1
|
Therrien-Blanchet JM, Ferland MC, Badri M, Rousseau MA, Merabtine A, Boucher E, Hofmann LH, Boré A, Descoteaux M, Lepage JF, Théoret H. Multimodal response-predictor analysis for three non-invasive brain stimulation protocols. Brain Res 2024; 1850:149372. [PMID: 39645141 DOI: 10.1016/j.brainres.2024.149372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Non-invasive brain stimulation (NIBS) methods such as paired associative stimulation (PAS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are used to modulate cortical excitability and reduce symptoms in a variety of psychiatric disorders. Recent studies have shown significant inter-individual variability in the physiological response to these techniques when they are applied over the hand representation of primary motor cortex (M1hand). The goal of the present study was to identify neurophysiological, neuroanatomical, and neurochemical baseline characteristics that may predict response to commonly used NIBS protocols using data from a previously published study (Therrien-Blanchet et al., 2023). To this end, PAS, anodal tDCS, and 20-Hz tACS were administered to healthy participants in a repeated measures design. Pre/Post differences in transcranial magnetic stimulation-induced input-output curves were used to quantify changes in corticospinal excitability. Primary predictors were late I-wave latency, cortical thickness (CT) of M1hand, and fractional anisotropy of the corticospinal tract (CSThand) originating from M1hand. Secondary exploratory analysis was performed with CT in areas outside motor cortex, diffusion MRI (dMRI) metrics of the CSThand, magnetic resonance spectroscopy measurements of GABA, glutamate, and n-acetyl aspartate of M1hand, baseline corticospinal excitability, and cranial circumference. Multiple regression analysis showed that none of the primary variables predicted intervention outcome for any of the NIBS protocols. Exploratory analysis revealed no significant correlation between predictor variables and PAS outcome. tDCS and tACS were significantly correlated with some baseline measures. These data suggest that modulation of cortical excitability following several NIBS protocols may not be easily predicted by baseline characteristics, underscoring the need for a better understanding of their mechanism of action. Significant exploratory associations need to be confirmed in larger samples and confirmatory designs.
Collapse
Affiliation(s)
| | | | - Meriem Badri
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | | | - Amira Merabtine
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Emelie Boucher
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Lydia Helena Hofmann
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Arnaud Boré
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-François Lepage
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke, Centre de Recherche du CHU Sherbrooke, Sherbrooke, Canada
| | - Hugo Théoret
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
2
|
Eliason M, Kalbande PP, Saleem GT. Is non-invasive neuromodulation a viable technique to improve neuroplasticity in individuals with acquired brain injury? A review. Front Hum Neurosci 2024; 18:1341707. [PMID: 39296918 PMCID: PMC11408216 DOI: 10.3389/fnhum.2024.1341707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/22/2024] [Indexed: 09/21/2024] Open
Abstract
Objective This study aimed to explore and evaluate the efficacy of non-invasive brain stimulation (NIBS) as a standalone or coupled intervention and understand its mechanisms to produce positive alterations in neuroplasticity and behavioral outcomes after acquired brain injury (ABI). Data sources Cochrane Library, Web of Science, PubMed, and Google Scholar databases were searched from January 2013 to January 2024. Study selection Using the PICO framework, transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) randomized controlled trials (RCTs), retrospective, pilot, open-label, and observational large group and single-participant case studies were included. Two authors reviewed articles according to pre-established inclusion criteria. Data extraction Data related to participant and intervention characteristics, mechanisms of change, methods, and outcomes were extracted by two authors. The two authors performed quality assessments using SORT. Results Twenty-two studies involving 657 participants diagnosed with ABIs were included. Two studies reported that NIBS was ineffective in producing positive alterations or behavioral outcomes. Twenty studies reported at least one, or a combination of, positively altered neuroplasticity and improved neuropsychological, neuropsychiatric, motor, or somatic symptoms. Twenty-eight current articles between 2020 and 2024 have been studied to elucidate potential mechanisms of change related to NIBS and other mediating or confounding variables. Discussion tDCS and TMS may be efficacious as standalone interventions or coupled with neurorehabilitation therapies to positively alter maladaptive brain physiology and improve behavioral symptomology resulting from ABI. Based on postintervention and follow-up results, evidence suggests NIBS may offer a direct or mediatory contribution to improving behavioral outcomes post-ABI. Conclusion More research is needed to better understand the extent of rTMS and tDCS application in affecting changes in symptoms after ABI.
Collapse
Affiliation(s)
- Michelle Eliason
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| | | | - Ghazala T Saleem
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
3
|
Meinzer M, Shahbabaie A, Antonenko D, Blankenburg F, Fischer R, Hartwigsen G, Nitsche MA, Li SC, Thielscher A, Timmann D, Waltemath D, Abdelmotaleb M, Kocataş H, Caisachana Guevara LM, Batsikadze G, Grundei M, Cunha T, Hayek D, Turker S, Schlitt F, Shi Y, Khan A, Burke M, Riemann S, Niemann F, Flöel A. Investigating the neural mechanisms of transcranial direct current stimulation effects on human cognition: current issues and potential solutions. Front Neurosci 2024; 18:1389651. [PMID: 38957187 PMCID: PMC11218740 DOI: 10.3389/fnins.2024.1389651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has been studied extensively for its potential to enhance human cognitive functions in healthy individuals and to treat cognitive impairment in various clinical populations. However, little is known about how tDCS modulates the neural networks supporting cognition and the complex interplay with mediating factors that may explain the frequently observed variability of stimulation effects within and between studies. Moreover, research in this field has been characterized by substantial methodological variability, frequent lack of rigorous experimental control and small sample sizes, thereby limiting the generalizability of findings and translational potential of tDCS. The present manuscript aims to delineate how these important issues can be addressed within a neuroimaging context, to reveal the neural underpinnings, predictors and mediators of tDCS-induced behavioral modulation. We will focus on functional magnetic resonance imaging (fMRI), because it allows the investigation of tDCS effects with excellent spatial precision and sufficient temporal resolution across the entire brain. Moreover, high resolution structural imaging data can be acquired for precise localization of stimulation effects, verification of electrode positions on the scalp and realistic current modeling based on individual head and brain anatomy. However, the general principles outlined in this review will also be applicable to other imaging modalities. Following an introduction to the overall state-of-the-art in this field, we will discuss in more detail the underlying causes of variability in previous tDCS studies. Moreover, we will elaborate on design considerations for tDCS-fMRI studies, optimization of tDCS and imaging protocols and how to assure high-level experimental control. Two additional sections address the pressing need for more systematic investigation of tDCS effects across the healthy human lifespan and implications for tDCS studies in age-associated disease, and potential benefits of establishing large-scale, multidisciplinary consortia for more coordinated tDCS research in the future. We hope that this review will contribute to more coordinated, methodologically sound, transparent and reproducible research in this field. Ultimately, our aim is to facilitate a better understanding of the underlying mechanisms by which tDCS modulates human cognitive functions and more effective and individually tailored translational and clinical applications of this technique in the future.
Collapse
Affiliation(s)
- Marcus Meinzer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Alireza Shahbabaie
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Rico Fischer
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | - Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Dortmund, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Axel Thielscher
- Section for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dagmar Waltemath
- Core Unit Data Integration Center, University Medicine Greifswald, Greifswald, Germany
| | | | - Harun Kocataş
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | | | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Miro Grundei
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Teresa Cunha
- Section for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dayana Hayek
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Sabrina Turker
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Frederik Schlitt
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Yiquan Shi
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Asad Khan
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Dortmund, Germany
| | - Michael Burke
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Dortmund, Germany
| | - Steffen Riemann
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Filip Niemann
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE Site Greifswald), Greifswald, Germany
| |
Collapse
|
4
|
Cohen Z, Steinbrenner M, Piper RJ, Tangwiriyasakul C, Richardson MP, Sharp DJ, Violante IR, Carmichael DW. Transcranial electrical stimulation during functional magnetic resonance imaging in patients with genetic generalized epilepsy: a pilot and feasibility study. Front Neurosci 2024; 18:1354523. [PMID: 38572149 PMCID: PMC10989273 DOI: 10.3389/fnins.2024.1354523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
Objective A third of patients with epilepsy continue to have seizures despite receiving adequate antiseizure medication. Transcranial direct current stimulation (tDCS) might be a viable adjunct treatment option, having been shown to reduce epileptic seizures in patients with focal epilepsy. Evidence for the use of tDCS in genetic generalized epilepsy (GGE) is scarce. We aimed to establish the feasibility of applying tDCS during fMRI in patients with GGE to study the acute neuromodulatory effects of tDCS, particularly on sensorimotor network activity. Methods Seven healthy controls and three patients with GGE received tDCS with simultaneous fMRI acquisition while watching a movie. Three tDCS conditions were applied: anodal, cathodal and sham. Periods of 60 s without stimulation were applied between each stimulation condition. Changes in sensorimotor cortex connectivity were evaluated by calculating the mean degree centrality across eight nodes of the sensorimotor cortex defined by the Automated Anatomical Labeling atlas (primary motor cortex (precentral left and right), supplementary motor area (left and right), mid-cingulum (left and right), postcentral gyrus (left and right)), across each of the conditions, for each participant. Results Simultaneous tDCS-fMRI was well tolerated in both healthy controls and patients without adverse effects. Anodal and cathodal stimulation reduced mean degree centrality of the sensorimotor network (Friedman's ANOVA with Dunn's multiple comparisons test; adjusted p = 0.02 and p = 0.03 respectively). Mean degree connectivity of the sensorimotor network during the sham condition was not different to the rest condition (adjusted p = 0.94). Conclusion Applying tDCS during fMRI was shown to be feasible and safe in a small group of patients with GGE. Anodal and cathodal stimulation caused a significant reduction in network connectivity of the sensorimotor cortex across participants. This initial research supports the feasibility of using fMRI to guide and understand network modulation by tDCS that might facilitate its clinical application in GGE in the future.
Collapse
Affiliation(s)
- Zachary Cohen
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mirja Steinbrenner
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Rory J. Piper
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- University College London Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Chayanin Tangwiriyasakul
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mark P. Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - David J. Sharp
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ines R. Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - David W. Carmichael
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Ma CC, Lin YY, Chung YA, Park SY, Huang CCY, Chang WC, Chang HA. The two-back task leads to activity in the left dorsolateral prefrontal cortex in schizophrenia patients with predominant negative symptoms: a fNIRS study and its implication for tDCS. Exp Brain Res 2024; 242:585-597. [PMID: 38227007 DOI: 10.1007/s00221-023-06769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/16/2023] [Indexed: 01/17/2024]
Abstract
Transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (DLPFC) has shown some potential as an adjunctive intervention for ameliorating negative symptoms of schizophrenia, but its efficacy requires optimization. Recently, 'functional targeting' of stimulation holds promise for advancing tDCS efficacy by coupling tDCS with a cognitive task where the target brain regions are activated by that task and further specifically polarized by tDCS.The study used 48-channel functional near infra-red spectroscopy (fNIRS) aiming to determine a cognitive task that can effectively induce a cortical activation of the left DLPFC in schizophrenia patients with predominant negative symptoms before running a tDCS trial. Sixty schizophrenia patients with predominant negative symptoms completed measures of clinical and psychosocial functioning characteristics and assessments across cognitive domains. Hemodynamic changes during n-back working memory tasks with different cognitive loads (1-back and 2-back) and verbal fluency test (VFT) were measured using fNIRS. For n-back tasks, greater signal changes were found when the task required elevated cognitive load. One sample t-test revealed that only 2-back task elicited significant activation in left DLPFC (t = 4.23, FDR-corrected p = 0.0007). During VFT, patients failed to show significant task-related activity in left DLPFC (one sample t-test, t = -0.25, FDR-corrected p > 0.05). Our study implies that 2-back task can effectively activate left DLPFC in schizophrenia patients with predominant negative symptoms. This neurophysiologically-validated task is considered highly potential to be executed in conjunction with high-definition tDCS for "functional targeting" of the left DLPFC to treat negative symptoms in a double-blind randomized sham-control trial, registered on ClinicalTrials.gov Registry (ID: NCT05582980).
Collapse
Affiliation(s)
- Chin-Chao Ma
- Department of Psychiatry, Tri-Service General Hospital, Beitou Branch, National Defense Medical Center, No. 325, Cheng-Kung Road, Sec. 2, Nei-Hu District, Taipei, Taiwan
| | - Yen-Yue Lin
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yong-An Chung
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sonya Youngju Park
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Wei-Chou Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, Beitou Branch, National Defense Medical Center, No. 325, Cheng-Kung Road, Sec. 2, Nei-Hu District, Taipei, Taiwan.
| |
Collapse
|
6
|
Zanao TA, Luethi MS, Goerigk S, Suen P, Diaz AP, Soares JC, Brunoni AR. White matter predicts tDCS antidepressant effects in a sham-controlled clinical trial study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1421-1431. [PMID: 36336757 DOI: 10.1007/s00406-022-01504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been used as treatment for depression, but its effects are heterogeneous. We investigated, in a subsample of the clinical trial Escitalopram versus Electrical Direct Current Therapy for Depression Study (ELECTTDCS), whether white matter areas associated with depression disorder were associated with tDCS response. Baseline diffusion tensor imaging data were analyzed from 49 patients (34 females, mean age 41.9) randomized to escitalopram 20 mg/day, tDCS (2 mA, 30 min, 22 sessions), or placebo. Antidepressant outcomes were assessed by Hamilton Depression Rating Scale-17 (HDRS) after 10-week treatment. We used whole-brain tractography for extracting white matter measures for anterior corpus callosum, and bilaterally for cingulum bundle, striato-frontal, inferior occipito-frontal fasciculus and uncinate. For the rostral body, tDCS group showed higher MD associated with antidepressant effects (estimate = -5.13 ± 1.64, p = 0.002), and tDCS significantly differed from the placebo and the escitalopram group. The left striato-frontal tract showed higher FA associated with antidepressant effects (estimate = -2.14 ± 0.72, p = 0.003), and tDCS differed only from the placebo group. For the right uncinate, the tDCS group lower AD values were associated with higher HDRS decrease (estimate = -1.45 ± 0.67, p = 0.031). Abnormalities in white matter MDD-related areas are associated with tDCS antidepressant effects. Suggested better white matter microstructure of the left prefrontal cortex was associated with tDCS antidepressant effects. Future studies should investigate whether these findings are driven by electric field diffusion and density in these areas.
Collapse
Affiliation(s)
- Tamires A Zanao
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Matthias S Luethi
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Stephan Goerigk
- Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Laboratory of Neurosciences LIM-27), São Paulo, Brazil
- Department of Psychological Methodology and Assessment, LMU Munich, Munich, Germany
| | - Paulo Suen
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre P Diaz
- Hochschule Fresenius, University of Applied Sciences, Munich, Germany
| | - Jair C Soares
- Hochschule Fresenius, University of Applied Sciences, Munich, Germany
| | - Andre R Brunoni
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- Hospital Universitário, Departamento de Clínica Médica, Faculdade de Medicina da USP, São Paulo, Brazil.
| |
Collapse
|
7
|
Kurtin DL, Giunchiglia V, Vohryzek J, Cabral J, Skeldon AC, Violante IR. Moving from phenomenological to predictive modelling: Progress and pitfalls of modelling brain stimulation in-silico. Neuroimage 2023; 272:120042. [PMID: 36965862 DOI: 10.1016/j.neuroimage.2023.120042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Brain stimulation is an increasingly popular neuromodulatory tool used in both clinical and research settings; however, the effects of brain stimulation, particularly those of non-invasive stimulation, are variable. This variability can be partially explained by an incomplete mechanistic understanding, coupled with a combinatorial explosion of possible stimulation parameters. Computational models constitute a useful tool to explore the vast sea of stimulation parameters and characterise their effects on brain activity. Yet the utility of modelling stimulation in-silico relies on its biophysical relevance, which needs to account for the dynamics of large and diverse neural populations and how underlying networks shape those collective dynamics. The large number of parameters to consider when constructing a model is no less than those needed to consider when planning empirical studies. This piece is centred on the application of phenomenological and biophysical models in non-invasive brain stimulation. We first introduce common forms of brain stimulation and computational models, and provide typical construction choices made when building phenomenological and biophysical models. Through the lens of four case studies, we provide an account of the questions these models can address, commonalities, and limitations across studies. We conclude by proposing future directions to fully realise the potential of computational models of brain stimulation for the design of personalized, efficient, and effective stimulation strategies.
Collapse
Affiliation(s)
- Danielle L Kurtin
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, GU2 7XH, United Kingdom; Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | | | - Jakub Vohryzek
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Anne C Skeldon
- Department of Mathematics, Centre for Mathematical and Computational Biology, University of Surrey, Guildford, United Kingdom
| | - Ines R Violante
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
8
|
Hu K, Chen Y, Guo F, Wang X. Effects of Transcranial Direct Current Stimulation on Upper Limb Muscle Strength and Endurance in Healthy Individuals: A Systematic Review and Meta-Analysis. Front Physiol 2022; 13:834397. [PMID: 35356085 PMCID: PMC8959826 DOI: 10.3389/fphys.2022.834397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 01/28/2023] Open
Abstract
Objective Whether transcranial direct current stimulation (tDCS) can improve upper limb muscle strength and endurance in healthy subjects is still controversial. This article reviews the relevant literature on the use of tDCS to improve upper limb muscle strength and endurance in healthy individuals. Methods We systematically searched the Cochrane Library, PubMed, EMBASE, and the Web of Science until September 4, 2021. Randomized parallel or crossover experimental studies on the effects of tDCS on upper limb muscle strength and endurance in healthy individuals were included. Review Manager 5.3 software was used to evaluate methodological quality and analyze the combined effect of the included literature. Results Twelve studies (189 participants) were included in the qualitative synthesis, and nine studies (146 participants) were included in the meta-analysis. Compared with the control group, the tDCS intervention had no significant effect on improving upper limb muscle strength [I2 = 0%, 95% CI (−0.79, 0.23), p = 0.98, MD = 0.01]. In this analysis, tDCS had a significant heterogeneity (I2 = 87%) in improving upper limb muscle endurance compared with the control group. After the subgroup analysis and the sensitivity analysis, the source of heterogeneity was excluded. The final results showed that tDCS had a significant effect on improving upper limb muscle endurance [I2 = 0%, 95% CI (1.91, 4.83), p < 0.00001, MD = 3.37]. Conclusions tDCS has no significant effect on improvement of upper limb muscle strength, but has a significant effect on improving upper limb endurance performance (especially on the non-dominant side).
Collapse
|