1
|
Orfanoudaki M, Akee RK, Martínez-Fructuoso L, Wang D, Kelley JA, Smith EA, Henrich CJ, Schnermann MJ, O'Keefe BR, Grkovic T. Formation of Trideuteromethylated Artifacts of Pyrrole-Containing Natural Products. JOURNAL OF NATURAL PRODUCTS 2024; 87:415-423. [PMID: 38291771 DOI: 10.1021/acs.jnatprod.3c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Pyrrole-containing natural products form a large group of structurally diverse compounds that occur in both terrestrial and marine organisms. In the present study the formation of trideuteromethylated artifacts of pyrrole-containing natural products was investigated, focusing on the discorhabdins. Three deuterated discorhabdins, 1, 3, and 5, were identified to be isolation procedure artifacts caused by the presence of DMSO-d6 during NMR sample preparation and handling. Three additional semisynthetic derivatives, 7-9, were made during the investigation of the mechanism of formation, which was shown to be driven by trideuteromethyl radicals in the presence of water, methanol, TFA, and traces of iron in the deuterated solvent. Generation of trideuteromethylated artifacts was also confirmed for other classes of pyrrole-containing metabolites, namely, makaluvamines, tambjamines, and dibromotryptamines, which had also been dissolved in DMSO-d6 during the structure elucidation process. Semisynthetic discorhabdins were assessed for antiproliferative activity against a panel of human tumor cell lines, and 14-trideuteromethyldiscorhabdin L (3) averaged low micromolar potency.
Collapse
Affiliation(s)
- Maria Orfanoudaki
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Rhone K Akee
- Natural Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Lucero Martínez-Fructuoso
- Natural Products Branch, Developmental Therapeutic Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - James A Kelley
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Emily A Smith
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Curtis J Henrich
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702-1201, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Natural Products Branch, Developmental Therapeutic Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Tanja Grkovic
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Natural Products Branch, Developmental Therapeutic Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
2
|
Ishibashi M. [Learning from Natural Products: Study on Actinomycetes of the Genus Nocardia]. YAKUGAKU ZASSHI 2024; 144:33-37. [PMID: 38171791 DOI: 10.1248/yakushi.23-00161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The genus Nocardia comprises gram-positive bacteria, most of which are pathogenic and cause opportunistic infections of the lungs, skin, and brain in humans. Based on a collaboration study with the Medical Mycology Research Center, Chiba University, we focused on Nocardia actinomycetes as a new natural-product resource. First, by culturing (monoculture) Nocardia in various media, we isolated a new aminocyclitol nabscessin A from Nocardia abscessus IFM10029T and a new γ-lactone inohanalactone from Nocardia inohanaensis IFM0092T. On the other hand, by imitating the state in which the genus Nocardia actinomycete infects animal cells and culturing the genus in the presence of animal cells (coculture), this genus was expected to produce new compounds through interactions with the animal cells. Using mouse macrophage-like cells (J774.1) as animal cells, a new pantothenic acid amide derivative and a cyclic peptide, nocarjamide, with Wnt signal activation activity were isolated from Nocardia tenerifensis IFM10554T strain.
Collapse
Affiliation(s)
- Masami Ishibashi
- School of Pharmacy at Fukuoka, International University of Health and Welfare
| |
Collapse
|
3
|
Kalinski JCJ, Polyzois A, Waterworth SC, Siwe Noundou X, Dorrington RA. Current Perspectives on Pyrroloiminoquinones: Distribution, Biosynthesis and Drug Discovery Potential. Molecules 2022; 27:8724. [PMID: 36557854 PMCID: PMC9787360 DOI: 10.3390/molecules27248724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pyrroloiminoquinones are a group of cytotoxic alkaloids most commonly isolated from marine sponges. Structurally, they are based on a tricyclic pyrrolo[4,3,2-de]quinoline core and encompass marine natural products such as makaluvamines, tsitsikammamines and discorhabdins. These diverse compounds are known to exhibit a broad spectrum of biological activities including anticancer, antiplasmodial, antimicrobial, antifungal and antiviral activities as well as the inhibition of several key cellular enzymes. The resurgence of interest in pyrroloiminoquinones and the convoluted understanding regarding their biological activities have prompted this review. Herein, we provided a concise summary of key findings and recent developments pertaining to their structural diversity, distribution, biogenesis, and their potential as chemical probes for drug development, including a discussion of promising synthetic analogs.
Collapse
Affiliation(s)
| | - Alexandros Polyzois
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | | | - Xavier Siwe Noundou
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - Rosemary A. Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| |
Collapse
|
4
|
Li S, Lin N, Wu B. Laboratory culture and bioactive natural products of myxomycetes. Fitoterapia 2020; 146:104725. [PMID: 32946947 DOI: 10.1016/j.fitote.2020.104725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 01/17/2023]
Abstract
Myxomycetes, one of the lowest classes of eukaryote (true slime molds), are an unusual group of primitive organisms. Their life cycle consists of two stages, namely the free-living plasmodium and the fruiting body with unique structures and colors. The chemical studies on the secondary metabolites of the myxomycetes are limited due to a lack of understanding of their laboratory cultivation. In this review, 93 natural products from myxomycetes, including their chemical structures and bioactivities were described. We also provided a conceptual overview over five culture methods of myxomycetes, including moist chamber culture, feeding culture, pure culture, liquid culture and hanging drop culture.
Collapse
Affiliation(s)
- Sihui Li
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Na Lin
- Lishui Hospital of Traditional Chinese Medicine, Lishui 323000, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| |
Collapse
|
6
|
Abstract
The Myxomycetes (true slime molds) are an unusual group of primitive organisms that may be assigned to one of the lowest classes of eukaryotes. As their fruit bodies are very small and it is very difficult to collect much quantity, few studies have been made on the chemistry of myxomycetes. We studied spore germination experiments of hundreds of field-collected myxomycetes collected in Japan, and succeeded in laboratory culture of plasmodia of several myxomycetes in a practical scale for natural products chemistry studies. Pyrroloiminoquinones, polyene yellow pigments, and a peptide lactone were isolated from cultured plasmodia of myxomycetes, while new naphthoquinone pigments, cycloanthranilylprolines, tyrosine-kinase inhibitory bisindoles, a cytotoxic triterpenoid aldehyde lactone, a dibenzofuran glycoside, and sterols possessing an unprecedented 2,6-dioxabicyclo[2.2.2] octan-3-one ring system, were also isolated from field-collected fruit bodies of myxomycetes.
Collapse
Affiliation(s)
- Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| |
Collapse
|