1
|
Connolly MJ, Piallat B, Sendi M, Mahmoudi B, Higgins MK, Gutekunst CA, Devergnas A, Gross RE. Effects of acute hippocampal stimulation in the nonhuman primate penicillin model of temporal lobe seizures. Heliyon 2024; 10:e34257. [PMID: 39100434 PMCID: PMC11296028 DOI: 10.1016/j.heliyon.2024.e34257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Asynchronous distributed multielectrode stimulation (ADMES) is a novel approach to deep brain stimulation for medication resistant temporal lobe epilepsy that has shown promise in rodent and in vitro seizure models. To further evaluate its effects on a pre-clinical model, we characterized the effect of unilateral ADMES in an NHP model of temporal lobe seizures induced by intra-hippocampal injection of penicillin (PCN). Four non-human primates were used for this study in two contemporaneous cohorts. One cohort (n = 3 hemispheres) was implanted with the Medtronic RC + S stimulation (GIN cohort) and recording system connected to two 4-contact ring electrodes to evaluate three unilateral stimulation patterns: 7 Hz Ring ADMES, 20 Hz Dual Ring, and 125 Hz Dual Ring (analog of clinical stimulation). In an additional cohort (EPC cohort, n = 2), two 12-contact segmented electrodes were implanted in the right hippocampus and connected to an externalized recording and stimulation system to allow more flexibility in the stimulation pattern. In this second cohort, 4 variations of stimulation were evaluated (7 Hz Full ADMES, 7 Hz Ring ADMES, 31 Hz Wide Ring, and 31 Hz Dual Ring). In the GIN cohort, we found an increase in seizure frequency and time spent in seizure during the 7 Hz Ring ADMES stimulation compared to the respective post-stimulation. A similar post-stimulation effect was found in the EPC cohort. We also found an increase in seizure frequency during the 7Hz full ADMES compared to the respective post-stimulation. However, we did not find a difference between pre-stimulation and stimulation conditions suggesting a possible post stimulation effect of the 7Hz hippocampal stimulation. In conclusion, in the NHP PCN model of temporal lobe seizures, acute asynchronous hippocampal stimulation was not therapeutic, however, our findings related to the post-stimulation effect can support future studies using hippocampal stimulation for the treatment of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Mark J. Connolly
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Brigitte Piallat
- Inserm, U1216, Grenoble, F-38000, France
- Université Grenoble Alpes, Grenoble, F-38000, France
| | - Mohammad Sendi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Babak Mahmoudi
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, United States
| | - Melinda K. Higgins
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Annaelle Devergnas
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E. Gross
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Department of Neurosurgery, Rutgers New Jersey Medical School, New Brunswick, NJ, United States
| |
Collapse
|
2
|
Takara S, Kida H, Inoue T. Development of implantable devices for epilepsy: research with cats, dogs, and macaques in biomedical engineering. Adv Robot 2024; 38:983-1007. [DOI: 10.1080/01691864.2024.2345655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Sayuki Takara
- Research Center for Advanced Science and Innovation, Organization for Research Initiatives, Yamaguchi University, Ube, Japan
| | - Hiroyuki Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takao Inoue
- Research Center for Advanced Science and Innovation, Organization for Research Initiatives, Yamaguchi University, Ube, Japan
| |
Collapse
|
3
|
Gilbert Z, Mason X, Sebastian R, Tang AM, Martin Del Campo-Vera R, Chen KH, Leonor A, Shao A, Tabarsi E, Chung R, Sundaram S, Kammen A, Cavaleri J, Gogia AS, Heck C, Nune G, Liu CY, Kellis SS, Lee B. A review of neurophysiological effects and efficiency of waveform parameters in deep brain stimulation. Clin Neurophysiol 2023; 152:93-111. [PMID: 37208270 DOI: 10.1016/j.clinph.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.
Collapse
Affiliation(s)
- Zachary Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
4
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
5
|
Zheng B, Liu DD, Theyel BB, Abdulrazeq H, Kimata AR, Lauro PM, Asaad WF. Thalamic neuromodulation in epilepsy: A primer for emerging circuit-based therapies. Expert Rev Neurother 2023; 23:123-140. [PMID: 36731858 DOI: 10.1080/14737175.2023.2176752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Epilepsy is a common, often debilitating disease of hyperexcitable neural networks. While medically intractable cases may benefit from surgery, there may be no single, well-localized focus for resection or ablation. In such cases, approaching the disease from a network-based perspective may be beneficial. AREAS COVERED Herein, the authors provide a narrative review of normal thalamic anatomy and physiology and propose general strategies for preventing and/or aborting seizures by modulating this structure. Additionally, they make specific recommendations for targeting the thalamus within different contexts, motivated by a more detailed discussion of its distinct nuclei and their respective connectivity. By describing important principles governing thalamic function and its involvement in seizure networks, the authors aim to provide a primer for those now entering this fast-growing field of thalamic neuromodulation for epilepsy. EXPERT OPINION The thalamus is critically involved with the function of many cortical and subcortical areas, suggesting it may serve as a compelling node for preventing or aborting seizures, and so it has increasingly been targeted for the surgical treatment of epilepsy. As various thalamic neuromodulation strategies for seizure control are developed, there is a need to ground such interventions in a mechanistic, circuit-based framework.
Collapse
Affiliation(s)
- Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - David D Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian B Theyel
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Hael Abdulrazeq
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Anna R Kimata
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Peter M Lauro
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,The Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
6
|
Deep brain stimulation of the anterior nuclei of the thalamus in focal epilepsy. Clin Neurophysiol 2022; 144:1-7. [PMID: 36193600 DOI: 10.1016/j.clinph.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To review the therapeutic effects of deep brain stimulation of the anterior nuclei of the thalamus (ANT-DBS) and the predictors of its effectiveness, safety, and adverse effects. METHODS A comprehensive search of the medical literature (PubMed) was conducted to identify relevant articles investigating ANT-DBS therapy for epilepsy. Out of 332 references, 77 focused on focal epilepsies were reviewed. RESULTS The DBS effect is probably due to decreased synchronization of epileptic activity in the cortex. The potential mechanisms from cellular to brain network levels are presented. The ANT might participate actively in the network elaborating focal seizures. The effects of ANT-DBS differed in various studies; ANT-DBS was linked with a 41% seizure frequency reduction at 1 year, 69% at 5 years, and 75% at 7 years. The most frequently reported adverse effects, depression and memory impairment, were considered non-serious in the long-term follow-up view. ANT-DBS also has been used in a few cases to treat status epilepticus. CONCLUSIONS We reviewed the clinical literature and identified several factors that may predict seizure outcome following DBS therapy. More large-scale trials are required since there is a need to explore stimulation settings, apply patient-tailored therapy, and identify the presurgical predictors of patient response. SIGNIFICANCE A critical review of the published literature on ANT-DBS in focal epilepsy is presented. ANT-DBS mechanisms are not fully understood; possible explanations are provided. Biomarkers of ANT-DBS effectiveness may lead to patient-tailored therapy.
Collapse
|
7
|
Silva AB, Khambhati AN, Speidel BA, Chang EF, Rao VR. Effects of anterior thalamic nuclei stimulation on hippocampal activity: Chronic recording in a patient with drug-resistant focal epilepsy. Epilepsy Behav Rep 2021; 16:100467. [PMID: 34458713 PMCID: PMC8379668 DOI: 10.1016/j.ebr.2021.100467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/12/2022] Open
Abstract
Devices for RNS and thalamic DBS were implanted in a single person with epilepsy. RNS electrocorticography enabled characterization of acute and chronic DBS effects. DBS caused acute, phasic, frequency-dependent responses in hippocampus and cortex. DBS modulated functional connectivity and suppressed epileptiform activity over time. Chronic electrocorticography elucidates progressive effects of thalamic stimulation.
Implanted neurostimulation devices are gaining traction as palliative treatment options for certain forms of drug-resistant epilepsy, but clinical utility of these devices is hindered by incomplete mechanistic understanding of their therapeutic effects. Approved devices for anterior thalamic nuclei deep brain stimulation (ANT DBS) are thought to work at a network level, but limited sensing capability precludes characterization of neurophysiological effects outside the thalamus. Here, we describe a patient with drug-resistant temporal lobe epilepsy who was implanted with a responsive neurostimulation device (RNS System), involving hippocampal and ipsilateral temporal neocortical leads, and subsequently received ANT DBS. Over 1.5 years, RNS System electrocorticography enabled multiscale characterization of neurophysiological effects of thalamic stimulation. In brain regions sampled by the RNS System, ANT DBS produced acute, phasic, frequency-dependent responses, including suppression of hippocampal low frequency local field potentials. ANT DBS modulated functional connectivity between hippocampus and neocortex. Finally, ANT DBS progressively suppressed hippocampal epileptiform activity in relation to the extent of hippocampal theta suppression, which informs stimulation parameter selection for ANT DBS. Taken together, this unique clinical scenario, involving hippocampal recordings of unprecedented chronicity alongside ANT DBS, sheds light on the therapeutic mechanism of thalamic stimulation and highlights capabilities needed in next-generation devices.
Collapse
Affiliation(s)
- Alexander B Silva
- Medical Scientist Training Program, University of California, San Francisco, USA
| | - Ankit N Khambhati
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Benjamin A Speidel
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, United States
| | - Edward F Chang
- Department of Neurological Surgery and Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, United States
| |
Collapse
|
8
|
Bočková M, Rektor I. Electrophysiological biomarkers for deep brain stimulation outcomes in movement disorders: state of the art and future challenges. J Neural Transm (Vienna) 2021; 128:1169-1175. [PMID: 34245367 DOI: 10.1007/s00702-021-02381-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
Several neurological diseases are accompanied by rhythmic oscillatory dysfunctions in various frequency ranges and disturbed cross-frequency relationships on regional, interregional, and whole brain levels. Knowledge of these disease-specific oscillopathies is important mainly in the context of deep brain stimulation (DBS) therapy. Electrophysiological biomarkers have been used as input signals for adaptive DBS (aDBS) as well as preoperative outcome predictors. As movement disorders, particularly Parkinson's disease (PD), are among the most frequent DBS indications, the current research of DBS is the most advanced in the movement disorders field. We reviewed the literature published mainly between 2010 and 2020 to identify the most important findings concerning the current evolution of electrophysiological biomarkers in DBS and to address future challenges for prospective research.
Collapse
Affiliation(s)
- Martina Bočková
- Central European Institute of Technology (CEITEC), Brain and Mind Research Program, Masaryk University, Brno, Czech Republic
- Movement Disorders Center, First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Ivan Rektor
- Central European Institute of Technology (CEITEC), Brain and Mind Research Program, Masaryk University, Brno, Czech Republic.
- Movement Disorders Center, First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Pekařská 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
9
|
Kirmani BF, Au K, Ayari L, John M, Shetty P, Delorenzo RJ. Super-Refractory Status Epilepticus: Prognosis and Recent Advances in Management. Aging Dis 2021; 12:1097-1119. [PMID: 34221552 PMCID: PMC8219503 DOI: 10.14336/ad.2021.0302] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Super-refractory status epilepticus (SRSE) is a life-threatening neurological emergency with high morbidity and mortality. It is defined as “status epilepticus (SE) that continues or recurs 24 hours or more after the onset of anesthesia, including those cases in which SE recurs on the reduction or withdrawal of anesthesia.” This condition is resistant to normal protocols used in the treatment of status epilepticus and exposes patients to increased risks of neuronal death, neuronal injury, and disruption of neuronal networks if not treated in a timely manner. It is mainly seen in patients with severe acute onset brain injury or presentation of new-onset refractory status epilepticus (NORSE). The mortality, neurological deficits, and functional impairments are significant depending on the duration of status epilepticus and the resultant brain damage. Research is underway to find the cure for this devastating neurological condition. In this review, we will discuss the wide range of therapies used in the management of SRSE, provide suggestions regarding its treatment, and comment on future directions. The therapies evaluated include traditional and alternative anesthetic agents with antiepileptic agents. The other emerging therapies include hypothermia, steroids, immunosuppressive agents, electrical and magnetic stimulation therapies, emergent respective epilepsy surgery, the ketogenic diet, pyridoxine infusion, cerebrospinal fluid drainage, and magnesium infusion. To date, there is a lack of robust published data regarding the safety and effectiveness of various therapies, and there continues to be a need for large randomized multicenter trials comparing newer therapies to treat this refractory condition.
Collapse
Affiliation(s)
- Batool F Kirmani
- 1Texas A&M University College of Medicine, College Station, TX, USA.,3Epilepsy and Functional Neurosurgery Program, Department of Neurology, CHI St. Joseph Health, Bryan, TX, USA
| | - Katherine Au
- 2George Washington University, School of Medicine & Health Sciences, Washington DC, USA
| | - Lena Ayari
- 1Texas A&M University College of Medicine, College Station, TX, USA
| | - Marita John
- 1Texas A&M University College of Medicine, College Station, TX, USA
| | - Padmashri Shetty
- 4M. S. Ramaiah Medical College, M. S. Ramaiah Nagar, Bengaluru, Karnataka, India
| | - Robert J Delorenzo
- 5Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|