diseases so that additional therapy indications may be expected depending on future study results. Currently, the vagus nerve stimulation is in the focus of research in the disciplines of psychology, immunology, cardiology as well as pain and plasticity research with the desired potential of future medical application.Beside invasive vagus nerve stimulation with implantation of an IPG and an electrode, also devices for transdermal and thus non-invasive vagus nerve stimulation have been developed during the last years. According to the data that are currently available, they are less effective with regard to the reduction of the seizure severity and duration in cases of therapy-refractory epilepsy and slightly less effective regarding the improvement of depression symptoms. In this context, studies are missing that confirm high evidence of effectiveness. The same is true for the other indications that have been mentioned like tinnitus, cephalgia, gastrointestinal complaints etc. Another disadvantage of transcutaneous vagus nerve stimulation is that the stimulators have to be applied actively by the patients and are not permanently active, in contrast to implanted iVNS therapy systems. So they are only intermittently active; furthermore, the therapy adherence is uncertain.
Collapse
Affiliation(s)
- H Möbius
- Klinik für HNO-Heilkunde, Kopf- und Halschirurgie, KRH Klinikum Nordstadt, Hannover.,Abt. für HNO-Heilkunde, Kinderkrankenhaus auf der Bult, Hannover
| | - H J Welkoborsky
- Klinik für HNO-Heilkunde, Kopf- und Halschirurgie, KRH Klinikum Nordstadt, Hannover.,Abt. für HNO-Heilkunde, Kinderkrankenhaus auf der Bult, Hannover
| |
Collapse
|
28
|
Trinka E, Leitinger M. Management of Status Epilepticus, Refractory Status Epilepticus, and Super-refractory Status Epilepticus. Continuum (Minneap Minn) 2022; 28:559-602. [PMID: 35393970 DOI: 10.1212/con.0000000000001103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Status epilepticus is a serious condition caused by disorders and diseases that affect the central nervous system. In status epilepticus, hypersynchronous epileptic activity lasts longer than the usual duration of isolated self-limited seizures (time t1), which causes neuronal damage or alteration of neuronal networks at a certain time point (time t2), depending on the type of and duration of status epilepticus. The successful management of status epilepticus includes both the early termination of seizure activity and the earliest possible identification of a causative etiology, which may require independent acute treatment. In nonconvulsive status epilepticus, patients present only with subtle clinical signs or even without any visible clinical manifestations. In these cases, EEG allows for the assessment of cerebral function and identification of patterns in need of urgent treatment. RECENT FINDINGS In 2015, the International League Against Epilepsy proposed a new definition and classification of status epilepticus, encompassing four axes: symptomatology, etiology, EEG, and age. Various validation studies determined the practical usefulness of EEG criteria to identify nonconvulsive status epilepticus. The American Clinical Neurophysiology Society has incorporated these criteria into their most recent critical care EEG terminology in 2021. Etiology, age, symptomatology, and the metabolic demand associated with an increasing duration of status epilepticus are the most important determinants of prognosis. The consequences of status epilepticus can be visualized in vivo by MRI studies. SUMMARY The current knowledge about status epilepticus allows for a more reliable diagnosis, earlier treatment, and improved cerebral imaging of its consequences. Outcome prediction is a soft tool for estimating the need for intensive care resources.
Collapse
|
29
|
Haberbusch M, Frullini S, Moscato F. A Numerical Model of the Acute Cardiac Effects Provoked by Cervical Vagus Nerve Stimulation. IEEE Trans Biomed Eng 2022; 69:613-623. [PMID: 34357860 DOI: 10.1109/tbme.2021.3102416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Today, the diverse acute cardiac effects of vagus nerve stimulation (VNS) are still not fully understood. Therefore, we propose a numerical model that can predict the acute cardiac responses to VNS and explain the underlying mechanisms on different levels. METHODS We integrated a model of vagal nerve fiber recruitment and acetylcholine (ACh) kinetics at vagal nerve terminals into a cardiovascular system model. A sensitivity analysis was performed to identify the most important parameters of vagal cardiac pathways. These parameters were tuned, and the model was validated based on published data of experiments in anesthetized sheep. RESULTS The four most important parameters are related to vagus nerve anatomy (electrode-fiber distances, fiber diameters) and ACh kinetics in the vagal neuroeffector junction (rate of ACh release and -hydrolysis) which together explain >53% of the observed variability in acute cardiac responses to VNS. The mean electrode-fiber distance and nerve fiber diameters obtained from tuning are 1.3 ± 0.09 mm, and 4.9 ± 0.25 μm; the ACh release and -hydrolysis rate constants are 0.023 s-1 and 0.77 s-1, respectively. With this parameterization, the model could accurately predict published data on the acute cardiac effects of VNS. CONCLUSIONS The model can explain the cardiac responses to VNS on multiple levels. The results highlight the importance of four parameters tied to ACh dynamics and vagus nerve anatomy for predicting the cardiac effects of VNS. SIGNIFICANCE The model represents a substantial improvement in terms of comprehensibility of the underlying mechanisms of the acute cardiac responses to VNS.
Collapse
|
30
|
Abstract
Three neuromodulation therapies, all using implanted device and electrodes, have been
approved to treat adults with drug-resistant focal epilepsy, namely, the vagus nerve
stimulation in 1995, deep brain stimulation of the anterior nucleus of the thalamus
(ANT-DBS) in 2018 (2010 in Europe), and responsive neurostimulation (RNS) in 2014.
Indications for VNS have more recently extended to children down to age of 4. Limited or
anecdotal data are available in other epilepsy syndromes and refractory/super-refractory
status epilepticus. Overall, neuromodulation therapies are palliative, with only a
minority of patients achieving long-term seizure freedom, justifying favoring such
treatments in patients who are not good candidates for curative epilepsy surgery. About
half of patients implanted with VNS, ANT-DBS, and RNS have 50% or greater reduction in
seizures, with long-term data suggesting increased efficacy over time. Besides their
impact on seizure frequency, neuromodulation therapies are associated with various
benefits and drawbacks in comparison to antiseizure drugs. Yet, we lack high-level
evidence to best position each neuromodulation therapy in the treatment pathways of
persons with difficult-to-treat epilepsy.
Collapse
Affiliation(s)
- Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lara E. Jehi
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
31
|
Stavropoulos I, Pak HL, Valentin A. Neuromodulation in Super-refractory Status Epilepticus. J Clin Neurophysiol 2021; 38:494-502. [PMID: 34261110 DOI: 10.1097/wnp.0000000000000710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY Status epilepticus (SE) is a severe condition that needs immediate pharmacological treatment to tackle brain damage and related side effects. In approximately 20% of cases, the standard treatment for SE does not control seizures, and the condition evolves to refractory SE. If refractory status epilepticus lasts more than 24 hours despite the use of anesthetic treatment, the condition is redefined as super-refractory SE (srSE). sRSE is a destructive condition, potentially to cause severe brain damage. In this review, we discuss the clinical neuromodulation techniques for controlling srSE when conventional treatments have failed: electroconvulsive therapy, vagus nerve stimulation, transcranial magnetic stimulation, and deep brain stimulation. Data show that neuromodulation therapies can abort srSE in >80% of patients. However, no randomized, prospective, and controlled trials have been completed, and data are provided only by retrospective small case series and case reports with obvious inclination to publication bias. There is a need for further investigation into the use of neuromodulation techniques as an early treatment of srSE and to address whether an earlier intervention can prevent long-term complications.
Collapse
Affiliation(s)
- Ioannis Stavropoulos
- Department of Clinical Neurophysiology, King's College Hospital, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; and
| | - Ho Lim Pak
- Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Antonio Valentin
- Department of Clinical Neurophysiology, King's College Hospital, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; and
| |
Collapse
|
32
|
Zhu J, Xu C, Zhang X, Qiao L, Wang X, Zhang X, Yan X, Ni D, Yu T, Zhang G, Li Y. Altered topological properties of brain functional networks in drug-resistant epilepsy patients with vagus nerve stimulators. Seizure 2021; 92:149-154. [PMID: 34521062 DOI: 10.1016/j.seizure.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To explore abnormalities of topological properties in drug-resistant epilepsy (DRE) patients after vagus nerve stimulation (VNS) by analyzing brain functional networks using graph theory. METHODS Fifteen patients and eight healthy controls (HC) were scanned separately with resting-state functional magnetic resonance imaging (rs-fMRI). Graph theoretical analyses were chosen to compare the global (small-world parameters [γ, λ, σ, Cp, and Lp], and network efficiency [Eg and Eloc]), and nodal (BC, DC, and NE) properties in preoperative patients (EPpre), postoperative patients (EPpost) and HC. RESULTS HC, EPpre and EPpost all satisfied the criteria for small-world properties (σ > 1) within the sparsity range of 0.05-0.5. Compared with EPpre, EPpost performed higher in λ and Eloc but lower in γ, σ, and Cp. Compared with HC, EPpre exhibited decreased BC, DC or NE in the right inferior frontal gyrus, right superior temporal gyrus, bilateral cingulate gyri, right supplementary motor area, right superior occipital gyrus, right Heschl gyrus, and left calcarine fissure; increased BC in the left postcentral/precentral gyrus, right paracentral lobule, left rolandic operculum, and left supramarginal gyrus, and increased NE in the right caudate nucleus. Compared with EPpre, EPpost showed increased BC, DC or NE in the bilateral inferior frontal gyrus, right middle frontal gyrus, bilateral cingulate gyri, right superior temporal gyrus, and right Heschl gyrus and decreased BC in the left fusiform gyrus. CONCLUSION VNS downregulated small-world properties in DRE, and caused changes in some key nodes to reorganize the transmission ability of the large-scale network.
Collapse
Affiliation(s)
- Jin Zhu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Xi Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China.
| |
Collapse
|
33
|
Altidor LKP, Bruner MM, Deslauriers JF, Garman TS, Ramirez S, Dirr EW, Olczak KP, Maurer AP, Lamb DG, Otto KJ, Burke SN, Bumanglag AV, Setlow B, Bizon JL. Acute vagus nerve stimulation enhances reversal learning in rats. Neurobiol Learn Mem 2021; 184:107498. [PMID: 34332068 DOI: 10.1016/j.nlm.2021.107498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/24/2021] [Indexed: 01/19/2023]
Abstract
Cognitive flexibility is a prefrontal cortex-dependent neurocognitive process that enables behavioral adaptation in response to changes in environmental contingencies. Electrical vagus nerve stimulation (VNS) enhances several forms of learning and neuroplasticity, but its effects on cognitive flexibility have not been evaluated. In the current study, a within-subjects design was used to assess the effects of VNS on performance in a novel visual discrimination reversal learning task conducted in touchscreen operant chambers. The task design enabled simultaneous assessment of acute VNS both on reversal learning and on recall of a well-learned discrimination problem. Acute VNS delivered in conjunction with stimuli presentation during reversal learning reliably enhanced learning of new reward contingencies. Enhancement was not observed, however, if VNS was delivered during the session but was not coincident with presentation of to-be-learned stimuli. In addition, whereas VNS delivered at 30 HZ enhanced performance, the same enhancement was not observed using 10 or 50 Hz. Together, these data show that acute VNS facilitates reversal learning and indicate that the timing and frequency of the VNS are critical for these enhancing effects. In separate rats, administration of the norepinephrine reuptake inhibitor atomoxetine also enhanced reversal learning in the same task, consistent with a noradrenergic mechanism through which VNS enhances cognitive flexibility.
Collapse
Affiliation(s)
| | - Matthew M Bruner
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Tyler S Garman
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Saúl Ramirez
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Elliott W Dirr
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kaitlynn P Olczak
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
| | - Damon G Lamb
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
| | - Kevin J Otto
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Argyle V Bumanglag
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA.
| |
Collapse
|
34
|
Saitov G, Müller A, Bastian B, Michalski D. [Pharmacotherapy and intensive care aspects of status epilepticus: update 2020/2021]. Anaesthesist 2021; 70:874-887. [PMID: 34212230 PMCID: PMC8492596 DOI: 10.1007/s00101-021-01000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 11/30/2022]
Abstract
Die gezielte Therapie epileptischer Ereignisse und im Speziellen des Status epilepticus (SE) setzt das sichere Erkennen der Krankheitsbilder voraus, wofür gerade bei Formen mit vorwiegend nichtmotorischen Symptomen klinische und elektroenzephalographische Expertise notwendig ist. Die im Jahr 2020 erfolgte Fortschreibung der deutschen Leitlinie zur Behandlung des SE hält an der streng stufengerechten Therapie fest, die eskalierend die Anwendung von Benzodiazepinen, spezifischen Antiepileptika und Anästhetika vorsieht. Bisher ist die Eingrenzung eines in den allermeisten Fällen wirksamen sowie zugleich sicheren und interaktionsfreien Antiepileptikums nicht gelungen. Individuelle Vorerkrankungen und aktuelle Begleitumstände gehen daher genauso wie Erfahrungen des Behandlerteams in die differenzierte Behandlung des SE ein. Insbesondere bei therapierefraktären Formen des SE erweist sich die Therapie als durchaus kompliziert und hat regelhaft intensivmedizinische Implikationen. Mithin ergeben sich im Zuge der modernen SE-Behandlung zahlreiche interdisziplinäre Schnittstellen. Zukünftige wissenschaftliche Fragstellungen werden sich u. a. mit der optimalen Therapie des nonkonvulsiven SE und hier v. a. dem Ausmaß und dem Zeitpunkt von adäquaten Therapieschritten sowie mit assoziierten ethischen Fragen einer Therapieeskalation beschäftigen.
Collapse
Affiliation(s)
- Gabrielė Saitov
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland.
| | - Annekatrin Müller
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - Börge Bastian
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - Dominik Michalski
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland.
| |
Collapse
|
35
|
Kirmani BF, Au K, Ayari L, John M, Shetty P, Delorenzo RJ. Super-Refractory Status Epilepticus: Prognosis and Recent Advances in Management. Aging Dis 2021; 12:1097-1119. [PMID: 34221552 PMCID: PMC8219503 DOI: 10.14336/ad.2021.0302] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Super-refractory status epilepticus (SRSE) is a life-threatening neurological emergency with high morbidity and mortality. It is defined as “status epilepticus (SE) that continues or recurs 24 hours or more after the onset of anesthesia, including those cases in which SE recurs on the reduction or withdrawal of anesthesia.” This condition is resistant to normal protocols used in the treatment of status epilepticus and exposes patients to increased risks of neuronal death, neuronal injury, and disruption of neuronal networks if not treated in a timely manner. It is mainly seen in patients with severe acute onset brain injury or presentation of new-onset refractory status epilepticus (NORSE). The mortality, neurological deficits, and functional impairments are significant depending on the duration of status epilepticus and the resultant brain damage. Research is underway to find the cure for this devastating neurological condition. In this review, we will discuss the wide range of therapies used in the management of SRSE, provide suggestions regarding its treatment, and comment on future directions. The therapies evaluated include traditional and alternative anesthetic agents with antiepileptic agents. The other emerging therapies include hypothermia, steroids, immunosuppressive agents, electrical and magnetic stimulation therapies, emergent respective epilepsy surgery, the ketogenic diet, pyridoxine infusion, cerebrospinal fluid drainage, and magnesium infusion. To date, there is a lack of robust published data regarding the safety and effectiveness of various therapies, and there continues to be a need for large randomized multicenter trials comparing newer therapies to treat this refractory condition.
Collapse
Affiliation(s)
- Batool F Kirmani
- 1Texas A&M University College of Medicine, College Station, TX, USA.,3Epilepsy and Functional Neurosurgery Program, Department of Neurology, CHI St. Joseph Health, Bryan, TX, USA
| | - Katherine Au
- 2George Washington University, School of Medicine & Health Sciences, Washington DC, USA
| | - Lena Ayari
- 1Texas A&M University College of Medicine, College Station, TX, USA
| | - Marita John
- 1Texas A&M University College of Medicine, College Station, TX, USA
| | - Padmashri Shetty
- 4M. S. Ramaiah Medical College, M. S. Ramaiah Nagar, Bengaluru, Karnataka, India
| | - Robert J Delorenzo
- 5Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|
36
|
Graley C, Aubert R, Gowda SN, Holloway K. Responsive neuro stimulation [RNS] system for management of refractory status epilepticus. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2020.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Yang JC, Harid NM, Nascimento FA, Kokkinos V, Shaughnessy A, Lam AD, Westover MB, Leslie-Mazwi TM, Hochberg LR, Rosenthal ES, Cole AJ, Richardson RM, Cash SS. Responsive neurostimulation for focal motor status epilepticus. Ann Clin Transl Neurol 2021; 8:1353-1361. [PMID: 33955717 PMCID: PMC8164849 DOI: 10.1002/acn3.51318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
No clear evidence‐based treatment paradigm currently exists for refractory and super‐refractory status epilepticus, which can result in significant mortality and morbidity. While patients are typically treated with antiepileptic drugs and anesthetics, neurosurgical neuromodulation techniques can also be considered. We present a novel case in which responsive neurostimulation was used to effectively treat a patient who had developed super‐refractory status epilepticus, later consistent with epilepsia partialis continua, that was refractory to antiepileptic drugs, immunomodulatory therapies, and transcranial magnetic stimulation. This case demonstrates how regional therapy provided by responsive neurostimulation can be effective in treating super‐refractory status epilepticus through neuromodulation of seizure networks.
Collapse
Affiliation(s)
- Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nitish M Harid
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fábio A Nascimento
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abigail Shaughnessy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alice D Lam
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thabele M Leslie-Mazwi
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leigh R Hochberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew J Cole
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert M Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
38
|
[S2k guidelines: status epilepticus in adulthood : Guidelines of the German Society for Neurology]. DER NERVENARZT 2021; 92:1002-1030. [PMID: 33751150 PMCID: PMC8484257 DOI: 10.1007/s00115-020-01036-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 01/16/2023]
Abstract
This S2k guideline on diagnosis and treatment of status epilepticus (SE) in adults is based on the last published version from 2021. New definitions and evidence were included in the guideline and the clinical pathway. A seizures lasting longer than 5 minutes (or ≥ 2 seizures over more than 5 mins without intermittend recovery to the preictal neurological state. Initial diagnosis should include a cCT or, if possible, an MRI. The EEG is highly relevant for diagnosis and treatment-monitoring of non-convulsive SE and for the exclusion or diagnosis of psychogenic non-epileptic seizures. As the increasing evidence supports the relevance of inflammatory comorbidities (e.g. pneumonia) related clinical chemistry should be obtained and repeated over the course of a SE treatment, and antibiotic therapy initiated if indicated.Treatment is applied on four levels: 1. Initial SE: An adequate dose of benzodiazepine is given i.v., i.m., or i.n.; 2. Benzodiazepine-refractory SE: I.v. drugs of 1st choice are levetiracetam or valproate; 3. Refractory SE (RSE) or 4. Super-refractory SE (SRSE): I.v. propofol or midazolam alone or in combination or thiopental in anaesthetic doses are given. In focal non-convulsive RSE the induction of a therapeutic coma depends on the circumstances and is not mandatory. In SRSE the ketogenic diet should be given. I.v. ketamine or inhalative isoflorane can be considered. In selected cased electroconvulsive therapy or, if a resectable epileptogenic zone can be defined epilepsy surgery can be applied. I.v. allopregnanolone or systemic hypothermia should not be used.
Collapse
|
39
|
Efficacy and safety of adjunctive vagus nerve stimulation in the treatment of resistant depression with psychotic features: A case report. Brain Stimul 2021; 14:498-499. [PMID: 33713864 DOI: 10.1016/j.brs.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
|
40
|
Ochoa JG, Dougherty M, Papanastassiou A, Gidal B, Mohamed I, Vossler DG. Treatment of Super-Refractory Status Epilepticus: A Review. Epilepsy Curr 2021; 21:1535759721999670. [PMID: 33719651 PMCID: PMC8652329 DOI: 10.1177/1535759721999670] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Super-refractory status epilepticus (SRSE) presents management challenges due to the absence of randomized controlled trials and a plethora of potential medical therapies. The literature on treatment options for SRSE reports variable success and quality of evidence. This review is a sequel to the 2020 American Epilepsy Society (AES) comprehensive review of the treatment of convulsive refractory status epilepticus (RSE). METHODS We sought to determine the effectiveness of treatment options for SRSE. We performed a structured literature search (MEDLINE, Embase, CENTRAL, CINAHL) for studies on reported treatments of SRSE. We excluded antiseizure medications (ASMs) covered in the 2016 AES guideline on the treatment of established SE and the convulsive RSE comprehensive review of the 2020 AES. Literature was reviewed on the effectiveness of vagus nerve stimulation, ketogenic diet (KD), lidocaine, inhalation anesthetics, brain surgery, therapeutic hypothermia, perampanel, pregabalin (PGB), and topiramate in the treatment of SRSE. Two authors reviewed each therapeutic intervention. We graded the level of the evidence according to the 2017 classification scheme of the American Academy of Neurology. RESULTS For SRSE (level U; 39 class IV studies total), insufficient evidence exists to support that perampanel, PGB, lidocaine, or acute vagus nerve stimulation (VNS) is effective. For children and adults with SRSE, insufficient evidence exists to support that the KD is effective (level U; 5 class IV studies). For adults with SRSE, insufficient evidence exists that brain surgery is effective (level U, 7 class IV studies). For adults with SRSE insufficient, evidence exists that therapeutic hypothermia is effective (level C, 1 class II and 4 class IV studies). For neonates with hypoxic-ischemic encephalopathy, insufficient evidence exists that therapeutic hypothermia reduces seizure burden (level U; 1 class IV study). For adults with SRSE, insufficient evidence exists that inhalation anesthetics are effective (level U, 1 class IV study) and that there is a potential risk of neurotoxicity. CONCLUSION For patients with SRSE insufficient, evidence exists that any of the ASMs reviewed, inhalational anesthetics, ketogenic diet, acute VNS, brain surgery, and therapeutic hypothermia are effective treatments. Data supporting the use of these treatments for SRSE are scarce and limited mainly to small case series and case reports and are confounded by differences in patients' population, and comedications, among other factors.
Collapse
Affiliation(s)
| | | | | | | | - Ismail Mohamed
- Department of Pediatrics, University of Alabama, Birmingham, USA
| | - David G. Vossler
- University of Washington, Seattle, WA, USA
- Treatments Committee, American Epilepsy Society, Chicago, IL, USA
| |
Collapse
|
41
|
Mantoan Ritter L, Nashef L. New-onset refractory status epilepticus (NORSE). Pract Neurol 2021; 21:practneurol-2020-002534. [PMID: 33674412 DOI: 10.1136/practneurol-2020-002534] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2021] [Indexed: 11/04/2022]
Abstract
New-onset refractory status epilepticus and its subcategory febrile infection-related epilepsy syndrome are rare devastating clinical presentations in those without pre-existing relevant history, often in schoolchildren or young adults, without a clear cause on initial investigations. A cause is later identified in up to half of adults, but in many fewer children. Patients often require protracted intensive care and are at significant risk of dying. Functional disability is common and subsequent chronic epilepsy is the norm, but some people do have good outcomes, even after prolonged status epilepticus. Patients need prompt investigations and treatment. Anaesthetic and antiseizure medications are supplemented by other treatment modalities, including the ketogenic diet. Despite limited evidence, it is appropriate to try to modify the presumed underlying pathogenesis with immune modulation early, with a more recent focus on using interleukin inhibitors. Optimising management will require concerted multicentre international efforts.
Collapse
Affiliation(s)
- Laura Mantoan Ritter
- Department of Neurology, King's College Hospital, London, UK
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Lina Nashef
- Department of Neurology, King's College Hospital, London, UK
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Randomized controlled trials investigating the initial pharmacological treatment of status epilepticus have been recently published. Furthermore, status epilepticus arising in comatose survivors after cardiac arrest has received increasing attention in the last years. This review offers an updated assessment of status epilepticus treatment in these different scenarios. RECENT FINDINGS Initial benzodiazepines underdosing is common and correlates with development of status epilepticus refractoriness. The recently published ESETT trial provides high-level evidence regarding the equivalence of fosphenytoin, valproate, and levetiracetam as a second-line option. Myoclonus or epileptiform transients on electroencephalography occur in up to 1/3 of patients surviving a cardiac arrest. Contrary to previous assumptions regarding an almost invariable association with death, at least 1/10 of them may awaken with reasonably good prognosis, if treated. Multimodal prognostication including clinical examination, EEG, somatosensory evoked potentials, biochemical markers, and neuroimaging help identifying patients with a chance to recover consciousness, in whom a trial with antimyoclonic compounds and at times general anesthetics is indicated. SUMMARY There is a continuous, albeit relatively slow progress in knowledge regarding different aspect of status epilepticus; recent findings refine some treatment strategies and help improving patients' outcomes. Further high-quality studies are clearly needed to further improve the management of these patients, especially those with severe, refractory status epilepticus forms.
Collapse
|
43
|
MUCHAMAD GR, HANAYA R, MARUYAMA S, YONEE C, HOSOYAMA H, BABA Y, SATO M, SANO N, OTSUBO T, YOSHIMOTO K. Effects of Vagus Nerve Stimulation on Sustained Seizure Clusters: A Case Report. NMC Case Rep J 2021; 8:123-128. [PMID: 35079453 PMCID: PMC8769382 DOI: 10.2176/nmccrj.cr.2020-0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/25/2020] [Indexed: 11/25/2022] Open
Abstract
Seizure clusters (SCs) are acute repetitive seizures with acute episodes of deterioration during seizure control. SCs can be defined as a series of grouped seizures with short interictal periods. Vagus nerve stimulation (VNS) is a treatment option for drug-resistant epilepsy. We present a case where VNS suppressed epileptic SCs, which had persisted for several months. A 13-year-old boy with congenital cerebral palsy and mental retardation had drug-resistant epilepsy with daily jerking movements and spasms in both sides of his body. The seizures were often clustered, and he experienced two sustained SC episodes that persisted for a few months even with prolonged use of continuous intravenous midazolam (IV-MDZ). The patient underwent VNS device placement at the second sustained SC and rapid induction of VNS. Because the tapering of IV-MDZ did not exacerbate the SC, midazolam was discontinued 4 weeks after VNS initiation. Non-refractory SCs also disappeared 10 months after VNS. The seizure severity was improved, and the frequency of seizures reduced from daily to once every few months. The epileptic activity on electroencephalography (EEG) significantly decreased. This case highlights VNS as an additional treatment option for SC. VNS may be a therapeutic option if SC resists the drugs and sustains. Additional studies are necessary to confirm our findings and to investigate how device implantation and stimulation parameters affect the efficacy of VNS.
Collapse
Affiliation(s)
- Galih Ricci MUCHAMAD
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Ryosuke HANAYA
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
- Epilepsy Center, Kagoshima University Hospital, Kagoshima, Kagoshima, Japan
| | - Shinsuke MARUYAMA
- Epilepsy Center, Kagoshima University Hospital, Kagoshima, Kagoshima, Japan
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Chihiro YONEE
- Epilepsy Center, Kagoshima University Hospital, Kagoshima, Kagoshima, Japan
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Hiroshi HOSOYAMA
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
- Epilepsy Center, Kagoshima University Hospital, Kagoshima, Kagoshima, Japan
| | - Yusei BABA
- Epilepsy Center, Kagoshima University Hospital, Kagoshima, Kagoshima, Japan
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Masanori SATO
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
- Epilepsy Center, Kagoshima University Hospital, Kagoshima, Kagoshima, Japan
| | - Nozomi SANO
- Department of Pediatrics, Minami Kyushu National Hospital, Aira, Kagoshima, Japan
| | - Toshiaki OTSUBO
- Department of Neurosurgery, Fujimoto General Hospital, Miyakonojo, Miyazaki, Japan
| | - Koji YOSHIMOTO
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| |
Collapse
|
44
|
Sangare A, Marchi A, Pruvost-Robieux E, Soufflet C, Crepon B, Ramdani C, Chassoux F, Turak B, Landre E, Gavaret M. The Effectiveness of Vagus Nerve Stimulation in Drug-Resistant Epilepsy Correlates with Vagus Nerve Stimulation-Induced Electroencephalography Desynchronization. Brain Connect 2020; 10:566-577. [PMID: 33073582 PMCID: PMC7757623 DOI: 10.1089/brain.2020.0798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction: VNS is an adjunctive neuromodulation therapy for patients with drug-refractory epilepsy. The antiseizure effect of VNS is thought to be related to a diffuse modulation of functional connectivity but remains to be confirmed. Aim: To investigate electroencephalographic (EEG) metrics of functional connectivity in patients with drug-refractory epilepsy treated by vagus nerve stimulation (VNS), between VNS-stimulated “ON” and nonstimulated “OFF” periods and between responder (R) and nonresponder (NR) patients. Methods: Scalp-EEG was performed for 35 patients treated by VNS, using 21 channels and 2 additional electrodes on the neck to detect the VNS stimulation. Patients were defined as VNS responders if a reduction of seizure frequency of ∼50% was documented. We analyzed the synchronization in EEG time series during “ON” and “OFF” periods of stimulation, using average phase lag index (PLI) in signal space and phase-locking value (PLV) between 10 sources. Based on graph theory, we computed brain network models and analyzed minimum spanning tree (MST) for responder and nonresponder patients. Results: Among 35 patients treated by VNS for a median time of 7 years (range 4 months to 22 years), 20 were R and 15 were NR. For responder patients, PLI during ON periods was significantly lower than that during OFF periods in delta (p = 0.009), theta (p = 0.02), and beta (p = 0.04) frequency bands. For nonresponder patients, there were no significant differences between ON and OFF periods. Moreover, variations of seizure frequency with VNS correlated with the PLI OFF/ON ratio in delta (p = 0.02), theta (p = 0.04), and beta (p = 0.03) frequency bands. Our results were confirmed using PLV in theta band (p < 0.05). No significant differences in MST were observed between R and NR patients. Conclusion: The correlation between VNS-induced interictal EEG time-series desynchronization and decrease in seizure frequency suggested that VNS therapeutic impact might be related to changes in interictal functional connectivity.
Collapse
Affiliation(s)
- Aude Sangare
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Angela Marchi
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Estelle Pruvost-Robieux
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France.,Université de Paris, Paris, France
| | - Christine Soufflet
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Benoit Crepon
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Céline Ramdani
- Institut de Recherche Biomédicale des Armées (IRBA), Paris, France
| | - Francine Chassoux
- Neurosurgery and Epileptology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Baris Turak
- Neurosurgery and Epileptology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Elisabeth Landre
- Neurosurgery and Epileptology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Martine Gavaret
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France.,Université de Paris, Paris, France.,INSERM UMR 1266, IPNP, Paris, France
| |
Collapse
|
45
|
Toffa DH, Touma L, El Meskine T, Bouthillier A, Nguyen DK. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: A critical review. Seizure 2020; 83:104-123. [PMID: 33120323 DOI: 10.1016/j.seizure.2020.09.027] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades after its introduction as an adjuvant therapeutic option in the management of selective drug-resistant epilepsy cases (DRE), vagus nerve stimulation (VNS) retains growing interest. An implantable device was first approved for epilepsy in Europe in 1994 and in the United States (US) in 1997. Subsequent modifications improved the safety and the efficacy of the system. The most recent application of vagal neurostimulation is represented by transcutaneous devices that are claimed to have strong therapeutic potential. In this review, we sought to analyze the most meaningful available data describing the indications, safety and efficacy of the different approaches of VNS in clinical practice. Therefore, we identified studies reporting VNS efficacy and/or safety in epilepsy and its comorbidities from January 1990 to February 2020 from various databases including PubMed, Scopus, Cochrane, US government databases and VNS manufacturer published resources. In general, VNS efficacy becomes optimal around the sixth month of treatment and a 50-100 % seizure frequency reduction is achieved in approximately 45-65 % of the patients. However, some clinically relevant differences have been reported with specific factors such as epilepsy etiology or type, patient age as well as the delay of VNS therapy onset. VNS efficacy on seizure frequency has been demonstrated in both children and adults, in lesional and non-lesional cases, in focal and generalized epilepsies, on both seizures and epilepsy comorbidities. Regarding the latter, VNS can lead to an improvement of about 25-35 % in depression scores, 35 % in anxiety scores and 25 % in mood assessment scores. If non-invasive devices are undeniably safer, their efficacy is limited due to the scarcity of large cohort studies and the disparity of methodological approaches (study design and stimulation parameters). Overall, we believe that there is a progress margin for improving the safety of implantable devices and, above all, the effectiveness of the various VNS approaches.
Collapse
Affiliation(s)
- Dènahin Hinnoutondji Toffa
- Department of Neurology, CHUM, University of Montreal, Montreal, Canada; CHUM Research Center, University of Montreal, Montreal, Canada.
| | - Lahoud Touma
- Department of Neurology, CHUM, University of Montreal, Montreal, Canada
| | | | - Alain Bouthillier
- Department of Neurosurgery, CHUM, University of Montreal, Montreal, Canada
| | - Dang Khoa Nguyen
- Department of Neurology, CHUM, University of Montreal, Montreal, Canada; CHUM Research Center, University of Montreal, Montreal, Canada
| |
Collapse
|
46
|
Marras CE, Colicchio G, De Palma L, De Benedictis A, Di Gennaro G, Cavaliere M, Cesaroni E, Consales A, Asioli S, Caulo M, Villani F, Zamponi N. Health Technology Assessment Report on Vagus Nerve Stimulation in Drug-Resistant Epilepsy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6150. [PMID: 32847092 PMCID: PMC7504285 DOI: 10.3390/ijerph17176150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 01/12/2023]
Abstract
Background: Vagus nerve stimulation (VNS) is a palliative treatment for medical intractable epileptic syndromes not eligible for resective surgery. Health technology assessment (HTA) represents a modern approach to the analysis of technologies used for healthcare. The purpose of this study is to assess the clinical, organizational, financial, and economic impact of VNS therapy in drug-resistant epilepsies and to establish the congruity between costs incurred and health service reimbursement. Methods: The present study used an HTA approach. It is based on an extensive detailed bibliographic search on databases (Medline, Pubmed, Embase and Cochrane, sites of scientific societies and institutional sites). The HTA study includes the following issues: (a) social impact and costs of the disease; (b) VNS eligibility and clinical results; (c) quality of life (QoL) after VNS therapy; (d) economic impact and productivity regained after VNS; and (e) costs of VNS. Results: Literature data indicate VNS as an effective treatment with a potential positive impact on social aspects and on quality of life. The diagnosis-related group (DRG) financing, both on national and regional levels, does not cover the cost of the medical device. There was an evident insufficient coverage of the DRG compared to the full cost of implanting the device. Conclusions: VNS is a palliative treatment for reducing seizure frequency and intensity. Despite its economic cost, VNS should improve patients' quality of life and reduce care needs.
Collapse
Affiliation(s)
- Carlo Efisio Marras
- Neurosurgery Unit, Department of Neuroscience, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy; (A.D.B.); (M.C.)
| | - Gabriella Colicchio
- Department of Neurosurgery, UCSC Gemelli University Hospital, 00167 Rome, Italy;
| | - Luca De Palma
- Pediatric Neurology Unit, Department of Neuroscience, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy;
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy; (A.D.B.); (M.C.)
| | | | - Marilou Cavaliere
- Neurosurgery Unit, Department of Neuroscience, IRCCS Bambino Gesù Children Hospital, 00165 Rome, Italy; (A.D.B.); (M.C.)
- Institute of Neurosurgery, University of Milan Bicocca, 20900 Milan, Italy
| | - Elisabetta Cesaroni
- Pediatric Neurology Unit, Salesi Children Hospital, 60123 Ancona, Italy; (E.C.); (N.Z.)
| | | | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, Bellaria Hospital, University of Bologna, 40139 Bologna, Italy;
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti, 66100 Chieti, Italy;
| | - Flavio Villani
- Division of Clinical Neurophysiology and Epilepsy Center, IRCCS, San Martino Hospital, 16132 Genoa, Italy;
| | - Nelia Zamponi
- Pediatric Neurology Unit, Salesi Children Hospital, 60123 Ancona, Italy; (E.C.); (N.Z.)
| |
Collapse
|
47
|
Willems LM, Bauer S, Jahnke K, Voss M, Rosenow F, Strzelczyk A. Therapeutic Options for Patients with Refractory Status Epilepticus in Palliative Settings or with a Limitation of Life-Sustaining Therapies: A Systematic Review. CNS Drugs 2020; 34:801-826. [PMID: 32705422 PMCID: PMC8316215 DOI: 10.1007/s40263-020-00747-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Refractory status epilepticus (RSE) represents a serious medical condition requiring early and targeted therapy. Given the increasing number of elderly or multimorbid patients with a limitation of life-sustaining therapy (LOT) or within a palliative care setting (PCS), guidelines-oriented therapy escalation options for RSE have to be omitted frequently. OBJECTIVES This systematic review sought to summarize the evidence for fourth-line antiseizure drugs (ASDs) and other minimally or non-invasive therapeutic options beyond guideline recommendations in patients with RSE to elaborate on possible treatment options for patients undergoing LOT or in a PCS. METHODS A systematic review of the literature in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, focusing on fourth-line ASDs or other minimally or non-invasive therapeutic options was performed in February and June 2020 using the MEDLINE, EMBASE and Cochrane databases. The search terminology was constructed using the name of the specific ASD or therapy option and the term 'status epilepticus' with the use of Boolean operators, e.g. "(brivaracetam) AND (status epilepticus)". The respective Medical Subject Headings (MeSH) and Emtree terms were used, if available. RESULTS There is currently no level 1, grade A evidence for the use of ASDs in RSE. The best evidence was found for the use of lacosamide and topiramate (level 3, grade C), followed by brivaracetam, perampanel (each level 4, grade D) and stiripentol, oxcarbazepine and zonisamide (each level 5, grade D). Regarding non-medicinal options, there is little evidence for the use of the ketogenic diet (level 4, grade D) and magnesium sulfate (level 5, grade D) in RSE. The broad use of immunomodulatory or immunosuppressive treatment options in the absence of a presumed autoimmune etiology cannot be recommended; however, if an autoimmune etiology is assumed, steroid pulse, intravenous immunoglobulins and plasma exchange/plasmapheresis should be considered (level 4, grade D). Even if several studies suggested that the use of neurosteroids (level 5, grade D) is beneficial in RSE, the current data situation indicates that there is formal evidence against it. CONCLUSIONS RSE in patients undergoing LOT or in a PCS represents a challenge for modern clinicians and epileptologists. The evidence for the use of ASDs in RSE beyond that in current guidelines is low, but several effective and well-tolerated options are available that should be considered in this patient population. More so than in any other population, advance care planning, advance directives, and medical ethical aspects have to be considered carefully before and during therapy.
Collapse
Affiliation(s)
- Laurent M Willems
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Sebastian Bauer
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kolja Jahnke
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Voss
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neuro-Oncology, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Neurology, Epilepsy Center Hessen, Philipps University Marburg, Marburg (Lahn), Germany
| |
Collapse
|
48
|
Lin KL, Lin JJ, Wang HS. Application of ketogenic diets for pediatric neurocritical care. Biomed J 2020; 43:218-225. [PMID: 32641260 PMCID: PMC7424092 DOI: 10.1016/j.bj.2020.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
In this review, we summarize the general mechanisms of the ketogenic diet, and the application of a ketogenic diet in pediatric intensive care units for the neurological disorders of children and young infants. A ketogenic diet is a high-fat, low-carbohydrate, adequate-protein diet. It can alter the primary cerebral energy metabolism from glucose to ketone bodies, which involves multiple mechanisms of antiepileptic action, antiepileptogenic properties, neuro-protection, antioxidant and anti-inflammatory effects, and it is potentially a disease-modifying intervention. Although a ketogenic diet is typically used for the chronic stage of pharmacoresistant of epilepsy, recent studies have shown its efficacy in patients with the acute stage of refractory/super-refractory status epilepticus. The application of a ketogenic diet in pediatric intensive care units is a challenge because of the critical status of the patients, who are often in a coma or have a nothing by mouth order. Moreover, a ketogenic diet needs to be started early and sometimes through parenteral administration in patients with critical conditions such as refractory status epilepticus or febrile infection-related epilepsy syndrome. Animal models and some case reports have shown that the neuro-protective effects of a ketogenic diet can be extended to other emergent neurological diseases, such as traumatic brain injury and ischemic stroke.
Collapse
Affiliation(s)
- Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jann-Jim Lin
- Division of Pediatric Critical Care and Pediatric Neurocritical Care Center, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huei-Shyong Wang
- Division of Pediatric Neurology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
49
|
Specchio N, Ferretti A, Pietrafusa N, Trivisano M, Calabrese C, Carfì Pavia G, De Benedictis A, Marras CE, de Palma L, Vigevano F. Refractory Status Epilepticus in Genetic Epilepsy-Is Vagus Nerve Stimulation an Option? Front Neurol 2020; 11:443. [PMID: 32595584 PMCID: PMC7303322 DOI: 10.3389/fneur.2020.00443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
Refractory and super-refractory status epilepticus (RSE, SRSE) are severe conditions that can have long-term neurological consequences with high morbidity and mortality rates. The usefulness of vagus nerve-stimulation (VNS) implantation during RSE has been documented by anecdotal cases and in systematic reviews; however, the use of VNS in RSE has not been widely adopted. We successfully implanted VNS in two patients with genetic epilepsy admitted to hospital for SRSE; detailed descriptions of the clinical findings and VNS parameters are provided. Our patients were implanted 25 and 58 days after status epilepticus (SE) onset, and a stable remission of SE was observed from the seventh and tenth day after VNS implantation, respectively, without change in anti-seizure medication. We used a fast ramp-up of stimulation without evident side effects. Our results support the consideration of VNS implantation as a safe and effective adjunctive treatment for SRSE.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Alessandro Ferretti
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Pietrafusa
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Costanza Calabrese
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Giusy Carfì Pavia
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca de Palma
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Federico Vigevano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| |
Collapse
|
50
|
Limanskaya AV, Busygina II, Levichkina EV, Pigarev IN. Complex Visceral Coupling During Central Sleep Apnea in Cats. Front Neurosci 2020; 14:568. [PMID: 32625050 PMCID: PMC7311805 DOI: 10.3389/fnins.2020.00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Central sleep apnea is a sudden arrest of breathing during sleep caused by the central commands to the thoracoabdominal muscles. It is a widespread phenomenon in both healthy and diseased people, as well as in some animals. However, there is an ongoing debate whether it can be considered as a pathological deviation of the respiratory function or an adaptive mechanism of an unclear function. We performed chronic recordings from six behaving cats over multiple sleep/wake cycles, which included electroencephalogram, ECG, eye movements, air flow, and thoracic respiratory muscle movements, and in four cats combined that with the registration of myoelectric activity of the stomach and the duodenum. In these experiments, we observed frequent central cessations of breathing (for 5-13 s) during sleep. Each of the sleep apnea episodes was accompanied by a stereotypical complex of somatic and visceral effects. The heart rate increased 3-5 s before the respiration arrest and strongly decreased during the absence of respiration. The myoelectric activity of the stomach and the duodenum also often demonstrated a strong suppression during the apnea episodes. The general composition of the visceral effects was stable during all periods of observation (up to 3 years in one cat). We hypothesize that the stereotypic coupling of activities in various visceral systems during episodes of central sleep apnea most likely reflects a complex adaptive behavior rather than an isolated respiratory pathology and discuss the probable function of this phenomenon.
Collapse
Affiliation(s)
- Alexandra V. Limanskaya
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Irina I. Busygina
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Ekaterina V. Levichkina
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ivan N. Pigarev
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|