1
|
Deng M, Ren B, Yi J, Ding H, Wang H. A novel range-divided data dependent acquisition strategy for screening of diterpenoid alkaloids in Aconitum pendulum roots. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1253:124486. [PMID: 39889611 DOI: 10.1016/j.jchromb.2025.124486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
A novel range-divided data dependent acquisition (DDA) strategy was proposed for the screening of diterpenoid alkaloids in Aconitum pendulum roots. In range-divided DDA, the low-range was set between m/z 340-500 and the high-range was set between m/z 500-700 according to the molecular weight range of the diterpenoid alkaloids. The combined identification approach including MS1 molecular weight, MS2 spectrum interpretation, literature comparison, and standard verification was applied to the results. The range-divided DDA identified 15 more diterpenoid alkaloids than the full-range DDA under the same LC conditions. A total of 47 diterpenoid alkaloids were identified. Among them, brachyaconitines A-D were screened for the first time in Aconitum pendulum. This screening strategy can serve as a powerful tool for the discovery of novel metabolites in the field of plant metabolomics.
Collapse
Affiliation(s)
- Mei Deng
- Hunan Food and Drug Vocational College, Changsha 410208, China
| | - Bishi Ren
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Jiayi Yi
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Hui Ding
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Hua Wang
- Instrumental Analysis Center, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|
2
|
Shu Y, Yao S, Luo Y, Yang HJ, Wang JP, Cai L. A New Diterpenoid Alkaloid with Antimicrobial Activity from Aconitum brachypodum Diels. Chem Biodivers 2024:e202402400. [PMID: 39441655 DOI: 10.1002/cbdv.202402400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
A new C20-denudatine-type diterpenoid alkaloid (DA) 11S-aconicarnine D (1) and fifteen known DAs were isolated from the lateral roots of Aconitum brachypodum Diels. Their structures were identified on the basis of extensive spectroscopic analyses, NMR calculations and DP4+ analysis. Compounds 1 and 4 exhibited antimicrobial activity against Alternaria panax with MICs of 2.00 and 8.00 μg/mL (Nystatin, 1.00 μg/mL), respectively.
Collapse
Affiliation(s)
- Yan Shu
- Key laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Shu Yao
- Key laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Yan Luo
- Key laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Hua-Juan Yang
- Key laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| | - Jia-Peng Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, 671000, People's Republic of China
| | - Le Cai
- Key laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, 650091, People's Republic of China
| |
Collapse
|
3
|
Oladeji OS, Odelade KA, Mahal A, Obaidullah AJ, Zainul R. Systematic appraisals of naturally occurring alkaloids from medicinal plants. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7439-7471. [PMID: 38767672 DOI: 10.1007/s00210-024-03126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Alkaloids are a complex class of biologically active compounds with a broad spectrum of health-related applications. Particularly the alkaloids of indole, steroidal, terpenoids, isoquinoline, and bisbenzylisoquinoline have been extensively investigated. Ultimately, substantial advancement has been highlighted in the investigation of chemical constituents and the therapeutic benefits of plant alkaloids, particularly during the last ten years. A total of 386 alkaloids have been isolated from over 40 families, including Apocynaceae, Annonaceae, Rubiaceae, Menispermaceae, Ranunculaceae, Buxaceae, Papaveraceae, Magnoliaceae, Rutaceae and Phyllanthaceae. This paper will investigate several alkaloids that have been isolated from botanical medicines as well as offer an in-depth analysis of their cytotoxic properties.
Collapse
Affiliation(s)
- Oluwole Solomon Oladeji
- Natural Products Research Unit, Department of Physical Sciences, College of Pure and Applied Sciences, Landmark University, Omu-Aran, PMB 1001, Nigeria
- Landmark University Sustainable Development Goals III (SDG 3), Good Health and Well-Being, Landmark University, Omu-Aran, PMB 1001, Nigeria
| | | | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia.
- Center for Advanced Material Processing, Artificial Intelligence, and Biophysics Informatics (CAMBIOTICS), Universitas Negeri Padang, Padang, Indonesia.
| |
Collapse
|
4
|
Tao H, Liu X, Tian R, Liu Y, Zeng Y, Meng X, Zhang Y. A review: Pharmacokinetics and pharmacology of aminoalcohol-diterpenoid alkaloids from Aconitum species. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115726. [PMID: 36183950 DOI: 10.1016/j.jep.2022.115726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum medicinal materials, such as Aconitum carmichaelii Debeaux (Chinese: Wutou/) and Aconitum kusnezoffii Reichb. (Chinese: Caowu/), are a kind of important Traditional Chinese Medicine (TCM) with great medicinal value. Statistics show that there are over 600 efficient TCM formulations comprising Aconitum medicinal materials. But high toxicity limits their clinical application. Clinically, the Aconitum medicinal materials must undergo a complex processing process that includes soaking, steaming, and boiling with pharmaceutical excipients, which makes highly toxic ester diterpenoid alkaloids are hydrolyzed to form less toxic aminoalcohol-diterpenoid alkaloids (ADAs). AIM OF THE STUDY This review aims to summarize the pharmacokinetic and pharmacological activities of low-toxicity ADAs, providing a reference for future ADAs research and drug development. MATERIALS AND METHODS Accessible literature on ADAs published between 1984 and 2022 were screened and obtained from available electronic databases such as PubMed, Web of Science, Springer, Science Direct and Google Scholar, followed by systematic analysis. RESULTS ADAs are secondary products of plant metabolism, widely distributed in the Aconitum species and Delphinium species. The toxicity of ADAs as pharmacodynamic components of Aconitum medicinal materials is much lower than that of other diterpenoid alkaloids due to the absence of ester bonds. On the one hand, the pharmacokinetics of ADAs have received little attention compared to other toxic alkaloids. The research primarily focuses on aconine and mesaconine. According to existing studies, ADAs absorption in the gastrointestinal tract is primarily passive with a short Tmax. Simultaneously, efflux transporters have less impact on ADAs absorption than non-ADAs. After entering the body, ADAs are widely distributed in the heart, liver, lungs, and kidney, but less in the brain. Notably, aconine is not well metabolized by liver microsomes. Aconine and mesaconine are excreted in urine and feces, respectively. ADAs, on the other hand, have been shown to have a variety of pharmacological activities, including cardiac, analgesic, anti-inflammatory, anti-tumor, antioxidant, and regenerative effects via regulating multiple signaling pathways, including Nrf2/ARE, PERK/eIF2α/ATF4/Chop, ERK/CREB, NF-κB, Bcl-2/Bax, and GSK3β/β-catenin signaling pathways. CONCLUSIONS ADAs have been shown to have beneficial effects on heart disease, neurological disease, and other systemic diseases. Moreover, ADAs have low toxicity and a wide range of safe doses. All of these suggest that ADAs have great potential for drug development.
Collapse
Affiliation(s)
- Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ruimin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yong Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
5
|
Tan X, He Q, Pei Z, Liu Y, Feng Z, Li C, Tang C, Zhang Y. Rapid visual characterization of alkaloid changes in traditional processing of Tibetan medicine Aconitum pendulum by high-performance thin-layer chromatography coupled with desorption electrospray ionization mass spectrometry imaging. Front Pharmacol 2023; 14:1104473. [PMID: 37153806 PMCID: PMC10160446 DOI: 10.3389/fphar.2023.1104473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
Radix Aconiti, also known as Tie-bang-chui (TBC), Pang-a-na-bao, and Bang-na, is a typical aconitum Tibetan medicine and a perennial herb of the genus Aconitum pendulum Busch. and A. flavum Hand. -Mazz. dry roots. It has high toxicity and remarkable efficacy; as such, it is a typical "highly toxic and effective" drug that needs be processed and used. Processing methods of this Tibetan medicine include non-heating of highland barley wine (HBW) and fructus chebulae soup (FCS). This work aimed to understand differences in chemical composition between non-heat processed products and raw TBC. In this study, high-performance thin-layer chromatography (HPTLC) and desorption electrospray ionization mass spectrometry imaging (DESI-MSI) were used to analyze the chemical composition of TBC processed by FCS (F-TBC) and HBW (H-TBC). The MRM mode of HPLC-QqQ-MS/MS was selected to determine the changes of several representative alkaloids to comparison with the former results. A total of 52 chemical constituents were identified in raw and processed products, and the chemical composition of F-TBC and H-TBC changed slightly compared with that of raw TBC. The processing mechanism of H-TBC was also different from that of F-TBC, which might be related to the large amount of acidic tannins in FCS. It was found that the content of all six alkaloids decreased after processing by FCS, and all five alkaloids decreased except aconitine increased after processing by HBW. The combination of HPTLC and DESI-MSI could be an effective method for rapid identification of chemical components and changing rules in ethnic medicine. The wide application of this technology provides not only an alternative method for the traditional separation and identification of secondary metabolism but also a reference for research on the processing mechanism and quality control of ethnic medicine.
Collapse
Affiliation(s)
- Xiaoyan Tan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingxiu He
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaoqing Pei
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zige Feng
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Congying Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Tang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hosptial of Chengdu University of Traditional Chinese Medicine, Meishan, China
- *Correspondence: Ce Tang, ; Yi Zhang,
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hosptial of Chengdu University of Traditional Chinese Medicine, Meishan, China
- *Correspondence: Ce Tang, ; Yi Zhang,
| |
Collapse
|
6
|
Jiang Z, Deng C, Zhou L, Wang Z, Wang F, Wu X, Ma X, Nan Z. High‐performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry for profiling diterpenoid alkaloids in Aconitum species. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhi‐Bo Jiang
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission North Minzu University Yinchuan P. R. China
- Ningxia Low‐grade Resource High‐value Utilization and Environmental Chemical Integration Technology Innovation Team Project Yinchuan P. R. China
| | - Chao‐Fan Deng
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission North Minzu University Yinchuan P. R. China
| | - Le‐Ru Zhou
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission North Minzu University Yinchuan P. R. China
| | - Zhen‐Zhen Wang
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission North Minzu University Yinchuan P. R. China
| | - Fang Wang
- Shandong Academy of Pharmaceutical Sciences Jinan P. R. China
| | - Xiu‐Li Wu
- College of Pharmacy Ningxia Medical University Yinchuan P. R. China
| | - Xiao‐Li Ma
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission North Minzu University Yinchuan P. R. China
| | - Ze‐Dong Nan
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission North Minzu University Yinchuan P. R. China
| |
Collapse
|
7
|
Alkaloids from Aconitum brachypodum and their network-based analysis of chemotaxonomic value. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Shen X, Yin T, Li X, Ma J, Lv Q, Zhang G. Diterpenoid alkaloids with chemotaxonomic significance from Aconitum spathulatum. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|