1
|
Meunier M, Schinkovitz A, Derbré S. Current and emerging tools and strategies for the identification of bioactive natural products in complex mixtures. Nat Prod Rep 2024; 41:1766-1786. [PMID: 39291767 DOI: 10.1039/d4np00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Covering: up to 2024The prompt identification of (bio)active natural products (NPs) from complex mixtures poses a significant challenge due to the presence of numerous compounds with diverse structures and (bio)activities. Thus, this review provides an overview of current and emerging tools and strategies for the identification of (bio)active NPs in complex mixtures. Traditional approaches of bioassay-guided fractionation (BGF), followed by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis for compound structure elucidation, continue to play an important role in the identification of active NPs. However, recent advances (2018-2024) have led to the development of novel techniques such as (bio)chemometric analysis, dereplication and combined approaches, which allow efficient prioritization for the elucidation of (bio)active compounds. For researchers involved in the search for bioactive NPs and who want to speed up their discoveries while maintaining accurate identifications, this review highlights the strengths and limitations of each technique and provides up-to-date insights into their combined use to achieve the highest level of confidence in the identification of (bio)active natural products from complex matrices.
Collapse
Affiliation(s)
- Manon Meunier
- Univ. Angers, SONAS, SFR QUASAV, F-49000 Angers, France.
| | | | | |
Collapse
|
2
|
Fan J, Xiao Z, Qiu W, Zhao C, Yi C, Lin D, Lin Z. Analysis of Metabolic Components of JUNCAO Wine Based on GC-QTOF-MS. Foods 2023; 12:foods12112254. [PMID: 37297498 DOI: 10.3390/foods12112254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
JUNCAO wine fermentation metabolites are closely related to the final quality of the product. Currently, there are no studies of dynamic metabolite changes during fermentation of JUNCAO wine. Here, we used gas chromatography quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) metabolomics and multivariate statistical analysis to explore the relationship between metabolites and fermentation time. A total of 189 metabolites were annotated throughout the fermentation process. The principal component analysis (PCA) revealed a clear separation between the samples in the early and late stages of fermentation. A total of 60 metabolites were annotated as differential during the fermentation (variable importance in the projection, VIP > 1, and p < 0.05), including 21 organic acids, 10 amino acids, 15 sugars and sugar alcohols, and 14 other metabolites. Pathway analysis showed that the most commonly influenced pathways (impact value > 0.1 and p < 0.05) were tricarboxylic acid cycle, alanine, aspartic acid and glutamic acid metabolism, pyrimidine metabolism, and other 10 metabolic pathways. Moreover, integrated metabolic pathways are generated to understand the conversion and accumulation of differential metabolites. Overall, these results provide a comprehensive overview of metabolite changes during fermentation of JUNCAO wine.
Collapse
Affiliation(s)
- Jinlin Fan
- National Engineering Research Center of Juncao, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zheng Xiao
- Institute of Agricultural Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Wanwei Qiu
- School of Life and Health Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Yi
- National Engineering Research Center of Juncao, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Lin
- National Engineering Research Center of Juncao, Fuzhou 350002, China
| | - Zhanxi Lin
- National Engineering Research Center of Juncao, Fuzhou 350002, China
| |
Collapse
|
3
|
Karagecili H, Yılmaz MA, Ertürk A, Kiziltas H, Güven L, Alwasel SH, Gulcin İ. Comprehensive Metabolite Profiling of Berdav Propolis Using LC-MS/MS: Determination of Antioxidant, Anticholinergic, Antiglaucoma, and Antidiabetic Effects. Molecules 2023; 28:1739. [PMID: 36838726 PMCID: PMC9965732 DOI: 10.3390/molecules28041739] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Propolis is a complex natural compound that honeybees obtain from plants and contributes to hive safety. It is rich in phenolic and flavonoid compounds, which contain antioxidant, antimicrobial, and anticancer properties. In this study, the chemical composition and antioxidant activities of propolis were investigated; ABTS•+, DPPH• and DMPD•+ were prepared using radical scavenging antioxidant methods. The phenolic and flavonoid contents of propolis were 53 mg of gallic acid equivalent (GAE)/g and 170.164 mg of quercetin equivalent (QE)/g, respectively. The ferric ion (Fe3+) reduction, CUPRAC and FRAP reduction capacities were also studied. The antioxidant and reducing capacities of propolis were compared with those of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and Trolox reference standards. The half maximal inhibition concentration (IC50) values of propolis for ABTS•+, DPPH• and DMPD•+ scavenging activities were found to be 8.15, 20.55 and 86.64 μg/mL, respectively. Propolis extract demonstrated IC50 values of 3.7, 3.4 and 19.6 μg/mL against α-glycosidase, acetylcholinesterase (AChE) and carbonic anhydrase II (hCA II) enzyme, respectively. These enzymes' inhibition was associated with diabetes, Alzheimer's disease (AD) and glaucoma. The reducing power, antioxidant activity and enzyme inhibition capacity of propolis extract were comparable to those demonstrated by the standards. Twenty-eight phenolic compounds, including acacetin, caffeic acid, p-coumaric acid, naringenin, chrysin, quinic acid, quercetin, and ferulic acid, were determined by LC-MS/MS to be major organic compounds in propolis. The polyphenolic antioxidant-rich content of the ethanol extract of propolis appears to be a natural product that can be used in the treatment of diabetes, AD, glaucoma, epilepsy, and cancerous diseases.
Collapse
Affiliation(s)
- Hasan Karagecili
- Department of Nursing, Faculty of Health Sciences, Siirt University, Siirt 56100, Turkey
| | - Mustafa Abdullah Yılmaz
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Dicle University, Diyarbakır 21280, Turkey
| | - Adem Ertürk
- Department of Pharmacy Services, Hınıs Vocational School, Ataturk University, Erzurum 25600, Turkey
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| | - Hatice Kiziltas
- Department of Pharmacy Services, Vocational School of Health Services, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Leyla Güven
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ataturk University, Erzurum 25240, Turkey
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
4
|
Contieri LS, de Souza Mesquita LM, Sanches VL, Viganó J, Kamikawachi RC, Vilegas W, Rostagno MA. Ultra-high-performance liquid chromatography using a fused-core particle column for fast analysis of propolis phenolic compounds. J Sep Sci 2023; 46:e2200440. [PMID: 36449264 DOI: 10.1002/jssc.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Propolis is a bee product with a complex chemical composition formed by several species from different geographical origins. The complex propolis composition requires an accurate and reproducible characterization of samples to standardize the quality of the material sold to consumers. This work developed an ultra-high-performance liquid chromatography with a photodiode array detector method to analyze propolis phenolic compounds based on the two key propolis biomarkers, Artepillin C and p-Coumaric acid. This choice was made due to the complexity of the sample with the presence of several compounds. The optimized method was hyphenated with mass spectrometry detection allowing the detection of 23 different compounds. A step-by-step strategy was used to optimize temperature, flow rate, mobile phase composition, and re-equilibration time. Reverse-phase separation was achieved with a C18 fused-core column packed with the commercially available smallest particles (1.3 nm). Using a fused-core column with ultra-high-performance liquid chromatography allows highly efficient, sensitive, accurate, and reproducible determination of compounds extracted from propolis with an outstanding sample throughput and resolution. Optimized conditions permitted the separation of the compounds in 5.50 min with a total analysis time (sample-to-sample) of 6.50 min.
Collapse
Affiliation(s)
- Letícia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Juliane Viganó
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Rod. Lauri Simões de Barros, Buri, Brazil
| | | | - Wagner Vilegas
- UNESP - São Paulo State University, Institute of Biosciences, São Vicente, Brazil
| | - Mauricio A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
5
|
Fermentation mechanism of ginkgo rice wine using an ultra-high-performance liquid chromatography–quadrupole/time-of-flight mass spectrometry based metabolomics method. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Kasote D, Bankova V, Viljoen AM. Propolis: chemical diversity and challenges in quality control. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1887-1911. [PMID: 35645656 PMCID: PMC9128321 DOI: 10.1007/s11101-022-09816-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/08/2022] [Indexed: 05/09/2023]
Abstract
UNLABELLED Propolis is a resinous natural product produced by honeybees using beeswax and plant exudates. The chemical composition of propolis is highly complex, and varies with region and season. This inherent chemical variability presents several challenges to its standardisation and quality control. The present review was aimed at highlighting marker compounds for different types of propolis, produced by the species Apis mellifera, from different geographical origins and that display different biological activities, and to discuss strategies for quality control. Over 800 compounds have been reported in the different propolises such as temperate, tropical, birch, Mediterranean, and Pacific propolis; these mainly include alcohols, acids and their esters, benzofuranes, benzopyranes, chalcones, flavonoids and their esters, glycosides (flavonoid and diterpene), glycerol and its esters, lignans, phenylpropanoids, steroids, terpenes and terpenoids. Among these, flavonoids (> 140), terpenes and terpenoids (> 160) were major components. A broad range of biological activities, such as anti-oxidant, antimicrobial, anti-inflammatory, immunomodulatory, and anticancer activities, have been ascribed to propolis constituents, as well as the potential of these compounds to be biomarkers. Several analytical techniques, including non-separation and separation methods have been described in the literature for the quality control assessment of propolis. Mass spectrometry coupled with separation methods, followed by chemometric analysis of the data, was found to be a valuable tool for the profiling and classification of propolis samples, including (bio)marker identification. Due to the rampant chemotypic variability, a multiple-marker assessment strategy considering geographical and biological activity marker(s) with chemometric analysis may be a promising approach for propolis quality assessment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-022-09816-1.
Collapse
Affiliation(s)
- Deepak Kasote
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alvaro M. Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
- SAMRC Herbal Drugs Research Unit, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001 South Africa
| |
Collapse
|
7
|
Cui J, Duan X, Ke L, Pan X, Liu J, Song X, Ma W, Zhang W, Liu Y, Fan Y. Extraction, purification, structural character and biological properties of propolis flavonoids: A review. Fitoterapia 2021; 157:105106. [PMID: 34958852 DOI: 10.1016/j.fitote.2021.105106] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/04/2022]
Abstract
Propolis is an aromatic substance which is collected by bees and mixed with bee saliva. The plant sources of propolis are mainly consisted with plant exudates from bark, buds and etc. Flavonoids are secondary metabolites widely found in natural plants, which have a variety of health care functions and are the main active ingredients of propolis. This article summarized the types, active ingredients, pharmacological effects, extraction methods and applications of propolis flavonoids, the aim was to provide the theoretical basis for further research and development of propolis flavonoids.
Collapse
Affiliation(s)
- Jing Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xueqin Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Liting Ke
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xingxue Pan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jia Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
8
|
Özkök A, Keskin M, Tanuğur Samancı AE, Yorulmaz Önder E, Takma Ç. Determination of antioxidant activity and phenolic compounds for basic standardization of Turkish propolis. APPLIED BIOLOGICAL CHEMISTRY 2021; 64:37. [PMID: 33880424 PMCID: PMC8050631 DOI: 10.1186/s13765-021-00608-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to determine the standard amount of antioxidant content and compounds of the propolis for the standardization of propolis. For this purpose, the total flavonoids, total phenolic, CUPRAC antioxidant capacity content and the diversity of phenolic and flavonoid components of these propolis samples were found by HPLC determined at the 23 propolis samples which were collected different regions of Turkey. Beside that, the similarities and differences of these 23 provinces to each other according to their antioxidant capacities were investigated by multidimensional scaling analysis. The total flavonoid content in the propolis samples were determined between 21.28 and 152.56 mg CE/g. The total phenolic content in the propolis samples was found between 34.53 mg and 259.4 mg GAE/g. CUPRAC antioxidant capacity of the propolis samples and antioxidant range was found from 95.35 to 710.43 mg TE/g. Also, 4 flavonoid [Quercetin (min.1.12-max.4.14 mg/g), Galangin (min.0.72-max.40.79 mg/g), Apigenin (min.1.07-max.17.35 mg/g), Pinocembrin (min.1.32-max.39.92 mg/g] and 6 phenolic acid [Caffeic acid (min.1.20-max.7.6 mg/g), p-Coumaric acid (min.1.26-max.4.47 mg/g), trans-Ferulic acid (min.1.28-max.4.92 mg/g), Protocatechuic acid (1.78 mg/g), trans-Cinnamic acid (min.1.05-max.3.83 mg/g), Caffeic Acid Phenethyl Ester (CAPE) (min.1.41-max.30.15 mg/g)] components were detected as mg/g, in different ratios in propolis samples collected from different regions. The feature of this study, so far, is to have the maximum number of samples representing the Turkish propolis, and so is thought to help to national and international propolis standard workings.
Collapse
Affiliation(s)
- Aslı Özkök
- Bee and Bee Products Application and Research Center (HARUM), Hacettepe University, Ankara, Turkey
| | - Merve Keskin
- Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | | | - Elif Yorulmaz Önder
- SBS Bilimsel Bio Çözümler Inc. Bee&You Propolis R&D Center, 34775, İstanbul, Turkey
| | - Çiğdem Takma
- Department of Animal Science, Faculty of Agriculture, Ege University, İzmir, Turkey
| |
Collapse
|
9
|
Ghallab DS, Mohyeldin MM, Shawky E, Metwally AM, Ibrahim RS. Chemical profiling of Egyptian propolis and determination of its xanthine oxidase inhibitory properties using UPLC–MS/MS and chemometrics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Avula B, Sagi S, Masoodi MH, Bae JY, Wali AF, Khan IA. Quantification and Characterization of Phenolic Compounds from Northern Indian Propolis Extracts and Dietary Supplements. J AOAC Int 2020; 103:1378-1393. [PMID: 33241387 DOI: 10.1093/jaoacint/qsaa032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/28/2020] [Accepted: 02/26/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND Propolis is a resinous substance produced by bees. Propolis extracts have been used for anti-inflammatory and antimicrobial activities. The use of propolis dietary supplements has been increasing in the United States and the rest of the world. OBJECTIVE A simple, economic, and valid analytical method is needed for quality assessment of dietary supplements and extracts claiming to contain propolis. METHODS A ultra-high performance liquid chromatography (UHPLC) quadropole time-of-flight-MS method was used to characterize the chemical composition of northern Indian propolis. Fourteen major phenolic compounds were quantified using a UHPLC-DAD method. An HPTLC method was used to develop chemical fingerprinting profiles for propolis extracts and dietary supplements. The seven propolis extracts and 14 dietary supplements purchased in the U.S. were analyzed using the UHPLC-DAD-QToF method. RESULTS Fifty-seven compounds belonging to phenolic, coumarin, fatty acid, and terpene classes were identified in propolis extracts. Based on quantification results, the content of 14 phenolic compounds in propolis extracts varied from 19-32% in dietary supplements, a significant variation to the recommended daily intake (0.2-94 mg/day). CONCLUSIONS/HIGHLIGHTS The developed analytical methods can be used for quality assessment of propolis extracts and dietary supplements.
Collapse
Affiliation(s)
- Bharathi Avula
- The University of Mississippi, School of Pharmacy, National Center for Natural Products Research, University, Oxford, MS 38677, USA
| | - Satyanarayanaraju Sagi
- The University of Mississippi, School of Pharmacy, National Center for Natural Products Research, University, Oxford, MS 38677, USA
| | - Mubashir H Masoodi
- University of Kashmir, Faculty of Applied Sciences & Technology, Department of Pharmaceutical Sciences, Srinagar, 190006 J & K, India
| | - Ji-Yeong Bae
- The University of Mississippi, School of Pharmacy, National Center for Natural Products Research, University, Oxford, MS 38677, USA
| | - Adil F Wali
- University of Kashmir, Faculty of Applied Sciences & Technology, Department of Pharmaceutical Sciences, Srinagar, 190006 J & K, India
| | - Ikhlas A Khan
- The University of Mississippi, School of Pharmacy, National Center for Natural Products Research, University, Oxford, MS 38677, USA.,The University of Mississippi, Department of BioMolecular Sciences, School of Pharmacy, Division of Pharmacognosy, University, Oxford, MS 38677, USA
| |
Collapse
|
11
|
Jiang L, Mu Y, Wei S, Mu Y, Zhao C. Study on the dynamic changes and formation pathways of metabolites during the fermentation of black waxy rice wine. Food Sci Nutr 2020; 8:2288-2298. [PMID: 32405386 PMCID: PMC7215209 DOI: 10.1002/fsn3.1507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Black waxy rice wine fermentation metabolites are closely related to the product's final quality. However, little is known about dynamic metabolite changes during fermentation. Here, we used gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) metabolomics and multivariate statistical analysis to explore the relationship between metabolites and fermentation time. A total of 159 metabolites were identified during the entire fermentation process. The PCA analysis revealed a clear separation between the samples after 4 days and 2 days, and the samples after 4-24 days clustered together. This indicated that BGRW fermentation progresses rapidly in the first 48 hr of fermentation. A total of 40 metabolites were identified as differential during fermentation (VIP > 1 and p < .05), including 12 organic acids, four amino acids, one fatty acid, 17 sugars and sugar alcohols, one alcohol, and five other metabolites. Pathway analysis showed that the differential metabolites were involved in 28 metabolic pathways, and the most commonly influenced pathways (impact value > 0.1 and p < .05) were galactose metabolism, pyruvate metabolism; starch and sucrose metabolism; alanine, aspartic acid, and glutamate metabolism; the tricarboxylic acid cycle, glyoxylic acid, and dicarboxylic acid metabolism; and amino sugar and nucleotide sugar metabolism. Moreover, the integrated metabolic pathway was generated to understand the transformation and accumulation of differential metabolites. Overall, these results provide a comprehensive overview of metabolite changes during black waxy rice wine fermentation.
Collapse
Affiliation(s)
- Li Jiang
- School of Liquor and Food EngineeringGuizhou UniversityGuizhouChina
| | - Yingchun Mu
- School of Liquor and Food EngineeringGuizhou UniversityGuizhouChina
| | - Su Wei
- School of Liquor and Food EngineeringGuizhou UniversityGuizhouChina
| | - Yu Mu
- School of Liquor and Food EngineeringGuizhou UniversityGuizhouChina
| | - Chi Zhao
- School of Liquor and Food EngineeringGuizhou UniversityGuizhouChina
| |
Collapse
|
12
|
Chemometrics: a complementary tool to guide the isolation of pharmacologically active natural products. Drug Discov Today 2019; 25:27-37. [PMID: 31600581 DOI: 10.1016/j.drudis.2019.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022]
Abstract
Chemometrics offers an important complementary tool to enhance the searching and isolation of bioactive natural products from natural sources.
Collapse
|
13
|
Zabaiou N, Fouache A, Trousson A, Buñay-Noboa J, Marceau G, Sapin V, Zellagui A, Baron S, Lahouel M, Lobaccaro JMA. Ethanolic extract of Algerian propolis decreases androgen receptor transcriptional activity in cultured LNCaP cells. J Steroid Biochem Mol Biol 2019; 189:108-115. [PMID: 30831197 DOI: 10.1016/j.jsbmb.2019.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/27/2019] [Indexed: 01/01/2023]
Abstract
Antiandrogens have a peculiar place in the treatment of metastatic prostate cancer by blocking the androgen receptor (AR). Unfortunately, aggressive tumors could rapidly develop into a castration resistant state. It is therefore essential to look for new molecules that are more effective, affecting not only the androgen signaling and with minimum undesirable effects. Natural products are an interesting source of new therapeutics, especially for cancer therapy as 70% of them have botanical origin. Based on an ethnobotany screening, we evaluated the effects of ethanolic extract of propolis (EEP) from Algeria on LNCaP cells. Results pointed out that EEP reduces the survival of LNCaP cells with an IC50 of 0.04 mg/ml, induces the apoptosis and blocks the cell cycle at G0/G1 phase. Interestingly, EEP decreased the accumulation of AR suggesting some anti-androgen activity. Indeed, secreted amount of the androgen target protein PSA was decreased when LNCaP cells were incubated with EEP, starting after 4 h of treatment. This anti-androgen activity was also shown on the androgen target genes Fkbp5 and Sgk1. Finally, the capacity of EEP to block AR functioning was demonstrated in transient transfections with human AR and the reporter gene ARE-tk-Luc. Propolis antagonizes the induction of the luciferase activity induced by the natural androgen DHT (10-8M) or the synthetic AR agonist R1881 (10-7M). Altogether, these results highlight the potential pharmacological effects of EEP in future treatments of prostate cancer.
Collapse
Affiliation(s)
- Nada Zabaiou
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France; Laboratory of Molecular Toxicology, Department of Molecular and Cellular Biology, Faculty of Science, Université Mohamed Seddik Benyahia, 18000, Jijel, Algeria.
| | - Allan Fouache
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| | - Julio Buñay-Noboa
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| | - Geoffroy Marceau
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Service de Biochimie et Génétique Moléculaire, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France.
| | - Vincent Sapin
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Service de Biochimie et Génétique Moléculaire, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France.
| | - Amar Zellagui
- Laboratory of Biomolecules and Plant Breeding, Université Larbi Ben M'hidi, 04000, Oum El Bouaghi, Algeria.
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| | - Mesbah Lahouel
- Laboratory of Molecular Toxicology, Department of Molecular and Cellular Biology, Faculty of Science, Université Mohamed Seddik Benyahia, 18000, Jijel, Algeria.
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| |
Collapse
|
14
|
Lee JH, Jayaprakasha G, Avila CA, Crosby KM, Patil BS. Metabolomic studies of volatiles from tomatoes grown in net-house and open-field conditions. Food Chem 2019; 275:282-291. [DOI: 10.1016/j.foodchem.2018.09.091] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 01/03/2023]
|
15
|
Bankova V, Popova M, Trusheva B. The phytochemistry of the honeybee. PHYTOCHEMISTRY 2018; 155:1-11. [PMID: 30053651 DOI: 10.1016/j.phytochem.2018.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Honeybees rely on plants for everything they need to keep the colony running; plant nectar and pollen are their only carbohydrate and protein food sources. By foraging to satisfy their basic nutritional demand, honeybees inevitably gather specialized plant metabolites as part of the nectar and pollen. In general, these compounds possess biological activity which may become relevant in fighting pests and pathogens in the hive. The third plant derived bee product, besides honey and bee pollen, is propolis (bee glue), which comes from plant resins. It is not a food; it is used as a building material and a defensive substance. Thus, the beehive is rich in specialized plant metabolites, produced by many different plant species and the expression "Phytochemistry of honeybees" is not inappropriate. However, it is virtually impossible to perform a detailed overview of the phytochemical features of honey and pollen in a review article of this nature, for reasons of space. The present review deals with propolis, because it is the bee product with highest concentration of specialized plant metabolites and has valuable pharmacological activities. The most recent developments concerning plant sources of propolis, bees' preferences to particular plants, the application of metabolomic approaches and chemometrics to propolis research and the problems concerning standardization of propolis are summarized. The overview covers the literature published in the last decade, after 2007.
Collapse
Affiliation(s)
- Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria.
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria.
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria.
| |
Collapse
|
16
|
Vargas-Bello-Pérez E, Gómez-Cortés P, Geldsetzer-Mendoza C, Morales MS, Toro-Mujica P, Fellenberg MA, Ibáñez RA. Authentication of retail cheeses based on fatty acid composition and multivariate data analysis. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Shawky E, Ibrahim RS. Bioprofiling for the quality control of Egyptian propolis using an integrated NIR-HPTLC-image analysis strategy. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1095:75-86. [DOI: 10.1016/j.jchromb.2018.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 11/25/2022]
|
18
|
Lee JHJ, Jayaprakasha GK, Rush CM, Crosby KM, Patil BS. Production system influences volatile biomarkers in tomato. Metabolomics 2018; 14:99. [PMID: 30830380 DOI: 10.1007/s11306-018-1385-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION In recent years, growers have used various production types, including high-tunnel systems, to increase the yield of tomatoes (Lycopersicon esculentum). However, the effect of high-tunnel cultivation, in comparison to conventional open-field production, on aroma and flavor volatiles is not fully understood. OBJECTIVES To optimize the extraction and quantification conditions for the analysis of tomato volatiles using headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS), and study the effect of production systems on volatile profiles using metabolomics approach. METHODS The HS-SPME conditions were optimized for extraction and GC-MS was used to quantify the volatiles from four tomato varieties grown in open-field and high-tunnel systems. Univariate and multivariate analyses were performed to identify the influence of production system on tomato volatiles. RESULTS AND CONCLUSIONS The extraction of 2 g tomato samples at 60 °C for 45 min using divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber gave the maximum amounts of volatiles. This optimized method was used to identify and quantify 41 volatiles from four tomato varieties. The levels of β-damascenone were higher in the high-tunnel tomatoes and geranylacetone was higher in open-field tomatoes. These two volatile compounds could be considered as biomarkers for tomatoes grown in high-tunnel and open-field production systems. This study is the first report comparing volatiles in tomatoes grown in high-tunnel and open-field conditions, and our results confirmed that there is a critical need to adopt biomarker-specific production systems to improve the nutritional and organoleptic properties of tomatoes.
Collapse
Affiliation(s)
- Jisun H J Lee
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, A120, College Station, TX, 77845-2119, USA
| | - G K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, A120, College Station, TX, 77845-2119, USA
| | - Charlie M Rush
- Plant Pathology, Texas A&M AgriLife Research, and Extension, Amarillo Research & Extension Center, 6500 Amarillo Boulevard West, Amarillo, TX, 79106, USA
| | - Kevin M Crosby
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, A120, College Station, TX, 77845-2119, USA.
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, A120, College Station, TX, 77845-2119, USA.
| |
Collapse
|
19
|
Profiling and classification of French propolis by combined multivariate data analysis of planar chromatograms and scanning direct analysis in real time mass spectra. J Chromatogr A 2016; 1465:197-204. [DOI: 10.1016/j.chroma.2016.08.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/23/2022]
|
20
|
Pierini GD, Fernandes DDS, Diniz PHGD, de Araújo MCU, Di Nezio MS, Centurión ME. A digital image-based traceability tool of the geographical origins of Argentine propolis. Microchem J 2016. [DOI: 10.1016/j.microc.2016.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
The Application of Vibrational Spectroscopy Techniques in the Qualitative Assessment of Material Traded as Ginseng. Molecules 2016; 21:472. [PMID: 27077839 PMCID: PMC6273312 DOI: 10.3390/molecules21040472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/10/2016] [Accepted: 04/01/2016] [Indexed: 12/03/2022] Open
Abstract
The name “ginseng” is collectively used to describe several plant species, including Panax ginseng (Asian/Oriental ginseng), P. quinquefolius (American ginseng), P. pseudoginseng (Pseudoginseng) and Eleutherococcus senticosus (Siberian ginseng), each with different applications in traditional medicine practices. The use of a generic name may lead to the interchangeable use or substitution of raw materials which poses quality control challenges. Quality control methods such as vibrational spectroscopy-based techniques are here proposed as fast, non-destructive methods for the distinction of four ginseng species and the identification of raw materials in commercial ginseng products. Certified ginseng reference material and commercial products were analysed using hyperspectral imaging (HSI), mid-infrared (MIR) and near-infrared (NIR) spectroscopy. Principal component analysis (PCA) and (orthogonal) partial least squares discriminant analysis models (OPLS-DA) were developed using multivariate analysis software. UHPLC-MS was used to analyse methanol extracts of the reference raw materials and commercial products. The holistic analysis of ginseng raw materials revealed distinct chemical differences using HSI, MIR and NIR. For all methods, Eleutherococcussenticosus displayed the greatest variation from the three Panax species that displayed closer chemical similarity. Good discrimination models with high R2X and Q2 cum vales were developed. These models predicted that the majority of products contained either /P. ginseng or P. quinquefolius. Vibrational spectroscopy and HSI techniques in tandem with multivariate data analysis tools provide useful alternative methods in the authentication of ginseng raw materials and commercial products in a fast, easy, cost-effective and non-destructive manner.
Collapse
|
22
|
Nina N, Quispe C, Jiménez-Aspee F, Theoduloz C, Feresín GE, Lima B, Leiva E, Schmeda-Hirschmann G. Antibacterial Activity, Antioxidant Effect and Chemical Composition of Propolis from the Región del Maule, Central Chile. Molecules 2015; 20:18144-67. [PMID: 26457694 PMCID: PMC6332341 DOI: 10.3390/molecules201018144] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/21/2022] Open
Abstract
Propolis is commercialized in Chile as an antimicrobial agent. It is obtained mainly from central and southern Chile, but is used for the same purposes regardless of its origin. To compare the antimicrobial effect, the total phenolic (TP), the total flavonoid (TF) content and the phenolic composition, 19 samples were collected in the main production centers in the Región del Maule, Chile. Samples were extracted with MeOH and assessed for antimicrobial activity against Gram (+) and Gram (−) bacteria. TP and TF content, antioxidant activity by the DPPH, FRAP and TEAC methods were also determined. Sample composition was assessed by HPLD-DAD-ESI-MS/MS. Differential compounds in the samples were isolated and characterized. The antimicrobial effect of the samples showed MICs ranging from 31.5 to > 1000 µg/mL. Propolis from the central valley was more effective as antibacterial than those from the coastal area or Andean slopes. The samples considered of interest (MIC ≤ 62.5 µg/mL) showed effect on Escherichia coli, Pseudomonas sp., Yersinia enterocolitica and Salmonella enteritidis. Two new diarylheptanoids, a diterpene, the flavonoids pinocembrin and chrysin were isolated and elucidated by spectroscopic and spectrometric means. Some 29 compounds were dereplicated by HPLC-MS and tentatively identified, including nine flavones/flavonol derivatives, one flavanone, eight dihydroflavonols and nine phenyl-propanoids. Propolis from the Región del Maule showed large variation in antimicrobial effect, antioxidant activity and composition. So far the presence of diarylheptanoids in samples from the coastal area of central Chile can be considered as a marker of a new type of propolis.
Collapse
Affiliation(s)
- Nélida Nina
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3460000, Chile.
- Facultad de Ciencias de la Salud, Programa de Magister en Ciencias Biomédicas, Universidad de Talca, Talca 3460000, Chile.
| | - Cristina Quispe
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3460000, Chile.
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1110939, Chile.
| | - Felipe Jiménez-Aspee
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3460000, Chile.
| | - Cristina Theoduloz
- Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Universidad de Talca, Casilla 747, Talca 3460000, Chile.
| | - Gabriela Egly Feresín
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 (oeste), San Juan 5400, Argentina.
| | - Beatriz Lima
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 (oeste), San Juan 5400, Argentina.
| | - Elba Leiva
- Facultad de Ciencias de la Salud, Programa de Magister en Ciencias Biomédicas, Universidad de Talca, Talca 3460000, Chile.
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3460000, Chile.
| |
Collapse
|
23
|
Wu YY, Huang XX, Zhang MY, Zhou L, Li DQ, Cheng ZY, Li LZ, Peng Y, Song SJ. Chemical constituents from the tubers of Pinellia ternata (Araceae) and their chemotaxonomic interest. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Suleman T, van Vuuren S, Sandasi M, Viljoen A. Antimicrobial activity and chemometric modelling of South African propolis. J Appl Microbiol 2015; 119:981-90. [DOI: 10.1111/jam.12906] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/18/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022]
Affiliation(s)
- T. Suleman
- Department of Pharmacy and Pharmacology; Faculty of Health Science; University of the Witwatersrand; Johannesburg South Africa
| | - S. van Vuuren
- Department of Pharmacy and Pharmacology; Faculty of Health Science; University of the Witwatersrand; Johannesburg South Africa
| | - M. Sandasi
- Department of Pharmaceutical Sciences; Tshwane University of Technology; Pretoria South Africa
| | - A.M. Viljoen
- Department of Pharmaceutical Sciences; Tshwane University of Technology; Pretoria South Africa
- SAMRC Herbal Drugs Research Unit; Department of Pharmaceutical Sciences; Tshwane University of Technology; Pretoria South Africa
| |
Collapse
|