1
|
Gautam P, Singh M. 3-1-3 Weight averaging technique-based performance evaluation of deep neural networks for Alzheimer's disease detection using structural MRI. Biomed Phys Eng Express 2024; 10:065027. [PMID: 39178890 DOI: 10.1088/2057-1976/ad72f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder. It is identified by the gradual shrinkage of the brain and the loss of brain cells. This leads to cognitive decline and impaired social functioning, making it a major contributor to dementia. While there are no treatments to reverse AD's progression, spotting the disease's onset can have a significant impact in the medical field. Deep learning (DL) has revolutionized medical image classification by automating feature engineering, removing the requirement for human experts in feature extraction. DL-based solutions are highly accurate but demand a lot of training data, which poses a common challenge. Transfer learning (TL) has gained attention for its knack for handling limited data and expediting model training. This study uses TL to classify AD using T1-weighted 3D Magnetic Resonance Imaging (MRI) from the Alzheimer's Disease Neuroimaging (ADNI) database. Four modified pre-trained deep neural networks (DNN), VGG16, MobileNet, DenseNet121, and NASNetMobile, are trained and evaluated on the ADNI dataset. The 3-1-3 weight averaging technique and fine-tuning improve the performance of the classification models. The evaluated accuracies for AD classification are VGG16: 98.75%; MobileNet: 97.5%; DenseNet: 97.5%; and NASNetMobile: 96.25%. The receiver operating characteristic (ROC), precision-recall (PR), and Kolmogorov-Smirnov (KS) statistic plots validate the effectiveness of the modified pre-trained model. Modified VGG16 excels with area under the curve (AUC) values of 0.99 for ROC and 0.998 for PR curves. The proposed approach shows effective AD classification by achieving high accuracy using the 3-1-3 weight averaging technique and fine-tuning.
Collapse
Affiliation(s)
- Priyanka Gautam
- ECE Department, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Manjeet Singh
- ECE Department, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
2
|
Malik I, Iqbal A, Gu YH, Al-antari MA. Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review. Diagnostics (Basel) 2024; 14:1281. [PMID: 38928696 PMCID: PMC11202897 DOI: 10.3390/diagnostics14121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disorder that significantly impairs cognitive function, leading to memory loss and eventually death. AD progresses through three stages: early stage, mild cognitive impairment (MCI) (middle stage), and dementia. Early diagnosis of Alzheimer's disease is crucial and can improve survival rates among patients. Traditional methods for diagnosing AD through regular checkups and manual examinations are challenging. Advances in computer-aided diagnosis systems (CADs) have led to the development of various artificial intelligence and deep learning-based methods for rapid AD detection. This survey aims to explore the different modalities, feature extraction methods, datasets, machine learning techniques, and validation methods used in AD detection. We reviewed 116 relevant papers from repositories including Elsevier (45), IEEE (25), Springer (19), Wiley (6), PLOS One (5), MDPI (3), World Scientific (3), Frontiers (3), PeerJ (2), Hindawi (2), IO Press (1), and other multiple sources (2). The review is presented in tables for ease of reference, allowing readers to quickly grasp the key findings of each study. Additionally, this review addresses the challenges in the current literature and emphasizes the importance of interpretability and explainability in understanding deep learning model predictions. The primary goal is to assess existing techniques for AD identification and highlight obstacles to guide future research.
Collapse
Affiliation(s)
- Isra Malik
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 44000, Pakistan
| | - Ahmed Iqbal
- Department of Computer Science, Sir Syed Case Institute of Technology, Islamabad 45230, Pakistan
| | - Yeong Hyeon Gu
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| | - Mugahed A. Al-antari
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
3
|
Sato K, Niimi Y, Ihara R, Suzuki K, Iwata A, Iwatsubo T. Simplifying Alzheimer's Disease Monitoring: A Novel Machine-Learning Approach to Estimate the Clinical Dementia Rating Sum of Box Changes Using the Mini-Mental State Examination and Functional Activities Questionnaire. J Alzheimers Dis 2024; 99:953-963. [PMID: 38759009 DOI: 10.3233/jad-231426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Background Primary outcome measure in the clinical trials of disease modifying therapy (DMT) drugs for Alzheimer's disease (AD) has often been evaluated by Clinical Dementia Rating sum of boxes (CDRSB). However, CDR testing requires specialized training and 30-50 minutes to complete, not being suitable for daily clinical practice. Objective Herein, we proposed a machine-learning method to estimate CDRSB changes using simpler cognitive/functional batteries (Mini-Mental State Examination [MMSE] and Functional Activities Questionnaire [FAQ]), to replace CDR testing. Methods Baseline data from 944 ADNI and 171 J-ADNI amyloid-positive participants were used to build machine-learning models predicting annualized CDRSB changes between visits, based on MMSE and FAQ scores. Prediction performance was evaluated with mean absolute error (MAE) and R2 comparing predicted to actual rmDeltaCDRSB/rmDeltayear. We further assessed whether decline in cognitive function surpassing particular thresholds could be identified using the predicted rmDeltaCDRSB/rmDeltayear. RESULTS The models achieved the minimum required prediction errors (MAE < 1.0) and satisfactory prediction accuracy (R2>0.5) for mild cognitive impairment (MCI) patients for changes in CDRSB over periods of 18 months or longer. Predictions of annualized CDRSB progression>0.5, >1.0, or >1.5 demonstrated a consistent performance (i.e., Matthews correlation coefficient>0.5). These results were largely replicated in the J-ADNI case predictions. CONCLUSIONS Our method effectively predicted MCI patient deterioration in the CDRSB based solely on MMSE and FAQ scores. It may aid routine practice for disease-modifying therapy drug efficacy evaluation, without necessitating CDR testing at every visit.
Collapse
Affiliation(s)
- Kenichiro Sato
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshiki Niimi
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Tokyo, Japan
- Department of Healthcare Economics and Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryoko Ihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kazushi Suzuki
- Division of Neurology, Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Song C, Liu T, Shi H, Jiao Z. HCTMFS: A multi-modal feature selection framework with higher-order correlated topological manifold for ESRDaMCI. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107905. [PMID: 37931582 DOI: 10.1016/j.cmpb.2023.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND AND OBJECTIVE The diagnosis of end-stage renal disease associated with mild cognitive impairment (ESRDaMCI) mainly relies on objective cognitive assessment, clinical observation, and neuro-psychological evaluation, while only adopting clinical tools often limits the diagnosis accuracy. METHODS We proposed a multi-modal feature selection framework with higher-order correlated topological manifold (HCTMFS) to classify ESRDaMCI patients and identify the discriminative brain regions. It constructed brain structural and functional networks with diffuse kurtosis imaging (DKI) and functional magnetic resonance imaging (fMRI) data, and extracted node efficiency and clustering coefficient from the brain networks to construct multi-modal feature matrices. The topological relationship matrices were constructed to measure the lower-order topological correlation between features. Then the consensus matrices were learned to approximate the topological relationship matrices at different confidence levels and eliminate the noise influence of individual matrices. RESULTS The higher-order topological correlation between features was explored by the Laplacian matrix of the hypergraph, which was calculated through the consensus matrix. The new framework achieved an accuracy rate of 93.56 % for classifying ESRDaMCI patients, and outperformed the existing state-of-the-art methods in terms of sensitivity, specificity, and area under the curve. CONCLUSIONS This study contributes to effectively reflect the functional neural degradation of ESRDaMCI and provide a reference for the diagnosis of ESRDaMCI by selecting discriminative brain regions.
Collapse
Affiliation(s)
- Chaofan Song
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Tongqiang Liu
- Department of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
5
|
Fu X, Song C, Zhang R, Shi H, Jiao Z. Multimodal Classification Framework Based on Hypergraph Latent Relation for End-Stage Renal Disease Associated with Mild Cognitive Impairment. Bioengineering (Basel) 2023; 10:958. [PMID: 37627843 PMCID: PMC10451373 DOI: 10.3390/bioengineering10080958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Combined arterial spin labeling (ASL) and functional magnetic resonance imaging (fMRI) can reveal more comprehensive properties of the spatiotemporal and quantitative properties of brain networks. Imaging markers of end-stage renal disease associated with mild cognitive impairment (ESRDaMCI) will be sought from these properties. The current multimodal classification methods often neglect to collect high-order relationships of brain regions and remove noise from the feature matrix. A multimodal classification framework is proposed to address this issue using hypergraph latent relation (HLR). A brain functional network with hypergraph structural information is constructed by fMRI data. The feature matrix is obtained through graph theory (GT). The cerebral blood flow (CBF) from ASL is selected as the second modal feature matrix. Then, the adaptive similarity matrix is constructed by learning the latent relation between feature matrices. Latent relation adaptive similarity learning (LRAS) is introduced to multi-task feature learning to construct a multimodal feature selection method based on latent relation (LRMFS). The experimental results show that the best classification accuracy (ACC) reaches 88.67%, at least 2.84% better than the state-of-the-art methods. The proposed framework preserves more valuable information between brain regions and reduces noise among feature matrixes. It provides an essential reference value for ESRDaMCI recognition.
Collapse
Affiliation(s)
- Xidong Fu
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Chaofan Song
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Rupu Zhang
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| |
Collapse
|
6
|
Song C, Liu T, Wang H, Shi H, Jiao Z. Multi-modal feature selection with self-expression topological manifold for end-stage renal disease associated with mild cognitive impairment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14827-14845. [PMID: 37679161 DOI: 10.3934/mbe.2023664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Effectively selecting discriminative brain regions in multi-modal neuroimages is one of the effective means to reveal the neuropathological mechanism of end-stage renal disease associated with mild cognitive impairment (ESRDaMCI). Existing multi-modal feature selection methods usually depend on the Euclidean distance to measure the similarity between data, which tends to ignore the implied data manifold. A self-expression topological manifold based multi-modal feature selection method (SETMFS) is proposed to address this issue employing self-expression topological manifold. First, a dynamic brain functional network is established using functional magnetic resonance imaging (fMRI), after which the betweenness centrality is extracted. The feature matrix of fMRI is constructed based on this centrality measure. Second, the feature matrix of arterial spin labeling (ASL) is constructed by extracting the cerebral blood flow (CBF). Then, the topological relationship matrices are constructed by calculating the topological relationship between each data point in the two feature matrices to measure the intrinsic similarity between the features, respectively. Subsequently, the graph regularization is utilized to embed the self-expression model into topological manifold learning to identify the linear self-expression of the features. Finally, the selected well-represented feature vectors are fed into a multicore support vector machine (MKSVM) for classification. The experimental results show that the classification performance of SETMFS is significantly superior to several state-of-the-art feature selection methods, especially its classification accuracy reaches 86.10%, which is at least 4.34% higher than other comparable methods. This method fully considers the topological correlation between the multi-modal features and provides a reference for ESRDaMCI auxiliary diagnosis.
Collapse
Affiliation(s)
- Chaofan Song
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Tongqiang Liu
- Department of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Huan Wang
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| |
Collapse
|
7
|
Park S, Hong CH, Lee DG, Park K, Shin H. Prospective classification of Alzheimer's disease conversion from mild cognitive impairment. Neural Netw 2023; 164:335-344. [PMID: 37163849 DOI: 10.1016/j.neunet.2023.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/26/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Alzheimer's disease (AD) is emerging as a serious problem with the rapid aging of the population, but due to the unclear cause of the disease and the absence of therapy, appropriate preventive measures are the next best thing. For this reason, it is important to early detect whether the disease converts from mild cognitive impairment (MCI) which is a prodromal phase of AD. With the advance in brain imaging techniques, various machine learning algorithms have become able to predict the conversion from MCI to AD by learning brain atrophy patterns. However, at the time of diagnosis, it is difficult to distinguish between the conversion group and the non-conversion group of subjects because the difference between groups is small, but the within-group variability is large in brain images. After a certain period of time, the subjects of conversion group show significant brain atrophy, whereas subjects of non-conversion group show only subtle changes due to the normal aging effect. This difference on brain atrophy makes the brain images more discriminative for learning. Motivated by this, we propose a method to perform classification by projecting brain images into the future, namely prospective classification. The experiments on the Alzheimer's Disease Neuroimaging Initiative dataset show that the prospective classification outperforms ordinary classification. Moreover, the features of prospective classification indicate the brain regions that significantly influence the conversion from MCI to AD.
Collapse
Affiliation(s)
- Sunghong Park
- Department of Psychiatry, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Dong-Gi Lee
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kanghee Park
- Korea Institute of Science and Technology Information, Seoul, 02456, Republic of Korea
| | - Hyunjung Shin
- Department of Artificial Intelligence, Ajou University, Suwon, 16499, Republic of Korea; Department of Industrial Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
8
|
Bansal D, Khanna K, Chhikara R, Dua RK, Malhotra R. BoF-SVM-based data intelligence model for detecting dementia. INTELLIGENT DECISION TECHNOLOGIES 2023. [DOI: 10.3233/idt-220256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Dementia is a brain condition that impairs the cognitive abilities of an individual. Mild cognitive impairment is a mediator phase of healthy and dementia controls. The motivation of this study is to predict dementia using magnetic resonance imaging data, which is significant for the diagnosis of normal control and dementia patients. The proposed model leverages effective methods like Discrete Wavelet Transform, Bag of Features, and Support Vector Machine. The four wavelets haar, Daubechies, symlets, and coiflets are used for image compression. The results of the proposed data intelligence model are promising in terms of accuracy which is 92.32% which is better than the recently proposed models. Also, the proposed data intelligence model is compared with the models which may use curvelet transform, and shearlet transform and with the methods which have gone without using DWT transforms. The comparisons have also been made with the models that have used other prevalent techniques like Principal Component Analysis, Fisher Discriminant Ratio, and Gray Level Co-occurrence Matrix. The outcomes support the usage of each technique in the suggested data intelligence paradigm.
Collapse
Affiliation(s)
- Deepika Bansal
- Department of Computer Science and Engineering, The NorthCap University, Gurugram, India
| | - Kavita Khanna
- Delhi Skill and Entrepreneurship University, New Delhi, India
| | - Rita Chhikara
- Department of Computer Science and Engineering, The NorthCap University, Gurugram, India
| | | | - Rajeev Malhotra
- Department of Neurosurgery, Max Super Speciality Hospital, New Delhi, India
| |
Collapse
|
9
|
Garg N, Choudhry MS, Bodade RM. A review on Alzheimer's disease classification from normal controls and mild cognitive impairment using structural MR images. J Neurosci Methods 2023; 384:109745. [PMID: 36395961 DOI: 10.1016/j.jneumeth.2022.109745] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative brain disorder that degrades the memory and cognitive ability in elderly people. The main reason for memory loss and reduction in cognitive ability is the structural changes in the brain that occur due to neuronal loss. These structural changes are most conspicuous in the hippocampus, cortex, and grey matter and can be assessed by using neuroimaging techniques viz. Positron Emission Tomography (PET), structural Magnetic Resonance Imaging (MRI) and functional MRI (fMRI), etc. Out of these neuroimaging techniques, structural MRI has evolved as the best technique as it indicates the best soft tissue contrast and high spatial resolution which is important for AD detection. Currently, the focus of researchers is on predicting the conversion of Mild Cognitive Impairment (MCI) into AD. MCI represents the transition state between expected cognitive changes with normal aging and Alzheimer's disease. Not every MCI patient progresses into Alzheimer's disease. MCI can develop into stable MCI (sMCI, patients are called non-converters) or into progressive MCI (pMCI, patients are diagnosed as MCI converters). This paper discusses the prognosis of MCI to AD conversion and presents a review of structural MRI-based studies for AD detection. AD detection framework includes feature extraction, feature selection, and classification process. This paper reviews the studies for AD detection based on different feature extraction methods and machine learning algorithms for classification. The performance of various feature extraction methods has been compared and it has been observed that the wavelet transform-based feature extraction method would give promising results for AD classification. The present study indicates that researchers are successful in classifying AD from Normal Controls (NrmC) but, it still requires a lot of work to be done for MCI/ NrmC and MCI/AD, which would help in detecting AD at its early stage.
Collapse
Affiliation(s)
- Neha Garg
- Delhi Technological University, Department of Electronics and Communication, Delhi 110042, India.
| | - Mahipal Singh Choudhry
- Delhi Technological University, Department of Electronics and Communication, Delhi 110042, India.
| | - Rajesh M Bodade
- Military College of Telecommunication Engineering (MCTE), Mhow, Indore 453441, Madhya Pradesh, India.
| |
Collapse
|
10
|
Xi Z, Liu T, Shi H, Jiao Z. Hypergraph representation of multimodal brain networks for patients with end-stage renal disease associated with mild cognitive impairment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:1882-1902. [PMID: 36899513 DOI: 10.3934/mbe.2023086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The structure and function of brain networks (BN) may be altered in patients with end-stage renal disease (ESRD). However, there are relatively few attentions on ESRD associated with mild cognitive impairment (ESRDaMCI). Most studies focus on the pairwise relationships between brain regions, without taking into account the complementary information of functional connectivity (FC) and structural connectivity (SC). To address the problem, a hypergraph representation method is proposed to construct a multimodal BN for ESRDaMCI. First, the activity of nodes is determined by connection features extracted from functional magnetic resonance imaging (fMRI) (i.e., FC), and the presence of edges is determined by physical connections of nerve fibers extracted from diffusion kurtosis imaging (DKI) (i.e., SC). Then, the connection features are generated through bilinear pooling and transformed into an optimization model. Next, a hypergraph is constructed according to the generated node representation and connection features, and the node degree and edge degree of the hypergraph are calculated to obtain the hypergraph manifold regularization (HMR) term. The HMR and L1 norm regularization terms are introduced into the optimization model to achieve the final hypergraph representation of multimodal BN (HRMBN). Experimental results show that the classification performance of HRMBN is significantly better than that of several state-of-the-art multimodal BN construction methods. Its best classification accuracy is 91.0891%, at least 4.3452% higher than that of other methods, verifying the effectiveness of our method. The HRMBN not only achieves better results in ESRDaMCI classification, but also identifies the discriminative brain regions of ESRDaMCI, which provides a reference for the auxiliary diagnosis of ESRD.
Collapse
Affiliation(s)
- Zhengtao Xi
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
| | - Tongqiang Liu
- Department of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| |
Collapse
|
11
|
Zhang X, Xiao Z, Wu X, Chen Y, Higashita R, Chen W, Yuan J, Liu J. Nuclear cataract classification in anterior segment OCT based on clinical global–local features. COMPLEX INTELL SYST 2022. [DOI: 10.1007/s40747-022-00869-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractNuclear cataract (NC) is a priority ocular disease of blindness and vision impairment globally. Early intervention and cataract surgery can improve the vision and life quality of NC patients. Anterior segment coherence tomography (AS-OCT) imaging is a non-invasive way to capture the NC opacity objectively and quantitatively. Recent clinical research has shown that there exists a strong opacity correlation relationship between NC severity levels and the mean density on AS-OCT images. In this paper, we present an effective NC classification framework on AS-OCT images, based on feature extraction and feature importance analysis. Motivated by previous clinical knowledge, our method extracts the clinical global–local features, and then applies Pearson’s correlation coefficient and recursive feature elimination methods to analyze the feature importance. Finally, an ensemble logistic regression is employed to distinguish NC, which considers different optimization methods’ characteristics. A dataset with 11,442 AS-OCT images is collected to evaluate the method. The results show that the proposed method achieves 86.96% accuracy and 88.70% macro-sensitivity, respectively. The performance comparison analysis also demonstrates that the global–local feature extraction method improves about 2% accuracy than the single region-based feature extraction method.
Collapse
|
12
|
Veluppal A, sadhukhan D, gopinath V, swaminathan R. Differentiation of Alzheimer conditions in brain MR images using bidimensional multiscale entropy-based texture analysis of lateral ventricles. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Meng X, Liu J, Fan X, Bian C, Wei Q, Wang Z, Liu W, Jiao Z. Multi-Modal Neuroimaging Neural Network-Based Feature Detection for Diagnosis of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:911220. [PMID: 35651528 PMCID: PMC9149574 DOI: 10.3389/fnagi.2022.911220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative brain disease, and it is challenging to mine features that distinguish AD and healthy control (HC) from multiple datasets. Brain network modeling technology in AD using single-modal images often lacks supplementary information regarding multi-source resolution and has poor spatiotemporal sensitivity. In this study, we proposed a novel multi-modal LassoNet framework with a neural network for AD-related feature detection and classification. Specifically, data including two modalities of resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) were adopted for predicting pathological brain areas related to AD. The results of 10 repeated experiments and validation experiments in three groups prove that our proposed framework outperforms well in classification performance, generalization, and reproducibility. Also, we found discriminative brain regions, such as Hippocampus, Frontal_Inf_Orb_L, Parietal_Sup_L, Putamen_L, Fusiform_R, etc. These discoveries provide a novel method for AD research, and the experimental study demonstrates that the framework will further improve our understanding of the mechanisms underlying the development of AD.
Collapse
Affiliation(s)
- Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Junlong Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Xiang Fan
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Chenyuan Bian
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-Assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingpeng Wei
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Ziwei Wang
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
- *Correspondence: Wenjie Liu,
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China
- Zhuqing Jiao,
| |
Collapse
|
14
|
Meng X, Wu Y, Liu W, Wang Y, Xu Z, Jiao Z. Research on Voxel-Based Features Detection and Analysis of Alzheimer’s Disease Using Random Survey Support Vector Machine. Front Neuroinform 2022; 16:856295. [PMID: 35418845 PMCID: PMC8995748 DOI: 10.3389/fninf.2022.856295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a degenerative disease of the central nervous system characterized by memory and cognitive dysfunction, as well as abnormal changes in behavior and personality. The research focused on how machine learning classified AD became a recent hotspot. In this study, we proposed a novel voxel-based feature detection framework for AD. Specifically, using 649 voxel-based morphometry (VBM) methods obtained from MRI in Alzheimer’s Disease Neuroimaging Initiative (ADNI), we proposed a feature detection method according to the Random Survey Support Vector Machines (RS-SVM) and combined the research process based on image-, gene-, and pathway-level analysis for AD prediction. Particularly, we constructed 136, 141, and 113 novel voxel-based features for EMCI (early mild cognitive impairment)-HC (healthy control), LMCI (late mild cognitive impairment)-HC, and AD-HC groups, respectively. We applied linear regression model, least absolute shrinkage and selection operator (Lasso), partial least squares (PLS), SVM, and RS-SVM five methods to test and compare the accuracy of these features in these three groups. The prediction accuracy of the AD-HC group using the RS-SVM method was higher than 90%. In addition, we performed functional analysis of the features to explain the biological significance. The experimental results using five machine learning indicate that the identified features are effective for AD and HC classification, the RS-SVM framework has the best classification accuracy, and our strategy can identify important brain regions for AD.
Collapse
Affiliation(s)
- Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Yue Wu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Ying Wang
- School of Computer Science and Engineering, Changshu Institute of Technology, Changshu, China
| | - Zhe Xu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China
- *Correspondence: Zhuqing Jiao,
| |
Collapse
|
15
|
Jiao Z, Chen S, Shi H, Xu J. Multi-Modal Feature Selection with Feature Correlation and Feature Structure Fusion for MCI and AD Classification. Brain Sci 2022; 12:80. [PMID: 35053823 PMCID: PMC8773824 DOI: 10.3390/brainsci12010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer's disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classification performance of feature selection on multi-modal data, we propose a multi-modal feature selection algorithm using feature correlation and feature structure fusion (FC2FS). First, we construct feature correlation regularization by fusing a similarity matrix between multi-modal feature nodes. Then, based on manifold learning, we employ feature matrix fusion to construct feature structure regularization, and learn the local geometric structure of the feature nodes. Finally, the two regularizations are embedded in a multi-task learning model that introduces low-rank constraint, the multi-modal features are selected, and the final features are linearly fused and input into a support vector machine (SVM) for classification. Different controlled experiments were set to verify the validity of the proposed method, which was applied to MCI and AD classification. The accuracy of normal controls versus Alzheimer's disease, normal controls versus late mild cognitive impairment, normal controls versus early mild cognitive impairment, and early mild cognitive impairment versus late mild cognitive impairment achieve 91.85 ± 1.42%, 85.33 ± 2.22%, 78.29 ± 2.20%, and 77.67 ± 1.65%, respectively. This method makes up for the shortcomings of the traditional multi-modal feature selection based on subjects and fully considers the relationship between feature nodes and the local geometric structure of feature space. Our study not only enhances the interpretation of feature selection but also improves the classification performance, which has certain reference values for the identification of MCI and AD.
Collapse
Affiliation(s)
- Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China; (Z.J.); (S.C.)
| | - Siwei Chen
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China; (Z.J.); (S.C.)
| | - Haifeng Shi
- Department of Radiology, Changzhou Second People’s Hospital, Nanjing Medical University, Changzhou 213003, China
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
16
|
Shanmugam JV, Duraisamy B, Simon BC, Bhaskaran P. Alzheimer’s disease classification using pre-trained deep networks. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Tavakoli-Zaniani M, Sedighi-Maman Z, Fazel Zarandi MH. Segmentation of white matter, grey matter and cerebrospinal fluid from brain MR images using a modified FCM based on double estimation. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Zheng Y. VIDEO ANALYSIS AND 3D DETECTION SIMULATION OF JUMP SHOT PRECISION FOR BASKETBALL PLAYERS. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127022021_0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT With the rapid development and application of computer technology, the application of computer science knowledge in basketball is also more and more extensive. Based on genetic algorithm and the background subtraction method, video analysis and 3D detection simulation model of shot jump action precision were constructed in this study. According to the genetic algorithm search method, jump shot precision was analyzed, and the problems encountered in the actual shooting process of basketball players were studied and solved. The results show that this study is necessary and feasible.
Collapse
|
19
|
Zhao X, Ang CKE, Acharya UR, Cheong KH. Application of Artificial Intelligence techniques for the detection of Alzheimer’s disease using structural MRI images. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Safi MS, Safi SMM. Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102338] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Zhang YD, Dong Z, Wang SH, Yu X, Yao X, Zhou Q, Hu H, Li M, Jiménez-Mesa C, Ramirez J, Martinez FJ, Gorriz JM. Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation. AN INTERNATIONAL JOURNAL ON INFORMATION FUSION 2020; 64:149-187. [PMID: 32834795 PMCID: PMC7366126 DOI: 10.1016/j.inffus.2020.07.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 05/13/2023]
Abstract
Multimodal fusion in neuroimaging combines data from multiple imaging modalities to overcome the fundamental limitations of individual modalities. Neuroimaging fusion can achieve higher temporal and spatial resolution, enhance contrast, correct imaging distortions, and bridge physiological and cognitive information. In this study, we analyzed over 450 references from PubMed, Google Scholar, IEEE, ScienceDirect, Web of Science, and various sources published from 1978 to 2020. We provide a review that encompasses (1) an overview of current challenges in multimodal fusion (2) the current medical applications of fusion for specific neurological diseases, (3) strengths and limitations of available imaging modalities, (4) fundamental fusion rules, (5) fusion quality assessment methods, and (6) the applications of fusion for atlas-based segmentation and quantification. Overall, multimodal fusion shows significant benefits in clinical diagnosis and neuroscience research. Widespread education and further research amongst engineers, researchers and clinicians will benefit the field of multimodal neuroimaging.
Collapse
Affiliation(s)
- Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zhengchao Dong
- Department of Psychiatry, Columbia University, USA
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Shui-Hua Wang
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- School of Architecture Building and Civil engineering, Loughborough University, Loughborough, LE11 3TU, UK
- School of Mathematics and Actuarial Science, University of Leicester, LE1 7RH, UK
| | - Xiang Yu
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Xujing Yao
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Qinghua Zhou
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Hua Hu
- Department of Psychiatry, Columbia University, USA
- Department of Neurology, The Second Affiliated Hospital of Soochow University, China
| | - Min Li
- Department of Psychiatry, Columbia University, USA
- School of Internet of Things, Hohai University, Changzhou, China
| | - Carmen Jiménez-Mesa
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Javier Ramirez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Francisco J Martinez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Juan Manuel Gorriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
- Department of Psychiatry, University of Cambridge, Cambridge CB21TN, UK
| |
Collapse
|
22
|
Feng J, Zhang SW, Chen L. Identification of Alzheimer's disease based on wavelet transformation energy feature of the structural MRI image and NN classifier. Artif Intell Med 2020; 108:101940. [DOI: 10.1016/j.artmed.2020.101940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
|
23
|
Jiang X, Satapathy SC, Yang L, Wang SH, Zhang YD. A Survey on Artificial Intelligence in Chinese Sign Language Recognition. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04758-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
A Novel Image Steganographic Method based on Integer Wavelet Transformation and Particle Swarm Optimization. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Gudigar A, Raghavendra U, Hegde A, Kalyani M, Ciaccio EJ, Rajendra Acharya U. Brain pathology identification using computer aided diagnostic tool: A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 187:105205. [PMID: 31786457 DOI: 10.1016/j.cmpb.2019.105205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 05/28/2023]
Abstract
Computer aided diagnostic (CAD) has become a significant tool in expanding patient quality-of-life by reducing human errors in diagnosis. CAD can expedite decision-making on complex clinical data automatically. Since brain diseases can be fatal, rapid identification of brain pathology to prolong patient life is an important research topic. Many algorithms have been proposed for efficient brain pathology identification (BPI) over the past decade. Constant refinement of the various image processing algorithms must take place to expand performance of the automatic BPI task. In this paper, a systematic survey of contemporary BPI algorithms using brain magnetic resonance imaging (MRI) is presented. A summarization of recent literature provides investigators with a helpful synopsis of the domain. Furthermore, to enhance the performance of BPI, future research directions are indicated.
Collapse
Affiliation(s)
- Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India.
| | - Ajay Hegde
- Neurosurgery, Institute of Neurological Sciences, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - M Kalyani
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Edward J Ciaccio
- Department of Medicine, Columbia University Medical Center, New York, United States
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Clementi 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, Clementi 599491, Singapore; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
26
|
Alzheimer's disease, mild cognitive impairment, and normal aging distinguished by multi-modal parcellation and machine learning. Sci Rep 2020; 10:5475. [PMID: 32214178 PMCID: PMC7096533 DOI: 10.1038/s41598-020-62378-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
A 360-area surface-based cortical parcellation is extended to study mild cognitive impairment (MCI) and Alzheimer’s disease (AD) from healthy control (HC) using the joint human connectome project multi-modal parcellation (JHCPMMP) proposed by us. We propose a novel classification method named as JMMP-LRR to accurately identify different stages toward AD by integrating the JHCPMMP with the logistic regression-recursive feature elimination (LR-RFE). In three-group classification, the average accuracy is 89.0% for HC, MCI, and AD compared to previous studies using other cortical separation with the best classification accuracy of 81.5%. By counting the number of brain regions whose feature is in the feature subset selected with JMMP-LRR, we find that five brain areas often appear in the selected features. The five core brain areas are Fusiform Face Complex (L-FFC), Area 10d (L-10d), Orbital Frontal Complex (R-OFC), Perirhinal Ectorhinal (L-PeEc) and Area TG dorsal (L-TGd, R-TGd). The features corresponding to the five core brain areas are used to form a new feature subset for three classifications with the average accuracy of 80.0%. Results demonstrate the importance of the five core brain regions in identifying different stages toward AD. Experiment results show that the proposed method has better accuracy for the classification of HC, MCI, AD, and it also proves that the division of brain regions using JHCPMMP is more scientific and effective than other methods.
Collapse
|
27
|
Roy SS, Sikaria R, Susan A. A deep learning based CNN approach on MRI for Alzheimer’s disease detection. INTELLIGENT DECISION TECHNOLOGIES 2020. [DOI: 10.3233/idt-190005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Tanveer M, Richhariya B, Khan RU, Rashid AH, Khanna P, Prasad M, Lin CT. Machine Learning Techniques for the Diagnosis of Alzheimer’s Disease. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING, COMMUNICATIONS, AND APPLICATIONS 2020; 16:1-35. [DOI: 10.1145/3344998] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/01/2019] [Indexed: 08/30/2023]
Abstract
Alzheimer’s disease is an incurable neurodegenerative disease primarily affecting the elderly population. Efficient automated techniques are needed for early diagnosis of Alzheimer’s. Many novel approaches are proposed by researchers for classification of Alzheimer’s disease. However, to develop more efficient learning techniques, better understanding of the work done on Alzheimer’s is needed. Here, we provide a review on 165 papers from 2005 to 2019, using various feature extraction and machine learning techniques. The machine learning techniques are surveyed under three main categories: support vector machine (SVM), artificial neural network (ANN), and deep learning (DL) and ensemble methods. We present a detailed review on these three approaches for Alzheimer’s with possible future directions.
Collapse
Affiliation(s)
- M. Tanveer
- Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, India
| | - B. Richhariya
- Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, India
| | - R. U. Khan
- Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, India
| | - A. H. Rashid
- Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore 8 School of Computer Science and Engineering, National Institute of Science and Technology, Berhampur, Odisha, India
| | - P. Khanna
- PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
| | - M. Prasad
- Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, Sydney, Australia
| | - C. T. Lin
- Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
29
|
Sun J, Yan S, Song C, Han B. Dual-functional neural network for bilateral hippocampi segmentation and diagnosis of Alzheimer's disease. Int J Comput Assist Radiol Surg 2019; 15:445-455. [PMID: 31883064 DOI: 10.1007/s11548-019-02106-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Knowing the course of Alzheimer's disease is very important to prevent the deterioration of the disease, and accurate segmentation of sensitive lesions can provide a visual basis for the diagnosis results. This study proposes an improved end-to-end dual-functional 3D convolutional neural network for segmenting bilateral hippocampi from 3D brain MRI scans and diagnosing AD progression states simultaneously. METHODS The proposed neural network is based on the V-Net and adopts an end-to-end structure. In order to relieve the excessive amount of convolutional parameters at the bottom of the V-Net, we change them to bottleneck architecture. Based on the segmentation network, we establish a classification network for diagnosing pathological states of brain. In order to balance the two tasks of hippocampi segmentation and brain pathological states diagnosis, we designed a unique loss function. This study included 132 samples, of which 100 were selected as training, and the remaining 32 were used to test the performance of our model. During training, we adopted fivefold cross-validation method. RESULTS We selected the intersection over union and dice coefficient to evaluate the hippocampus segmentation performance, while the brain pathological states diagnosis performance was evaluated by accuracy, specificity, sensitivity, precision and F1 score. By using the proposed neural network, the left hippocampi segmentation Iou and dice coefficient reach 0.8240 ± 0.020 and 0.9035 ± 0.020, respectively. The right hippocampi Iou and dice coefficient reach 0.8454 ± 0.023 and 0.9162 ± 0.023, respectively. The accuracy, specificity, sensitivity, precision and F1 score of three-category classification of brain pathology are 84%, 92%, 84%, 86% and 85%, respectively. CONCLUSION The proposed neural network has two functions of brain pathological states diagnosis and bilateral hippocampi segmentation with higher robustness and accuracy, respectively. The segmented bilateral hippocampi can be used as a reference for clinical decision making or intervention.
Collapse
Affiliation(s)
- Jingwen Sun
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shiju Yan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Chengli Song
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Baosan Han
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
30
|
Lozito GM, Salvini A. Swarm intelligence based approach for efficient training of regressive neural networks. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04606-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Liwei S. Research on classification and recognition of badminton batting action based on machine learning. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2019. [DOI: 10.3233/jifs-179206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sun Liwei
- Sports Department, Xi’an Aeronautical University, Xi’an, Shaanxi, China
| |
Collapse
|
32
|
Zhang Y, Wang S, Sui Y, Yang M, Liu B, Cheng H, Sun J, Jia W, Phillips P, Gorriz JM. Multivariate Approach for Alzheimer's Disease Detection Using Stationary Wavelet Entropy and Predator-Prey Particle Swarm Optimization. J Alzheimers Dis 2019; 65:855-869. [PMID: 28731432 DOI: 10.3233/jad-170069] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The number of patients with Alzheimer's disease is increasing rapidly every year. Scholars often use computer vision and machine learning methods to develop an automatic diagnosis system. OBJECTIVE In this study, we developed a novel machine learning system that can make diagnoses automatically from brain magnetic resonance images. METHODS First, the brain imaging was processed, including skull stripping and spatial normalization. Second, one axial slice was selected from the volumetric image, and stationary wavelet entropy (SWE) was done to extract the texture features. Third, a single-hidden-layer neural network was used as the classifier. Finally, a predator-prey particle swarm optimization was proposed to train the weights and biases of the classifier. RESULTS Our method used 4-level decomposition and yielded 13 SWE features. The classification yielded an overall accuracy of 92.73±1.03%, a sensitivity of 92.69±1.29%, and a specificity of 92.78±1.51%. The area under the curve is 0.95±0.02. Additionally, this method only cost 0.88 s to identify a subject in online stage, after its volumetric image is preprocessed. CONCLUSION In terms of classification performance, our method performs better than 10 state-of-the-art approaches and the performance of human observers. Therefore, this proposed method is effective in the detection of Alzheimer's disease.
Collapse
Affiliation(s)
- Yudong Zhang
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, P. R. China.,School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu, P. R. China
| | - Shuihua Wang
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, P. R. China.,School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Yuxiu Sui
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, P. R.China
| | - Ming Yang
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Bin Liu
- Department of Radiology, Zhong-Da Hospital of Southeast University, Nanjing, P. R. China
| | - Hong Cheng
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Junding Sun
- School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, Henan, P. R. China
| | - Wenjuan Jia
- School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu, P. R. China
| | - Preetha Phillips
- West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Juan Manuel Gorriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| |
Collapse
|
33
|
Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer’s disease. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Allawi MF, Jaafar O, Mohamad Hamzah F, Koting SB, Mohd NSB, El-Shafie A. Forecasting hydrological parameters for reservoir system utilizing artificial intelligent models and exploring their influence on operation performance. Knowl Based Syst 2019. [DOI: 10.1016/j.knosys.2018.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
A generation-based optimal restart strategy for surrogate-assisted social learning particle swarm optimization. Knowl Based Syst 2019. [DOI: 10.1016/j.knosys.2018.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Abstract
The rather impressive extension library of medical image-processing platform 3D Slicer lacks a wide range of machine-learning toolboxes. The authors have developed such a toolbox that incorporates commonly used machine-learning libraries. The extension uses a simple graphical user interface that allows the user to preprocess data, train a classifier, and use that classifier in common medical image-classification tasks, such as tumor staging or various anatomical segmentations without a deeper knowledge of the inner workings of the classifiers. A series of experiments were carried out to showcase the capabilities of the extension and quantify the symmetry between the physical characteristics of pathological tissues and the parameters of a classifying model. These experiments also include an analysis of the impact of training vector size and feature selection on the sensitivity and specificity of all included classifiers. The results indicate that training vector size can be minimized for all classifiers. Using the data from the Brain Tumor Segmentation Challenge, Random Forest appears to have the widest range of parameters that produce sufficiently accurate segmentations, while optimal Support Vector Machines’ training parameters are concentrated in a narrow feature space.
Collapse
|
37
|
Zhao X, Barber S, Taylor CC, Milan Z. Classification tree methods for panel data using wavelet-transformed time series. Comput Stat Data Anal 2018. [DOI: 10.1016/j.csda.2018.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
38
|
Valenzuela O, Jiang X, Carrillo A, Rojas I. Multi-Objective Genetic Algorithms to Find Most Relevant Volumes of the Brain Related to Alzheimer's Disease and Mild Cognitive Impairment. Int J Neural Syst 2018; 28:1850022. [DOI: 10.1142/s0129065718500223] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Computer-Aided Diagnosis (CAD) represents a relevant instrument to automatically classify between patients with and without Alzheimer's Disease (AD) using several actual imaging techniques. This study analyzes the optimization of volumes of interest (VOIs) to extract three-dimensional (3D) textures from Magnetic Resonance Image (MRI) in order to diagnose AD, Mild Cognitive Impairment converter (MCIc), Mild Cognitive Impairment nonconverter (MCInc) and Normal subjects. A relevant feature of the proposed approach is the use of 3D features instead of traditional two-dimensional (2D) features, by using 3D discrete wavelet transform (3D-DWT) approach for performing feature extraction from T-1 weighted MRI. Due to the high number of coefficients when applying 3D-DWT to each of the VOIs, a feature selection algorithm based on mutual information is used, as is the minimum Redundancy Maximum Relevance (mRMR) algorithm. Region optimization has been performed in order to discover the most relevant regions (VOIs) in the brain with the use of Multi-Objective Genetic Algorithms, being one of the objectives to be optimize the accuracy of the system. The error index of the system is computed by the confusion matrix obtained by the multi-class support vector machine (SVM) classifier. Principal Component Analysis (PCA) is used with the purpose of reducing the number of features to the classifier. The cohort of subjects used in the study consisted of 296 different patients. A first group of 206 patients was used to optimize VOI selection and another group of 90 independent subjects (that did not belong to the first group) was used to test the solutions yielded by the genetic algorithm. The proposed methodology obtains excellent results in multi-class classification achieving accuracies of 94.4% and also extracting significant information on the location of the most relevant points of the brain. This suggests that the proposed method could aid in the research of other neurodegenerative diseases, improving the accuracy of the diagnosis and finding the most relevant regions of the brain associated with them.
Collapse
Affiliation(s)
- Olga Valenzuela
- Department of Applied Mathematics, University of Granada, Spain
| | - Xiaoyi Jiang
- Department of Computer Science, University of Munster, Germany
| | - Antonio Carrillo
- Department of Computer Architecture and Computer Technology, University of Granada, Spain
| | - Ignacio Rojas
- Department of Computer Architecture and Computer Technology, CITIC-UGR, University of Granada, Spain
| |
Collapse
|
39
|
Osadebey ME, Pedersen M, Arnold DL, Wendel-Mitoraj KE, Alzheimer's Disease Neuroimaging Initiative FT. Standardized quality metric system for structural brain magnetic resonance images in multi-center neuroimaging study. BMC Med Imaging 2018; 18:31. [PMID: 30223797 PMCID: PMC6142697 DOI: 10.1186/s12880-018-0266-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multi-site neuroimaging offer several benefits and poses tough challenges in the drug development process. Although MRI protocol and clinical guidelines developed to address these challenges recommend the use of good quality images, reliable assessment of image quality is hampered by the several shortcomings of existing techniques. METHODS Given a test image two feature images are extracted. They are grayscale and contrast feature images. Four binary images are generated by setting four different global thresholds on the feature images. Image quality is predicted by measuring the structural similarity between appropriate pairs of binary images. The lower and upper limits of the quality index are 0 and 1. Quality prediction is based on four quality attributes; luminance contrast, texture, texture contrast and lightness. RESULTS Performance evaluation on test data from three multi-site clinical trials show good objective quality evaluation across MRI sequences, levels of distortion and quality attributes. Correlation with subjective evaluation by human observers is ≥ 0.6. CONCLUSION The results are promising for the evaluation of MRI protocols, specifically the standardization of quality index, designed to overcome the challenges encountered in multi-site clinical trials.
Collapse
Affiliation(s)
- Michael E Osadebey
- NeuroRx Research Inc, Montreal, 3575 Parc Avenue, Suite # 5322, Montreal, Quebec, H2X 3P9, Canada
| | - Marius Pedersen
- Department of Computer Science, Norwegian University of Science and Technology, Teknologivegen 22, Gjøvik, N-2815, Norway.
| | - Douglas L Arnold
- Montreal Neurological Institute and Hospital, McGill University, 3801 University St, Montreal, Quebec, H3A 2B4, Canada
| | | | | |
Collapse
|
40
|
Kaushal M, Khehra BS, Sharma A. Soft Computing based object detection and tracking approaches: State-of-the-Art survey. Appl Soft Comput 2018. [DOI: 10.1016/j.asoc.2018.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
41
|
Zhang YD, Zhao G, Sun J, Wu X, Wang ZH, Liu HM, Govindaraj VV, Zhan T, Li J. Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm. MULTIMEDIA TOOLS AND APPLICATIONS 2018; 77:22629-22648. [DOI: 10.1007/s11042-017-5023-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
42
|
Higher-order spectral analysis of spontaneous speech signals in Alzheimer's disease. Cogn Neurodyn 2018; 12:583-596. [PMID: 30483366 DOI: 10.1007/s11571-018-9499-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 07/26/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022] Open
Abstract
An early and accurate diagnosis of Alzheimer's disease (AD) has been progressively attracting more attention in recent years. One of the main problems of AD is the loss of language skills. This paper presents a computational framework for classifying AD patients compared to healthy control subjects using information from spontaneous speech signals. Spontaneous speech data are obtained from 30 AD patients and 30 healthy controls. Because of the nonlinear and dynamic nature of speech signals, higher order spectral features (specifically bispectrum) were used for analysis. Four classifiers (k-Nearest Neighbor, Support Vector Machine, Naïve Bayes and Decision tree) were used to classify subjects into three different levels of AD and healthy group based on their performance in terms of the HOS-based features. Ten-fold cross-validation method was used to test the reliability of the classifier results. The results showed that the proposed method had a good potential in AD diagnosis. The proposed method was also able to diagnose the earliest stage of AD with high accuracy. The method has the great advantage of being non-invasive, cost-effective, and associated with no side effects. Therefore, the proposed method can be a spontaneous speech directed test for pre-clinical evaluation of AD diagnosis.
Collapse
|
43
|
Artificial intelligence design charts for predicting friction capacity of driven pile in clay. Neural Comput Appl 2018. [DOI: 10.1007/s00521-018-3555-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
44
|
Tan X, Liu Y, Li Y, Wang P, Zeng X, Yan F, Li X. Localized instance fusion of MRI data of Alzheimer's disease for classification based on instance transfer ensemble learning. Biomed Eng Online 2018; 17:49. [PMID: 29716598 PMCID: PMC5930507 DOI: 10.1186/s12938-018-0489-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diagnosis of Alzheimer's disease (AD) is very important, and MRI is an effective imaging mode of Alzheimer's disease. There are many existing studies on the diagnosis of Alzheimer's disease based on MRI data. However, there are no studies on the transfer learning between different datasets (including different subjects), thereby improving the sample size of target dataset indirectly. METHODS Therefore, a new framework method is proposed in this paper to solve this problem. First, gravity transfer is used to transfer the source domain data closer to the target data set. Secondly, the best deviation between the transferred source domain samples and the target domain samples is searched by instance transfer learning algorithm (ITL) based on wrapper mode, thereby obtaining optimal transferred domain samples. Finally, the optimal transferred domain samples and the target domain training samples are combined for classification. If the source data and the target data have different features, a feature growing algorithm is proposed to solve this problem. RESULTS The experimental results show that the proposed method is effective regardless of different kernel functions, different number of samples and different parameters. Besides, the transferred source domain samples by ITL algorithm can enlarge the target domain training samples and assist to improve the classification accuracy significantly. CONCLUSIONS Therefore, the study can enlarge the samples of AD by instance transfer learning, thereby being helpful for the small sample problems of AD. Since the proposed algorithm is a framework algorithm, the study is heuristics to the relevant researchers.
Collapse
Affiliation(s)
- Xiaoheng Tan
- College of Communication Engineering, Chongqing University, Shapingba District, Chongqing, 400044, China
| | - Yuchuan Liu
- College of Communication Engineering, Chongqing University, Shapingba District, Chongqing, 400044, China
| | - Yongming Li
- College of Communication Engineering, Chongqing University, Shapingba District, Chongqing, 400044, China. .,Department of Medical Image, College of Biomedical Engineering, Third Military Medical University, Chongqing, 400038, China.
| | - Pin Wang
- College of Communication Engineering, Chongqing University, Shapingba District, Chongqing, 400044, China
| | - Xiaoping Zeng
- College of Communication Engineering, Chongqing University, Shapingba District, Chongqing, 400044, China
| | - Fang Yan
- College of Communication Engineering, Chongqing University, Shapingba District, Chongqing, 400044, China
| | - Xinke Li
- College of Communication Engineering, Chongqing University, Shapingba District, Chongqing, 400044, China
| |
Collapse
|
45
|
Multi-class Alzheimer's disease classification using image and clinical features. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2018.02.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Beheshti I, Olya HGT, Demirel H. Risk Assessment of Alzheimer's Disease using the Information Diffusion Model from Structural Magnetic Resonance Imaging. J Alzheimers Dis 2017; 52:1335-42. [PMID: 27060960 DOI: 10.3233/jad-151176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Recently, automatic risk assessment methods have been a target for the detection of Alzheimer's disease (AD) risk. OBJECTIVE This study aims to develop an automatic computer-aided AD diagnosis technique for risk assessment of AD using information diffusion theory. METHODS Information diffusion is a fuzzy mathematics logic of set-value that is used for risk assessment of natural phenomena, which attaches fuzziness (uncertainty) and incompleteness. Data were obtained from voxel-based morphometry analysis of structural magnetic resonance imaging. RESULTS AND CONCLUSION The information diffusion model results revealed that the risk of AD increases with a reduction of the normalized gray matter ratio (p > 0.5, normalized gray matter ratio <40%). The information diffusion model results were evaluated by calculation of the correlation of two traditional risk assessments of AD, the Mini-Mental State Examination and the Clinical Dementia Rating. The correlation results revealed that the information diffusion model findings were in line with Mini-Mental State Examination and Clinical Dementia Rating results. Application of information diffusion model contributes to the computerization of risk assessment of AD, which has a practical implication for the early detection of AD.
Collapse
Affiliation(s)
- Iman Beheshti
- Biomedical Image Processing Group, Department of Electrical & Electronic Engineering, Eastern Mediterranean University, Gazimagusa, Mersin, Turkey
| | - Hossain G T Olya
- British University of Nicosia, Ozankoy, Kyrinia, via Mersin, Turkey
| | - Hasan Demirel
- Biomedical Image Processing Group, Department of Electrical & Electronic Engineering, Eastern Mediterranean University, Gazimagusa, Mersin, Turkey
| | | |
Collapse
|
47
|
Gauthama Raman M, Somu N, Kirthivasan K, Liscano R, Shankar Sriram V. An efficient intrusion detection system based on hypergraph - Genetic algorithm for parameter optimization and feature selection in support vector machine. Knowl Based Syst 2017. [DOI: 10.1016/j.knosys.2017.07.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Zhan T, Feng P, Hong X, Lu Z, Xiao L, Zhang Y. An automatic glioma grading method based on multi-feature extraction and fusion. Technol Health Care 2017; 25:377-385. [DOI: 10.3233/thc-171341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Tianming Zhan
- School of Technology, Nanjing Audit University, Nanjing, Jiangsu, China
- Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- School of Technology, Nanjing Audit University, Nanjing, Jiangsu, China
| | - Piaopiao Feng
- Department of Radiology,
- School of Technology, Nanjing Audit University, Nanjing, Jiangsu, China
| | | | - Zhenyu Lu
- Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Liang Xiao
- Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Yudong Zhang
- School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu, China
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
49
|
Srisukkham W, Zhang L, Neoh SC, Todryk S, Lim CP. Intelligent leukaemia diagnosis with bare-bones PSO based feature optimization. Appl Soft Comput 2017. [DOI: 10.1016/j.asoc.2017.03.024] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Wang S, Phillips P, Yang J, Sun P, Zhang Y. Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients. ACTA ACUST UNITED AC 2017; 61:431-41. [PMID: 26913453 DOI: 10.1515/bmt-2015-0152] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022]
Abstract
AIM To develop an automatic magnetic resonance (MR) brain classification that can assist physicians to make a diagnosis and reduce wrong decisions. METHOD This article investigated the binary particle swarm optimization (BPSO) approach and proposed its three new variants: BPSO with mutation and time-varying acceleration coefficients (BPSO-MT), BPSO with mutation (BPSO-M), and BPSO with time-varying acceleration coefficients (BPSO-T). We first extracted wavelet entropy (WE) features from both approximation and detail sub-bands of eight-level decomposition. Afterwards, we used the proposed BPSO-M, BPSO-T, and BPSO-MT to select features. Finally, the selected features were fed into a probabilistic neural network (PNN). RESULTS The proposed BPSO-MT performed better than BPSO-T and BPSO-M. It finally selected two features of entropies of the following two sub-bands (V1, D1). The proposed system "WE + BPSO-MT + PNN" yielded perfect classification on Data160 and Data66. In addition, it yielded 99.53% average accuracy for the Data255, over 10 repetitions of k-fold stratified cross validation (SCV), higher than state-of-the-art approaches. CONCLUSIONS The proposed method is effective for MR brain classification.
Collapse
|