1
|
Snarska J, Jakimiuk K, Strawa JW, Tomczyk TM, Tomczykowa M, Piwowarski JP, Tomczyk M. A Comprehensive Review of Pedunculagin: Sources, Chemistry, Biological and Pharmacological Insights. Int J Mol Sci 2024; 25:11511. [PMID: 39519063 PMCID: PMC11545929 DOI: 10.3390/ijms252111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pedunculagin is a widely abundant ellagitannin found in the plant kingdom, with a chemical structure featuring two hexahydroxydiphenoyl units linked to a glucose core. It has demonstrated various biological activities, including anti-cancer, anti-inflammatory, and anti-bacterial effects. This review aims to summarize the bioactivities, chemistry, and health-promoting properties of pedunculagin and plant preparations containing it. It is the first comprehensive summary covering pedunculagin's chemistry, sources, metabolism, and other relevant research. The search databases were Google Scholar, EBSCO Discovery Service, REAXYS Database, SCILIT, SCOPUS, PubMed, MEDLINE, Web of Science, Wiley Online Library, Science Direct/ELSEVIER, WordCat, and Taylor and Francis Online. All the databases were methodically searched for data published from 1911 until 2024. Various biological effects were proven in vitro for pedunculagin; however, due to the limited availability of the isolated compound, they have not been so far directly confirmed on more advanced in vivo and clinical models. However, its bioactivity can be deduced from studies conducted for plant preparations containing this ellagitannin as a dominant constituent, consequently indicating beneficial health effects. Further studies are needed to determine the molecular mechanism of action following topical application as well as the contribution of gut microbiota postbiotic metabolites- urolithins-being formed following the oral ingestion of preparations containing pedunculagin.
Collapse
Affiliation(s)
- Julia Snarska
- Student’s Scientific Association, Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (J.S.); (T.M.T.)
| | - Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (J.W.S.)
| | - Jakub W. Strawa
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (J.W.S.)
| | - Tomasz M. Tomczyk
- Student’s Scientific Association, Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (J.S.); (T.M.T.)
| | - Monika Tomczykowa
- Department of Organic Chemistry, Faculty of Medicine with the Division of Dentistry and Division of Medical Education in English, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| | - Jakub P. Piwowarski
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland;
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (J.W.S.)
| |
Collapse
|
2
|
Spiegel M, Prejanò M, Russo N, Marino T. Primary Antioxidant Power and M pro SARS-CoV-2 Non-Covalent Inhibition Capabilities of Miquelianin. Chem Asian J 2024; 19:e202400079. [PMID: 38415945 DOI: 10.1002/asia.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
The antioxidant power of quercetin-3-O-glucuronide (miquelianin) has been studied, at the density functional level of theory, in both lipid-like and aqueous environments. In the aqueous phase, the computed pKa equilibria allowed the identification of the neutral and charged species present in solution that can react with the ⋅OOH radical. The Hydrogen Atom Transfer (HAT), Single Electron Transfer (SET) and Radical Adduct Formation (RAF) mechanisms were considered, and the individual, total and fraction corrected rate constants were obtained. Potential non-covalent inhibition of Mpro from SARS-CoV-2 by miquelianin has been also evaluated.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Organic Chemistry and Pharmaceutical Technology, Wroclaw Medical University, Borowska 211A, 50-556, Wroclaw, Poland
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136, Rende (CS), Italy
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136, Rende (CS), Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136, Rende (CS), Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136, Rende (CS), Italy
| |
Collapse
|
3
|
Radziejewska I, Supruniuk K, Jakimiuk K, Tomczyk M, Bielawska A, Galicka A. Tiliroside Combined with Anti-MUC1 Monoclonal Antibody as Promising Anti-Cancer Strategy in AGS Cancer Cells. Int J Mol Sci 2023; 24:13036. [PMID: 37685842 PMCID: PMC10487805 DOI: 10.3390/ijms241713036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Specific changes in mucin-type O-glycosylation are common for many cancers, including gastric ones. The most typical alterations include incomplete synthesis of glycan structures, enhanced expression of truncated O-glycans (Tn, T antigens and their sialylated forms), and overexpression of fucosylation. Such altered glycans influence many cellular activities promoting cancer development. Tiliroside is a glycosidic dietary flavonoid with pharmacological properties, including anti-cancer. In this study, we aim to assess the effect of the combined action of anti-MUC1 and tiliroside on some cancer-related factors in AGS gastric cancer cells. Cancer cells were treated with 40, 80, and 160 µM tiliroside, 5 µg/mL anti-MUC1, and flavonoid together with mAb. Real-Time PCR, ELISA, and Western blotting were applied to examine MUC1 expression, specific, tumor-associated antigens, enzymes taking part in their formation, Gal-3, Akt, and NF-κB. MUC1 expression was significantly reduced by mAb action. The combined action of anti-MUC1 and tiliroside was more effective in comparison with monotherapy in the case of C1GalT1, ST3GalT1, FUT4, Gal-3, NF-κB, Akt mRNAs, and Tn antigen, as well as sialyl T antigen expression. The results of our study indicate that applied combined therapy may be a promising anti-gastric cancer strategy.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| | - Katarzyna Supruniuk
- Department of Medical Biology and Genetics, Medical University of Gdańsk, ul. Dębinki 1, 80-211 Gdańsk, Poland;
| | - Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (M.T.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (K.J.); (M.T.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland;
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland;
| |
Collapse
|
4
|
Augustynowicz D, Lemieszek MK, Strawa JW, Wiater A, Tomczyk M. Phytochemical Profiling of Extracts from Rare Potentilla Species and Evaluation of Their Anticancer Potential. Int J Mol Sci 2023; 24:ijms24054836. [PMID: 36902263 PMCID: PMC10002591 DOI: 10.3390/ijms24054836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Despite the common use of Potentilla L. species (Rosaceae) as herbal medicines, a number of species still remain unexplored. Thus, the present study is a continuation of a study evaluating the phytochemical and biological profiles of aqueous acetone extracts from selected Potentilla species. Altogether, 10 aqueous acetone extracts were obtained from the aerial parts of P. aurea (PAU7), P. erecta (PER7), P. hyparctica (PHY7), P. megalantha (PME7), P. nepalensis (PNE7), P. pensylvanica (PPE7), P. pulcherrima (PPU7), P. rigoi (PRI7), and P. thuringiaca (PTH7), leaves of P. fruticosa (PFR7), as well as from the underground parts of P. alba (PAL7r) and P. erecta (PER7r). The phytochemical evaluation consisted of selected colourimetric methods, including total phenolic (TPC), tannin (TTC), proanthocyanidin (TPrC), phenolic acid (TPAC), and flavonoid (TFC) contents, as well as determination of the qualitative secondary metabolite composition by the employment of LC-HRMS (liquid chromatography-high-resolution mass spectrometry) analysis. The biological assessment included an evaluation of the cytotoxicity and antiproliferative properties of the extracts against human colon epithelial cell line CCD841 CoN and human colon adenocarcinoma cell line LS180. The highest TPC, TTC, and TPAC were found in PER7r (326.28 and 269.79 mg gallic acid equivalents (GAE)/g extract and 263.54 mg caffeic acid equivalents (CAE)/g extract, respectively). The highest TPrC was found in PAL7r (72.63 mg catechin equivalents (CE)/g extract), and the highest TFC was found in PHY7 (113.29 mg rutin equivalents (RE)/g extract). The LC-HRMS analysis showed the presence of a total of 198 compounds, including agrimoniin, pedunculagin, astragalin, ellagic acid, and tiliroside. An examination of the anticancer properties revealed the highest decrease in colon cancer cell viability in response to PAL7r (IC50 = 82 µg/mL), while the strongest antiproliferative effect was observed in LS180 treated with PFR7 (IC50 = 50 µg/mL) and PAL7r (IC50 = 52 µg/mL). An LDH (lactate dehydrogenase) assay revealed that most of the extracts were not cytotoxic against colon epithelial cells. At the same time, the tested extracts for the whole range of concentrations damaged the membranes of colon cancer cells. The highest cytotoxicity was observed for PAL7r, which in concentrations from 25 to 250 µg/mL increased LDH levels by 145.7% and 479.0%, respectively. The previously and currently obtained results indicated that some aqueous acetone extracts from Potentilla species have anticancer potential and thus encourage further studies in order to develop a new efficient and safe therapeutic strategy for people who have been threatened by or suffered from colon cancer.
Collapse
Affiliation(s)
- Daniel Augustynowicz
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, ul. Jaczewskiego 2, 20-090 Lublin, Poland
| | - Jakub Władysław Strawa
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
- Correspondence: ; Tel.: +48-85-748-56-94
| |
Collapse
|
5
|
Şen A, Özbeyli D, Teralı K, Göger F, Yıldırım A, Ertaş B, Doğan A, Bitiş L, Şener G. Protective effects of Rubus tereticaulis leaves ethanol extract on rats with ulcerative colitis and bio-guided isolation of its active compounds: A combined in silico, in vitro and in vivo study. Chem Biol Interact 2023; 369:110263. [PMID: 36375516 DOI: 10.1016/j.cbi.2022.110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
The aim of this study was to evaluate the therapeutic effect of active ethanol extract obtained from the leaves of Rubus tereticaulis (RTME) against colitis, and to purify major compounds from this extract by bioassay-directed isolation. Rats with colitis induced via intra-rectal acetic acid administration (5%, v/v) received RTME or sulfasalazine for three consecutive days. On day four, all rats were decapitated, and the colonic tissue samples were collected for macroscopic score, colon weight, reduced glutathione (GSH), myeloperoxidase (MPO), and malondialdehyde (MDA) analyses. The active compounds and chemical composition of RTME were determined by bio-guided isolation and LC-MS/MS, respectively. Compared to the colitis group, the rats treated with RTME displayed significantly lowered macroscopic scores and colon wet weights (p < 0.001). These effects were confirmed biochemically by a decrease in colonic MPO activity (p < 0.001), MDA levels (p < 0.001), and an increase in GSH levels (p < 0.001). Kaempferol-3-O-β-d-glucuronide (RT1) and quercetin-3-O-β-d-glucuronide (RT2) were found to be the major compounds of RTME, as evidenced by in vitro anti-inflammatory and antioxidant activity-guided isolation. Their anti-inflammatory/antioxidant activities were also predicted by docking simulations. Additionally, quinic acid, 5-caffeoylquinic acid, quercetin pentoside, quercetin glucoside, quercetin-3-O-β-d-glucuronide, kaempferol-3-O-β-d-glucuronide, and kaempferol rutinoside were identified in RTME via using LC-MS/MS. RT2, along with other compounds, may be responsible for the observed protective action of RTME against colitis. This study represents the first report on the beneficial effects of RTME in an experimental model of colitis and highlights the potential future use of RTME as a natural alternative to alleviate colitis.
Collapse
Affiliation(s)
- Ali Şen
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Turkey.
| | - Dilek Özbeyli
- Department of Medical Services and Techniques, Vocational School of Health Services, Marmara University, Istanbul, Turkey.
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Cyprus International University, 99258, Nicosia, Cyprus.
| | - Fatih Göger
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Aybeniz Yıldırım
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Turkey.
| | - Büşra Ertaş
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey.
| | - Ahmet Doğan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Marmara University, Istanbul, Turkey.
| | - Leyla Bitiş
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Turkey.
| | - Göksel Şener
- Department of Pharmacology, Faculty of Pharmacy, Fenerbahce University, Istanbul, 34758, Turkey.
| |
Collapse
|
6
|
Augustynowicz D, Lemieszek MK, Strawa JW, Wiater A, Tomczyk M. Anticancer potential of acetone extracts from selected Potentilla species against human colorectal cancer cells. Front Pharmacol 2022; 13:1027315. [PMID: 36249795 PMCID: PMC9556846 DOI: 10.3389/fphar.2022.1027315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Cinquefoils have been widely used in local folk medicine in Europe and Asia to manage various gastrointestinal inflammations and/or infections, certain forms of cancer, thyroid gland disorders, and wound healing. In the present paper, acetone extracts from aerial parts of selected Potentilla species, namely P. alba (PAL7), P. argentea (PAR7), P. grandiflora (PGR7), P. norvegica (PN7), P. recta (PRE7), and the closely related Drymocalis rupestris (syn. P. rupestris) (PRU7), were analysed for their cytotoxicity and antiproliferative activities against human colon adenocarcinoma cell line LS180 and human colon epithelial cell line CCD841 CoN. Moreover, quantitative assessments of the total polyphenolic (TPC), total tannin (TTC), total proanthocyanidins (TPrC), total flavonoid (TFC), and total phenolic acid (TPAC) were conducted. The analysis of secondary metabolite composition was carried out by LC-PDA-HRMS. The highest TPC and TTC were found in PAR7 (339.72 and 246.92 mg gallic acid equivalents (GAE)/g extract, respectively) and PN7 (332.11 and 252.3 mg GAE/g extract, respectively). The highest TPrC, TFC, and TPAC levels were found for PAL7 (21.28 mg catechin equivalents (CAT)/g extract, 71.85 mg rutin equivalents (RE)/g extract, and 124.18 mg caffeic acid equivalents (CAE)/g extract, respectively). LC-PDA-HRMS analysis revealed the presence of 83 compounds, including brevifolincarboxylic acid, ellagic acid, pedunculagin, agrimoniin, chlorogenic acid, astragalin, and tiliroside. Moreover, the presence of tri-coumaroyl spermidine was demonstrated for the first time in the genus Potentilla. Results of the MTT assay revealed that all tested extracts decreased the viability of both cell lines; however, a markedly stronger effect was observed in the colon cancer cells. The highest selectivity was demonstrated by PAR7, which effectively inhibited the metabolic activity of LS180 cells (IC50 = 38 μg/ml), while at the same time causing the lowest unwanted effects in CCD841 CoN cells (IC50 = 1,134 μg/ml). BrdU assay revealed a significant decrease in DNA synthesis in both examined cell lines in response to all investigated extracts. It should be emphasized that the tested extracts had a stronger effect on colon cancer cells than normal colon cells, and the most significant antiproliferative properties were observed in the case of PAR7 (IC50 LS180 = 174 μg/ml) and PN7 (IC50 LS180 = 169 μg/ml). The results of LDH assay revealed that all tested extracts were not cytotoxic against normal colon epithelial cells, whereas in the cancer cells, all compounds significantly damaged cell membranes, and the observed effect was dose-dependent. The highest cytotoxicity was observed in LS180 cells in response to PAR7, which, in concentrations ranging from 25 to 250 μg/ml, increased LDH release by 110%–1,062%, respectively. Performed studies have revealed that all Potentilla species may be useful sources for anti-colorectal cancer agents; however, additional research is required to prove this definitively.
Collapse
Affiliation(s)
| | | | | | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Michał Tomczyk,
| |
Collapse
|
7
|
Polyphenolic Characterization, Antioxidant, Antihyaluronidase and Antimicrobial Activity of Young Leaves and Stem Extracts from Rubus caesius L. Molecules 2022; 27:molecules27196181. [PMID: 36234716 PMCID: PMC9572312 DOI: 10.3390/molecules27196181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Fruits are the main food part of the European dewberry (Rubus caesius L.), known as a source of polyphenols and antioxidants, while very little attention is paid to leaves and stems, especially young first-year stems. The purpose of this work was to analyze for the first time water and ethanol extracts obtained from young, freshly developed, leaves and stems of the European dewberry to determine their antioxidant and biological activity, whereas most of the papers describe biological properties of leaves collected during summer or autumn. As the phytochemical profile changes during the growing season, the quantitative and qualitative content of flavonoid glycosides and flavonoid aglycones was analyzed using reversed phase liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (LC-ESI-MS/MS) with multiple reaction monitoring (MRM). The ability to inhibit hyaluronidase as well as antioxidant activity (2,2 diphenyl-1-picrylhydrazyl: DPPH and ferric antioxidant power: FRAP) were estimated. Extracts were also analyzed against Gram-positive and Gram-negative bacteria. The results of the qualitative phytochemical analysis indicated the presence of flavonoid aglycones and flavonoid glycosides, with the highest amount of tiliroside, hyperoside, isoquercetin, astragalin, rutin and catechin in ethanol extracts. DPPH and FRAP tests proved the high antioxidant activity of the extracts from leaves or stems and the antihyaluronidase assay revealed for the first time that water and ethanol extracts obtained from the stems exhibited the ability to inhibit hyaluronidase activity resulting in an IC50 of 55.24 ± 3.21 and 68.7 ± 1.61 μg/mL, respectively. The antimicrobial activity has never been analyzed for European dewberry and was the highest for Clostridium bifermentans and Clostridium sporogenes—anaerobic sporulation rods as well as Enterococcus faecalis for both water and ethanol extracts.
Collapse
|
8
|
p-Coumaric acid, Kaempferol, Astragalin and Tiliroside Influence the Expression of Glycoforms in AGS Gastric Cancer Cells. Int J Mol Sci 2022; 23:ijms23158602. [PMID: 35955735 PMCID: PMC9369150 DOI: 10.3390/ijms23158602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/06/2023] Open
Abstract
Abnormal glycosylation of cancer cells is considered a key factor of carcinogenesis related to growth, proliferation, migration and invasion of tumor cells. Many plant-based polyphenolic compounds reveal potential anti-cancer properties effecting cellular signaling systems. Herein, we assessed the effects of phenolic acid, p-coumaric acid and flavonoids such as kaempferol, astragalin or tiliroside on expression of selected cancer-related glycoforms and enzymes involved in their formation in AGS gastric cancer cells. The cells were treated with 80 and 160 µM of the compounds. RT-PCR, Western blotting and ELISA tests were performed to determine the influence of polyphenolics on analyzed factors. All the examined compounds inhibited the expression of MUC1, ST6GalNAcT2 and FUT4 mRNAs. C1GalT1, St3Gal-IV and FUT4 proteins as well as MUC1 domain, Tn and sialyl T antigen detected in cell lysates were also lowered. Both concentrations of kaempferol, astragalin and tiliroside also suppressed ppGalNAcT2 and C1GalT1 mRNAs. MUC1 cytoplasmic domain, sialyl Tn, T antigens in cell lysates and sialyl T in culture medium were inhibited only by kaempferol and tiliroside. Nuclear factor NF-κB mRNA expression decreased after treatment with both concentrations of kaempferol, astragalin and tiliroside. NF-κB protein expression was inhibited by kaempferol and tiliroside. The results indicate the rationality of application of examined polyphenolics as potential preventive agents against gastric cancer development.
Collapse
|
9
|
Kashchenko NI, Olennikov DN, Chirikova NK. Metabolites of Siberian Raspberries: LC-MS Profile, Seasonal Variation, Antioxidant Activity and, Thermal Stability of Rubus matsumuranus Phenolome. PLANTS (BASEL, SWITZERLAND) 2021; 10:2317. [PMID: 34834680 PMCID: PMC8620613 DOI: 10.3390/plants10112317] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Rubus matsumuranus H. Lev. & Vaniot, a famous Siberian shrub of the Rosaceae family, is used in the folk medicine of nomads (Buryats, Yakuts, Soyots, and Mongols) as a remedy for the treatment of diseases of the respiratory and hepatobiliary systems. The lack of scientific information on R. matsumuranus leaves contributed to the investigation of the metabolomic profile and biological activity of this plant. In this study, metabolites of R. matsumuranus leaves in three stages (active growth, flowering, and fruiting) were characterised using high-performance liquid chromatography with photodiode array and electrospray ionisation triple quadrupole mass spectrometric detection (HPLC-PDA-ESI-tQ-MS). In total, 63 compounds were identified, including gallic acid derivatives, hydroxycinnamates, catechins, procyanidins, flavonols, and ellagitannins. Lambertianin C (57.11 mg/g of dry weight, DW), miquelianin (39.63 mg/g DW), and kaempferol-3-O-glucuronide (31.18 mg/g DW) were the major compounds in R. matsumuranus leaves. As a result of the HPLC-PDA-based assay to determine the antioxidant activity, it was revealed that lambertianin A, sanguiin H6, lambertianin C, and sanguiin H11 were effective scavengers of free radicals (2,2-diphenyl-1-picrylhydrazyl, DPPH•) and possessed Fe2+-chelating activity. After an investigation of the phenolic content in infusions and decoctions obtained by extraction with water at different temperatures, it was revealed that a hot infusion (80 °C) is a phenolic-rich preparation of R. matsumuranus leaves. Our research suggests that R. matsumuranus leaves are a rich source of phenolic compounds with high antioxidant properties and that this could be a prospective plant for new functional products.
Collapse
Affiliation(s)
- Nina I. Kashchenko
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 670047 Ulan-Ude, Russia;
| | - Daniil N. Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 670047 Ulan-Ude, Russia;
| | - Nadezhda K. Chirikova
- Department of Biology, Institute of Natural Sciences, North-Eastern Federal University, 677027 Yakutsk, Russia;
| |
Collapse
|