1
|
Tian H, Zhang H, Shi X, Ma W, Zhang J. Population genetic diversity and environmental adaptation of Tamarix hispida in the Tarim Basin, arid Northwestern China. Heredity (Edinb) 2024; 133:298-307. [PMID: 39138378 DOI: 10.1038/s41437-024-00714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Arid ecosystems, characterized by severe water scarcity, play a crucial role in preserving Earth's biodiversity and resources. The Tarim Basin in Northwestern China, a typical arid region isolated by the Tianshan Mountains and expansive deserts, provides a special study area for investigating how plant response and adaptation to such environments. Tamarix hispida, a species well adapted to saline-alkaline and drought conditions, dominates in the saline-alkali lands of the Tarim Basin. This study aims to examine the genetic diversity and environmental adaptation of T. hispida in the Tarim Basin. Genomic SNPs for a total of 160 individuals from 17 populations were generated using dd-RAD sequencing approach. Population genetic structure and genetic diversity were analyzed by methods including ADMIXTURE, PCA, and phylogenetic tree. Environmental association analysis (EAA) was performed using LFMM and RDA analyses. The results revealed two major genetic lineages with geographical substitution patterns from west to east, indicating significant gene flow and hybridization. Environmental factors such as Precipitation Seasonality (bio15) and Topsoil Sand Fraction (T_SAND) significantly shaped allele frequencies, supporting the species' genetic adaptability. Several genes associated with environmental adaptation were identified and annotated, highlighting physiological and metabolic processes crucial for survival in arid conditions. The study highlights the role of geographical isolation and environmental factors in shaping genetic structure and adaptive evolution. The identified adaptive genes related to stress tolerance emphasize the species' resilience and highlight the importance of specific physiological and metabolic pathways.
Collapse
Affiliation(s)
- Haowen Tian
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Conservation and Utilization of Gene Resources, Urumqi, Xinjiang, China
- Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hongxiang Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China.
- Xinjiang Key Laboratory of Conservation and Utilization of Gene Resources, Urumqi, Xinjiang, China.
- Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China.
| | - Xiaojun Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| | - Wenhui Ma
- College of Ecology and Environment, Xinjiang University, Urumqi, 830046, China
| | - Jian Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Conservation and Utilization of Gene Resources, Urumqi, Xinjiang, China
- Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Liu Y, Ding K, Liang L, Zhang Z, Chen K, Li H. Comparative study on chloroplast genome of Tamarix species. Ecol Evol 2024; 14:e70353. [PMID: 39360124 PMCID: PMC11445282 DOI: 10.1002/ece3.70353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Tamaricaceae comprises about 120 species and has a long evolutionary history, Tamarix Linn accounts for approximately 75% of the total species in this family. It is the most widely distributed and diverse genus in the family. They have important ecological significance for transforming deserts and improving climate conditions. However, Tamarix is the most poorly classified genera among flowering plants owing to its large variability and high susceptibility to interspecific hybridization. In this study, the complete chloroplast genomes of three Tamarix species and one draft chloroplast genome were obtained in this study. Combined with eight chloroplast genomes deposited in GenBank, complete chloroplast sequences of 12 Tamarix species were used for further analysis. There are 176 non-SSR-related indels and 681 non-indel-related SSRs in the 12 Tamarix chloroplast genomes. The mononucleotide SSRs are the most prevalent among all types of SSRs. The mVISTA results indicate high sequence similarities across the chloroplast genome, suggesting that the chloroplast genomes are highly conserved, except for sample Tamarix androssowii (ENC850343). The IR regions and the coding regions are more conserved than the single-copy and noncoding regions. The trnF-ndhJ, ndhC-trnM-CAU, ycf1, and trnL-UAG-ndhF regions are the most variable and have higher variability than those of the universal DNA markers. Finally, the first phylogenetic tree of Tamaricaceae was constructed which confirmed the monophyly of Tamarix in Tamaricaceae. The first phylogenetic tree of Tamarix was based on the complete chloroplast genome to date, the changes in branch length and support rate can potentially help us clarify the phylogenetic relationships of Tamarix. All the obtained genetic resources will facilitate future studies in population genetics, species identification, and conservation biology of Tamarix.
Collapse
Affiliation(s)
- Yanlei Liu
- School of Landscape and Ecological Engineering Hebei University of Engineering Handan China
| | - Kuo Ding
- Bingtuan Xingxin Vocational and Technical College Tiemenguan China
| | - Lixiong Liang
- School of Landscape and Ecological Engineering Hebei University of Engineering Handan China
| | - Zhan Zhang
- Bingtuan Xingxin Vocational and Technical College Tiemenguan China
| | - Kai Chen
- Bingtuan Xingxin Vocational and Technical College Tiemenguan China
| | - Haiwen Li
- College of Life Sciences and Technology Tarim University Alar China
| |
Collapse
|
3
|
Yang H, Liu F, Liu X, Zhou Z, Pan Y, Chu J. Changes of Tamarix austromongolica forests with embankment dams along the Laizhou bay. PeerJ 2024; 12:e17934. [PMID: 39193521 PMCID: PMC11348900 DOI: 10.7717/peerj.17934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Background Embankment dams were built south of the Laizhou bay in China for controlling storm surge disasters, but they are not enough to replace coastal forests in protecting the land. This study was designed to evaluate the effects of embankment dams on natural forests dominated by Tamarix austromongolica and test whether the dam-shrub system is a preferable updated defense. Methods Coastal forests on two typical flats, one before and one behind embankment dams, were investigated using quadrats and lines. Land bareness, vegetation composition and species co-occurrence were assessed; structures of T. austromongolica populations were evaluated; and spatial patterns of the populations were analyzed using Ripley's K and K1,2 functions. Results In the area before embankment dams, 84.8% of T. austromongolica were juveniles (basal diameter ≤ 3 cm), and 15.2% were adults (basal diameter > 3 cm); behind the dams, 52.9% were juveniles, and 47.1 were adults. In the area before the dams, the land bareness was 13.7%, four species occurred, and they all were ready to co-occur with T. austromongolica; behind the dams, the land bareness was 0%, and 16 species occurred whereas they somewhat resisted co-occurrence with T. austromongolica. In the area before the dams, the T. austromongolica population was aggregated in heterogeneous patches, and the juveniles tended to co-occur with the adults; behind the dams, they were over-dispersed as nearly uniform distributions, while the juveniles could recruit and were primarily independent of the adults. These results indicate that the T. austromongolica species did not suffer from the unnatural dams, but benefited somehow in population expansion and development. Overall, the T. austromongolica species can adapt to artificial embankment dams to create a synthetic defense against storm surges.
Collapse
Affiliation(s)
| | | | - Xinwei Liu
- Qingdao Agricultural University, Qingdao, China
| | | | - Yanxia Pan
- Qingdao Agricultural University, Qingdao, China
| | - Jianmin Chu
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, Inner Mongolia Autonomous Region, China
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
4
|
Yang H, Liu X, Gan H, Sun J, Pan Y, Chu J. The Yellow River is the key corridor for Tamarix austromongolica to disperse from Asia inlands to east seashores. Ecol Evol 2024; 14:e11473. [PMID: 39114177 PMCID: PMC11303977 DOI: 10.1002/ece3.11473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 08/10/2024] Open
Abstract
Plants of the Tamarix L. genus (Tamaricaceae) mainly occur in arid inlands of Asia, but a few species occur in the coastal areas of China, and the Yellow River may account for this. This study was conducted to elucidate whether and how the Yellow River affects the pattern and development of the Tamarix genus, involving two critical species of Tamarix austromongolica Nakai and Tamarix chinensis Lour. With geographical distribution data, relationships of T. austromongolica with the Yellow River and the pertaining watershed were examined using the method of random permutation. The base-diameter structures of T. austromongolica populations were investigated and compared between different riparian lands that suffer discriminative water inundation. The nearest distances from T. austromongolica locations to the Yellow River and the pertaining watershed were significantly lower than the theoretical expectations in the condition of random distribution (p < .05). In many riparian lands along the Yellow River, wild T. austromongolica populations occurred with vigorous juveniles, despite frequent human disturbances. In coastal areas near the present estuary of the river, wild T. austromongolica plants were still found. In T. austromongolica populations near the Yellow River and sea, the rates of juvenile plants were significantly higher than in other populations situated farther from the river or sea. These findings suggest that the Yellow River can facilitate the eastward dispersal of Tamarix plants that reasonably caused the evolution from T. austromongolica to T. chinensis in ancient coasts in the China east.
Collapse
Affiliation(s)
| | - Xinwei Liu
- Qingdao Agricultural UniversityQingdaoChina
| | - Honghao Gan
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jia Sun
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Yanxia Pan
- Qingdao Agricultural UniversityQingdaoChina
| | - Jianmin Chu
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- Experimental Center of Desert ForestryChinese Academy of ForestryDengkouChina
| |
Collapse
|
5
|
Gong S, Gan H, Chu J, Wang Z, Sun J. A chromosome-level genome assembly provides insights into the local adaptation of Tamarix austromongolica in the Yellow River Basin, China. DNA Res 2024; 31:dsae021. [PMID: 38946223 PMCID: PMC11306577 DOI: 10.1093/dnares/dsae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/02/2024] Open
Abstract
Tamarix austromongolica is endemic to the Yellow River Basin and has adapted to diverse ecological settings in the region, including the arid areas of northwestern China and the saline soil regions of the Yellow River Delta. However, the genetic basis of its local adaptation remains unclear. We report a chromosome-level assembly of the T. austromongolica genome based on PacBio high-fidelity sequencing and Hi-C technology. The 12 pseudochromosomes cover 98.44% of the 1.32 Gb assembly, with a contig N50 of 52.57 Mb and a BUSCO score of 98.2%. The genome comprises 913.6 Mb (68.83%) of repetitive sequences and 22,374 protein-coding genes. Genome evolution analyses suggest that genes under positive selection and significantly expanded gene families have facilitated T. austromongolica's adaptability to diverse environmental factors and high resistance to diseases. Using genotyping-by-sequencing, we conducted population structure and selection analyses of 114 samples from 15 sites. Two genetic groups were identified, and 114 and 289 candidate genes were assigned to the populations of the northwestern and eastern parts of the Yellow River, respectively. Furthermore, we discovered numerous candidate genes associated with high-altitude adaptability and salt tolerance. This research provides valuable genomic resources for the evolutionary study and genetic breeding of tamarisk.
Collapse
Affiliation(s)
- Shuai Gong
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Honghao Gan
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jianmin Chu
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, PR China
| | - Zhaoshan Wang
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jia Sun
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| |
Collapse
|
6
|
Swaminathan P, Ohrtman M, Carinder A, Deuja A, Wang C, Gaskin J, Fennell A, Clay S. Water Deficit Transcriptomic Responses Differ in the Invasive Tamarix chinensis and T. ramosissima Established in the Southern and Northern United States. PLANTS 2020; 9:plants9010086. [PMID: 31936615 PMCID: PMC7020488 DOI: 10.3390/plants9010086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 11/25/2022]
Abstract
Tamarix spp. (saltcedar) were introduced from Asia to the southern United States as windbreak and ornamental plants and have spread into natural areas. This study determined differential gene expression responses to water deficit (WD) in seedlings of T. chinensis and T. ramosissima from established invasive stands in New Mexico and Montana, respectively. A reference de novo transcriptome was developed using RNA sequences from WD and well-watered samples. Blast2GO analysis of the resulting 271,872 transcripts yielded 89,389 homologs. The reference Tamarix (Tamaricaceae, Carophyllales order) transcriptome showed homology with 14,247 predicted genes of the Beta vulgaris subsp. vulgaris (Amaranthaceae, Carophyllales order) genome assembly. T. ramosissima took longer to show water stress symptoms than T. chinensis. There were 2068 and 669 differentially expressed genes (DEG) in T. chinensis and T. ramosissima, respectively; 332 were DEG in common between the two species. Network analysis showed large biological process networks of similar gene content for each of the species under water deficit. Two distinct molecular function gene ontology networks (binding and transcription factor-related) encompassing multiple up-regulated transcription factors (MYB, NAC, and WRKY) and a cellular components network containing many down-regulated photosynthesis-related genes were identified in T. chinensis, in contrast to one small molecular function network in T. ramosissima.
Collapse
Affiliation(s)
- Padmapriya Swaminathan
- Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (P.S.); (M.O.); (A.C.); (A.D.); (C.W.)
- BioSystems Networks/Translational Research, South Dakota State University, Brookings, SD 57007, USA
| | - Michelle Ohrtman
- Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (P.S.); (M.O.); (A.C.); (A.D.); (C.W.)
| | - Abigail Carinder
- Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (P.S.); (M.O.); (A.C.); (A.D.); (C.W.)
| | - Anup Deuja
- Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (P.S.); (M.O.); (A.C.); (A.D.); (C.W.)
| | - Cankun Wang
- Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (P.S.); (M.O.); (A.C.); (A.D.); (C.W.)
| | - John Gaskin
- United States Department of Agriculture, Agricultural Research Service, Northern Plains Agricultural Research Laboratory, Sidney, MT 59270, USA;
| | - Anne Fennell
- Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (P.S.); (M.O.); (A.C.); (A.D.); (C.W.)
- BioSystems Networks/Translational Research, South Dakota State University, Brookings, SD 57007, USA
- Correspondence: (A.F.); (S.C.); Tel.: +1-605-688-6373 (A.F.)
| | - Sharon Clay
- Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (P.S.); (M.O.); (A.C.); (A.D.); (C.W.)
- Correspondence: (A.F.); (S.C.); Tel.: +1-605-688-6373 (A.F.)
| |
Collapse
|