1
|
Küçük E, Foxwell M, Kaiser D, Pitcher D. Moving and Static Faces, Bodies, Objects, and Scenes Are Differentially Represented across the Three Visual Pathways. J Cogn Neurosci 2024; 36:2639-2651. [PMID: 38527070 PMCID: PMC11602004 DOI: 10.1162/jocn_a_02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Models of human cortex propose the existence of neuroanatomical pathways specialized for different behavioral functions. These pathways include a ventral pathway for object recognition, a dorsal pathway for performing visually guided physical actions, and a recently proposed third pathway for social perception. In the current study, we tested the hypothesis that different categories of moving stimuli are differentially processed across the dorsal and third pathways according to their behavioral implications. Human participants (n = 30) were scanned with fMRI while viewing moving and static stimuli from four categories (faces, bodies, scenes, and objects). A whole-brain group analysis showed that moving bodies and moving objects increased neural responses in the bilateral posterior parietal cortex, parts of the dorsal pathway. By contrast, moving faces and moving bodies increased neural responses, the superior temporal sulcus, part of the third pathway. This pattern of results was also supported by a separate ROI analysis showing that moving stimuli produced more robust neural responses for all visual object categories, particularly in lateral and dorsal brain areas. Our results suggest that dynamic naturalistic stimuli from different categories are routed in specific visual pathways that process dissociable behavioral functions.
Collapse
Affiliation(s)
| | | | - Daniel Kaiser
- University of York
- Justus-Liebig-Universität Gießen
- Philipps-Universität Marburg and Justus-Liebig-Universität Gießen
| | | |
Collapse
|
2
|
Ciricugno A, Ferrari C, Battelli L, Cattaneo Z. A chronometric study of the posterior cerebellum's function in emotional processing. Curr Biol 2024; 34:1844-1852.e3. [PMID: 38565141 DOI: 10.1016/j.cub.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The posterior cerebellum is a recently discovered hub of the affective and social brain, with different subsectors contributing to different social functions. However, very little is known about when the posterior cerebellum plays a critical role in social processing. Due to its location and anatomy, it has been difficult to use traditional approaches to directly study the chronometry of the cerebellum. To address this gap in cerebellar knowledge, here we investigated the causal contribution of the posterior cerebellum to social processing using a chronometric transcranial magnetic stimulation (TMS) approach. We show that the posterior cerebellum is recruited at an early stage of emotional processing (starting from 100 ms after stimulus onset), simultaneously with the posterior superior temporal sulcus (pSTS), a key node of the social brain. Moreover, using a condition-and-perturb TMS approach, we found that the recruitment of the pSTS in emotional processing is dependent on cerebellar activation. Our results are the first to shed light on chronometric aspects of cerebellar function and its causal functional connectivity with other nodes of the social brain.
Collapse
Affiliation(s)
- Andrea Ciricugno
- IRCCS C. Mondino Foundation, Via Mondino, Pavia 27100, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia 27100, Italy
| | - Chiara Ferrari
- IRCCS C. Mondino Foundation, Via Mondino, Pavia 27100, Italy; Department of Humanities, University of Pavia, Piazza Botta 6, Pavia 27100, Italy
| | - Lorella Battelli
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Kirstein Building KS 158, Boston, MA 02215, USA; Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, Rovereto 38068, Italy
| | - Zaira Cattaneo
- Department of Human and Social Sciences, University of Bergamo, Piazzale S. Agostino 2, Bergamo 24129, Italy.
| |
Collapse
|
3
|
Pitcher D, Sliwinska MW, Kaiser D. TMS disruption of the lateral prefrontal cortex increases neural activity in the default mode network when naming facial expressions. Soc Cogn Affect Neurosci 2023; 18:nsad072. [PMID: 38048419 PMCID: PMC10695328 DOI: 10.1093/scan/nsad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Recognizing facial expressions is dependent on multiple brain networks specialized for different cognitive functions. In the current study, participants (N = 20) were scanned using functional magnetic resonance imaging (fMRI), while they performed a covert facial expression naming task. Immediately prior to scanning thetaburst transcranial magnetic stimulation (TMS) was delivered over the right lateral prefrontal cortex (PFC), or the vertex control site. A group whole-brain analysis revealed that TMS induced opposite effects in the neural responses across different brain networks. Stimulation of the right PFC (compared to stimulation of the vertex) decreased neural activity in the left lateral PFC but increased neural activity in three nodes of the default mode network (DMN): the right superior frontal gyrus, right angular gyrus and the bilateral middle cingulate gyrus. A region of interest analysis showed that TMS delivered over the right PFC reduced neural activity across all functionally localised face areas (including in the PFC) compared to TMS delivered over the vertex. These results suggest that visually recognizing facial expressions is dependent on the dynamic interaction of the face-processing network and the DMN. Our study also demonstrates the utility of combined TMS/fMRI studies for revealing the dynamic interactions between different functional brain networks.
Collapse
Affiliation(s)
- David Pitcher
- Department of Psychology, University of York, Heslington, York YO105DD, UK
| | | | - Daniel Kaiser
- Mathematical Institute, Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-Universität Gießen, Gießen 35392, Germany
- Center for Mind, Brain and Behaviour, Philipps-Universität Marburg, and Justus-Liebig-Universität Gießen, Marburg 35032, Germany
| |
Collapse
|
4
|
Pitcher D, Ianni GR, Holiday K, Ungerleider LG. Identifying the cortical face network with dynamic face stimuli: A large group fMRI study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559583. [PMID: 37886588 PMCID: PMC10602036 DOI: 10.1101/2023.09.26.559583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Functional magnetic resonance imaging (fMRI) studies have identified a network of face-selective regions distributed across the human brain. In the present study, we analyzed data from a large group of gender-balanced participants to investigate how reliably these face-selective regions could be identified across both cerebral hemispheres. Participants ( N =52) were scanned with fMRI while viewing short videos of faces, bodies, and objects. Results revealed that five face-selective regions: the fusiform face area (FFA), posterior superior temporal sulcus (pSTS), anterior superior temporal sulcus (aSTS), inferior frontal gyrus (IFG) and the amygdala were all larger in the right than in the left hemisphere. The occipital face area (OFA) was larger in the right hemisphere as well, but the difference between the hemispheres was not significant. The neural response to moving faces was also greater in face-selective regions in the right than in the left hemisphere. An additional analysis revealed that the pSTS and IFG were significantly larger in the right hemisphere compared to other face-selective regions. This pattern of results demonstrates that moving faces are preferentially processed in the right hemisphere and that the pSTS and IFG appear to be the strongest drivers of this laterality. An analysis of gender revealed that face-selective regions were typically larger in females ( N =26) than males ( N =26), but this gender difference was not statistically significant.
Collapse
|
5
|
Ni HC, Chao YP, Tseng RY, Wu CT, Cocchi L, Chou TL, Chen RS, Gau SSF, Yeh CH, Lin HY. Lack of effects of four-week theta burst stimulation on white matter macro/microstructure in children and adolescents with autism. Neuroimage Clin 2023; 37:103324. [PMID: 36638598 PMCID: PMC9852693 DOI: 10.1016/j.nicl.2023.103324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Following the published behavioral and cognitive results of this single-blind parallel sham-controlled randomized clinical trial, the current study aimed to explore the impact of intermittent theta burst stimulation (iTBS), a variant of excitatory transcranial magnetic stimulation, over the bilateral posterior superior temporal sulci (pSTS) on white matter macro/microstructure in intellectually able children and adolescents with autism. Participants were randomized and blindly received active or sham iTBS for 4 weeks (the single-blind sham-controlled phase). Then, all participants continued to receive active iTBS for another 4 weeks (the open-label phase). The clinical results were published elsewhere. Here, we present diffusion magnetic resonance imaging data on potential changes in white matter measures after iTBS. Twenty-two participants in Active-Active group and 27 participants in Sham-Active group underwent multi-shell high angular resolution diffusion imaging (64-direction for b = 2000 & 1000 s/mm2, respectively) at baseline, week 4, and week 8. With longitudinal fixel-based analysis, we found no white matter changes following iTBS from baseline to week 4 (a null treatment by time interaction and a null within-group paired comparison in the Active-Active group), nor from baseline to week 8 (null within-group paired comparisons in both Active-Active and Sham-Active groups). As for the brain-symptoms relationship, we did not find baseline white matter metrics associated with symptom changes at week 4 in either group. Our results raise the question of what the minimal cumulative stimulation dose required to induce the white matter plasticity is.
Collapse
Affiliation(s)
- Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Deparment of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Rung-Yu Tseng
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chun-Hung Yeh
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan.
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Chen Q, Hattori T, Tomisato H, Ohara M, Hirata K, Yokota T. Turning and multitask gait unmask gait disturbance in mild-to-moderate multiple sclerosis: Underlying specific cortical thinning and connecting fibers damage. Hum Brain Mapp 2022; 44:1193-1208. [PMID: 36409700 PMCID: PMC9875928 DOI: 10.1002/hbm.26151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/08/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022] Open
Abstract
Multiple sclerosis (MS) causes gait and cognitive impairments that are partially normalized by compensatory mechanisms. We aimed to identify the gait tasks that unmask gait disturbance and the underlying neural correlates in MS. We included 25 patients with MS (Expanded Disability Status Scale score: median 2.0, interquartile range 1.0-2.5) and 19 healthy controls. Fast-paced gait examinations with inertial measurement units were conducted, including straight or circular walking with or without cognitive/motor tasks, and the timed up and go test (TUG). Receiver operating characteristic curve analysis was performed to distinguish both groups by the gait parameters. The correlation between gait parameters and cortical thickness or fractional anisotropy values was examined by using three-dimensional T1-weighted imaging and diffusion tensor imaging, respectively (corrected p < .05). Total TUG duration (>6.0 s, sensitivity 88.0%, specificity 84.2%) and stride velocity during cognitive dual-task circular walking (<1.12 m/s, 84.0%, 84.2%) had the highest discriminative power of the two groups. Deterioration of these gait parameters was correlated with thinner cortical thickness in regional areas, including the left precuneus and left temporoparietal junction, overlapped with parts of the default mode network, ventral attention network, and frontoparietal network. Total TUG duration was negatively correlated with fractional anisotropy values in the deep cerebral white matter areas. Turning and multitask gait may be optimal to unveil partially compensated gait disturbance in patients with mild-to-moderate MS through dynamic balance control and multitask processing, based on the structural damage in functional networks.
Collapse
Affiliation(s)
- Qingmeng Chen
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental ScienceTokyo Medical and Dental UniversityTokyoJapan
| | - Takaaki Hattori
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental ScienceTokyo Medical and Dental UniversityTokyoJapan
| | - Hiroshi Tomisato
- Radiology Center, Division of Integrated FacilitiesTokyo Medical and Dental University HospitalTokyoJapan
| | - Masahiro Ohara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental ScienceTokyo Medical and Dental UniversityTokyoJapan
| | - Kosei Hirata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental ScienceTokyo Medical and Dental UniversityTokyoJapan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental ScienceTokyo Medical and Dental UniversityTokyoJapan
| | | |
Collapse
|
7
|
Li K, Wang Q, Wang L, Huang Y. Cognitive dysfunctions in high myopia: An overview of potential neural morpho-functional mechanisms. Front Neurol 2022; 13:1022944. [PMID: 36408499 PMCID: PMC9669364 DOI: 10.3389/fneur.2022.1022944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 10/28/2023] Open
Abstract
Dementia and cognitive impairment (CIM) carry high levels of mortality. Visual impairment (VI) is linked with CIM risk. High myopia (HM) is a chronic disease frequently leading to irreversible blindness. Current opinion has shifted from retinal injury as the cause of HM to the condition being considered an eye-brain disease. However, the pathogenesis of this disease and the manner in which neural structures are damaged are poorly understood. This review comprehensively discusses the relationship between HM, the central nervous system, and CIM, together with the novel concept of three visual pathways, and possible research perspectives.
Collapse
Affiliation(s)
- Kaixiu Li
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Qun Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Nikel L, Sliwinska MW, Kucuk E, Ungerleider LG, Pitcher D. Measuring the response to visually presented faces in the human lateral prefrontal cortex. Cereb Cortex Commun 2022; 3:tgac036. [PMID: 36159205 PMCID: PMC9491845 DOI: 10.1093/texcom/tgac036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 12/04/2022] Open
Abstract
Neuroimaging studies identify multiple face-selective areas in the human brain. In the current study, we compared the functional response of the face area in the lateral prefrontal cortex to that of other face-selective areas. In Experiment 1, participants (n = 32) were scanned viewing videos containing faces, bodies, scenes, objects, and scrambled objects. We identified a face-selective area in the right inferior frontal gyrus (rIFG). In Experiment 2, participants (n = 24) viewed the same videos or static images. Results showed that the rIFG, right posterior superior temporal sulcus (rpSTS), and right occipital face area (rOFA) exhibited a greater response to moving than static faces. In Experiment 3, participants (n = 18) viewed face videos in the contralateral and ipsilateral visual fields. Results showed that the rIFG and rpSTS showed no visual field bias, while the rOFA and right fusiform face area (rFFA) showed a contralateral bias. These experiments suggest two conclusions; firstly, in all three experiments, the face area in the IFG was not as reliably identified as face areas in the occipitotemporal cortex. Secondly, the similarity of the response profiles in the IFG and pSTS suggests the areas may perform similar cognitive functions, a conclusion consistent with prior neuroanatomical and functional connectivity evidence.
Collapse
Affiliation(s)
- Lara Nikel
- Department of Psychology, University of York, Heslington , York YO10 5DD , UK
| | | | - Emel Kucuk
- Department of Psychology, University of York, Heslington , York YO10 5DD , UK
| | - Leslie G Ungerleider
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health , Bethesda, MD, 20892 , USA
| | - David Pitcher
- Department of Psychology, University of York, Heslington , York YO10 5DD , UK
| |
Collapse
|
9
|
Sliwinska MW, Searle LR, Earl M, O'Gorman D, Pollicina G, Burton AM, Pitcher D. Face learning via brief real-world social interactions includes changes in face-selective brain areas and hippocampus. Perception 2022; 51:521-538. [PMID: 35542977 PMCID: PMC9396469 DOI: 10.1177/03010066221098728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Making new acquaintances requires learning to recognise previously unfamiliar faces. In the current study, we investigated this process by staging real-world social interactions between actors and the participants. Participants completed a face-matching behavioural task in which they matched photographs of the actors (whom they had yet to meet), or faces similar to the actors (henceforth called foils). Participants were then scanned using functional magnetic resonance imaging (fMRI) while viewing photographs of actors and foils. Immediately after exiting the scanner, participants met the actors for the first time and interacted with them for 10 min. On subsequent days, participants completed a second behavioural experiment and then a second fMRI scan. Prior to each session, actors again interacted with the participants for 10 min. Behavioural results showed that social interactions improved performance accuracy when matching actor photographs, but not foil photographs. The fMRI analysis revealed a difference in the neural response to actor photographs and foil photographs across all regions of interest (ROIs) only after social interactions had occurred. Our results demonstrate that short social interactions were sufficient to learn and discriminate previously unfamiliar individuals. Moreover, these learning effects were present in brain areas involved in face processing and memory.
Collapse
Affiliation(s)
- Magdalena W Sliwinska
- School of Psychology, 4589Liverpool John Moores University, UK.,Department of Psychology, University of York, UK
| | | | - Megan Earl
- Department of Psychology, University of York, UK
| | | | | | | | | |
Collapse
|
10
|
Neuromodulation of facial emotion recognition in health and disease: A systematic review. Neurophysiol Clin 2022; 52:183-201. [DOI: 10.1016/j.neucli.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
|
11
|
Kessler R, Rusch KM, Wende KC, Schuster V, Jansen A. Revisiting the effective connectivity within the distributed cortical network for face perception. NEUROIMAGE: REPORTS 2021. [DOI: 10.1016/j.ynirp.2021.100045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Johnston A, Brown BB, Elson R. Synchronous facial action binds dynamic facial features. Sci Rep 2021; 11:7191. [PMID: 33785856 PMCID: PMC8010062 DOI: 10.1038/s41598-021-86725-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
We asked how dynamic facial features are perceptually grouped. To address this question, we varied the timing of mouth movements relative to eyebrow movements, while measuring the detectability of a small temporal misalignment between a pair of oscillating eyebrows-an eyebrow wave. We found eyebrow wave detection performance was worse for synchronous movements of the eyebrows and mouth. Subsequently, we found this effect was specific to stimuli presented to the right visual field, implicating the involvement of left lateralised visual speech areas. Adaptation has been used as a tool in low-level vision to establish the presence of separable visual channels. Adaptation to moving eyebrows and mouths with various relative timings reduced eyebrow wave detection but only when the adapting mouth and eyebrows moved asynchronously. Inverting the face led to a greater reduction in detection after adaptation particularly for asynchronous facial motion at test. We conclude that synchronous motion binds dynamic facial features whereas asynchronous motion releases them, allowing adaptation to impair eyebrow wave detection.
Collapse
Affiliation(s)
- Alan Johnston
- School of Psychology, University Park, The University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Ben B Brown
- School of Psychology, University Park, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ryan Elson
- School of Psychology, University Park, The University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
13
|
Iarrobino I, Bongiardina A, Dal Monte O, Sarasso P, Ronga I, Neppi-Modona M, Actis-Grosso R, Salatino A, Ricci R. Right and left inferior frontal opercula are involved in discriminating angry and sad facial expressions. Brain Stimul 2021; 14:607-615. [PMID: 33785407 DOI: 10.1016/j.brs.2021.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/21/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Neuroimaging studies suggest that the inferior frontal operculum (IFO) is part of a neuronal network involved in facial expression processing, but the causal role of this region in emotional face discrimination remains elusive. OBJECTIVE We used cathodal (inhibitory) tDCS to test whether right (r-IFO) and left (l-IFO) IFO play a role in discriminating basic facial emotions in healthy volunteers. Specifically, we tested if the two sites are selectively involved in the processing of facial expressions conveying high or low arousal emotions. Based on the Arousal Hypothesis we expected to find a modulation of high and low arousal emotions by cathodal tDCS of the r-IFO and the l-IFO, respectively. METHODS First, we validated an Emotional Faces Discrimination Task (EFDT). Then, we targeted the r-IFO and the l-IFO with cathodal tDCS (i.e. the cathode was placed over the right or left IFO, while the anode was placed over the contralateral supraorbital area) during facial emotions discrimination on the EFDT. Non-active (i.e. sham) tDCS was a control condition. RESULTS Overall, participants manifested the "happy face advantage". Interestingly, tDCS to r-IFO enhanced discrimination of faces expressing anger (a high arousal emotion), whereas, tDCS to l-IFO decreased discrimination of faces expressing sadness (a low arousal emotion). CONCLUSIONS Our findings revealed a differential causal role of r-IFO and l-IFO in the discrimination of specific high and low arousal emotions. Crucially, these results suggest that cathodal tDCS might reduce the neural noise triggered by facial emotions, improving discrimination of high arousal emotions but disrupting discrimination of low arousal emotions. These findings offer new insights for treating clinical population with deficits in processing facial expressions.
Collapse
Affiliation(s)
- Igor Iarrobino
- Psychology Department, University of Turin, Torino, Italy; Institute of Neuroscience, Université Catholique de Louvain, Woluwe-Saint-Lambert, Bruxelles, Belgium
| | | | - Olga Dal Monte
- Psychology Department, University of Turin, Torino, Italy; Psychology Department, Yale University, New Haven, CT, USA
| | - Pietro Sarasso
- Psychology Department, University of Turin, Torino, Italy
| | - Irene Ronga
- Psychology Department, University of Turin, Torino, Italy
| | | | - Rossana Actis-Grosso
- Psychology Department, University Milano-Bicocca, Milano, Italy; NeuroMi, Milan Center for Neuroscience, Milano, Italy
| | | | | |
Collapse
|
14
|
Pitcher D, Ungerleider LG. Evidence for a Third Visual Pathway Specialized for Social Perception. Trends Cogn Sci 2021; 25:100-110. [PMID: 33334693 PMCID: PMC7811363 DOI: 10.1016/j.tics.2020.11.006] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022]
Abstract
Existing models propose that primate visual cortex is divided into two functionally distinct pathways. The ventral pathway computes the identity of an object; the dorsal pathway computes the location of an object, and the actions related to that object. Despite remaining influential, the two visual pathways model requires revision. Both human and non-human primate studies reveal the existence of a third visual pathway on the lateral brain surface. This third pathway projects from early visual cortex, via motion-selective areas, into the superior temporal sulcus (STS). Studies demonstrating that the STS computes the actions of moving faces and bodies (e.g., expressions, eye-gaze, audio-visual integration, intention, and mood) show that the third visual pathway is specialized for the dynamic aspects of social perception.
Collapse
Affiliation(s)
- David Pitcher
- Department of Psychology, University of York, York, YO10 5DD, UK.
| | - Leslie G Ungerleider
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Sliwinska MW, Bearpark C, Corkhill J, McPhillips A, Pitcher D. Dissociable pathways for moving and static face perception begin in early visual cortex: Evidence from an acquired prosopagnosic. Cortex 2020; 130:327-339. [DOI: 10.1016/j.cortex.2020.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/14/2020] [Accepted: 03/13/2020] [Indexed: 11/25/2022]
|