1
|
Petrakis EA, Mikropoulou EV, Mitakou S, Halabalaki M, Kalpoutzakis E. A GC-MS and LC-HRMS perspective on the chemotaxonomic investigation of the natural hybrid Origanum × lirium and its parents, O. vulgare subsp. hirtum and O. scabrum. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:289-300. [PMID: 36698289 DOI: 10.1002/pca.3206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The genus Origanum L. (Lamiaceae) is widespread in the Mediterranean region. However, approximately 75% of the species are only encountered in the eastern part. Out of these, a total of nine species (11 taxa) and three natural hybrids occur in Greece. Nevertheless, so far, there is no consensus regarding their precise botanical classification in the literature. In fact, the taxon Origanum × lirium has been proposed both as a separate species as well as natural hybrid between Origanum vulgare subsp. hirtum and Origanum scabrum. OBJECTIVES In this scope, the aim of the current study is to shed light on the matter through the investigation of the chemical composition of both the essential oils and the polar extracts of the mentioned taxa, collected from different geographical regions of Greece. RESULTS As it was demonstrated by both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) data, and highlighted by our comparative analysis, it can be stipulated that Origanum × lirium shares its chemotype to a large extent with its parent species concerning both volatile and polar constituents. Additionally, geographical origin conditions stood out as a key factor influencing their chemical composition. CONCLUSION Altogether, the present work provides useful information on the chemical composition of the taxa under investigation, while our findings support the opinion that Origanum × lirium should be considered not as a separate species, but rather as a hybrid on the way to becoming a species.
Collapse
Affiliation(s)
- Eleftherios A Petrakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni V Mikropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Mitakou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Kalpoutzakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Sharifi-Rad M, Berkay Yılmaz Y, Antika G, Salehi B, Tumer TB, Kulandaisamy Venil C, Das G, Patra JK, Karazhan N, Akram M, Iqbal M, Imran M, Sen S, Acharya K, Dey A, Sharifi-Rad J. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytother Res 2020; 35:95-121. [PMID: 32789910 DOI: 10.1002/ptr.6785] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/15/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Origanum species are mostly distributed around the Mediterranean, Euro-Siberian, and Iran-Siberian regions. Since time immemorial, the genus has popularly been used in Southern Europe, as well as on the American continent as a spice now known all over the world under the name "oregano" or "pizza-spice." Origanum plants are also employed to prepare bitter tinctures, wines, vermouths, beer, and kvass. The major components of Origanum essential oil are various terpenes, phenols, phenolic acids, and flavonoids with predominant occurrence of carvacrol and thymol (with reasonable amounts of p-cymen and -terpinene) or of terpinene-4-ol, linalool, and sabinene hydrate. Many species of Origanum genus are used to treat kidney, digestive, nervous, and respiratory disorders, spasms, sore throat, diabetes, lean menstruation, hypertension, cold, insomnia, toothache, headache, epilepsy, urinary tract infections, etc. Origanum essential oil showed potent bioactivities owing to its major constituents' carvacrol, thymol, and monoterpenes. Several preclinical studies evidenced its pharmacological potential as antiproliferative or anticancer, antidiabetic, antihyperlipidemic, anti-obesity, renoprotective, antiinflammatory, vasoprotective, cardioprotective, antinociceptive, insecticidal, and hepatoprotective properties. Its nanotechnological applications as a promising pharmaceutical in order to enhance the solubility, physicochemical stability, and the accumulation rate of its essential oils have been investigated. However, Origanum has been reported causing angioedema, perioral dermatitis, allergic reaction, inhibition of platelet aggregation, hypoglycemia, and abortion. Conclusive evidences are still required for its clinical applications against human medical conditions. Toxicity analyses and risk assessment will aid to its safe and efficacious application. In addition, elaborate structure-activity studies are needed to explore the potential use of Origanum-derived phytochemicals as promising drug candidates.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Yakup Berkay Yılmaz
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Gizem Antika
- Graduate Program of Molecular Biology and Genetics, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | | | - Gitishree Das
- Research Institute of Biotechnology & medical Converged Science, Dongguk University, Goyang-si, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & medical Converged Science, Dongguk University, Goyang-si, Republic of Korea
| | - Natallia Karazhan
- Department of Pharmacognosy, Pharmaceutical Faculty of the EE VSMU, Vitebsk, Belarus
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, GC University Faisalabad, Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India.,Department of Botany, Fakir Chand College, Diamond Harbour, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
5
|
Govindarajan M, Kadaikunnan S, Alharbi NS, Benelli G. Acute toxicity and repellent activity of the Origanum scabrum Boiss. & Heldr. (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23228-23238. [PMID: 27604128 DOI: 10.1007/s11356-016-7568-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
The recent outbreaks of dengue, chikungunya, and Zika virus highlighted the pivotal importance of mosquito vector control in tropical and subtropical areas worldwide. However, mosquito control is facing hot challenges, mainly due to the rapid development of pesticide resistance in Culicidae and the limited success of biocontrol programs on Aedes mosquitoes. In this framework, screening botanicals for their mosquitocidal potential may offer effective and eco-friendly tools in the fight against mosquitoes. In the present study, the essential oil (EO) obtained from the medicinal plant Origanum scabrum was analyzed by GC-MS and evaluated for its mosquitocidal and repellent activities towards Anopheles stephensi, Aedes aegypti, Culex quinquefasciatus, and Culex tritaeniorhynchus. GC-MS analysis showed a total of 28 compounds, representing 97.1 % of the EO. The major constituents were carvacrol (48.2 %) and thymol (16.6 %). The EO was toxic effect to the A. stephensi, A. aegypti, C. quinquefasciatus, and C. tritaeniorhynchus larvae, with LC50 of 61.65, 67.13, 72.45, and 78.87 μg/ml, respectively. Complete ovicidal activity was observed at 160, 200, 240, and 280 μg/ml, respectively. Against adult mosquitoes, LD50 were 122.38, 134.39, 144.53, and 158.87 μg/ml, respectively. In repellency assays, the EOs tested at 1.0, 2.5, and 5.0 mg/cm2 concentration of O. scabrum gave 100 % protection from mosquito bites up to 210, 180, 150, and 120 min, respectively. From an eco-toxicological point of view, the EO was tested on three non-target mosquito predators, Gambusia affinis, Diplonychus indicus, and Anisops bouvieri, with LC50 ranging from 4162 to 12,425 μg/ml. Overall, the EO from O. scabrum may be considered as a low-cost and eco-friendly source of phytochemicals to develop novel repellents against Culicidae.
Collapse
Affiliation(s)
- Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, TN, 608 002, India.
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Giovanni Benelli
- Insect Behavior Group, Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|