1
|
Lerios T, Knopp JL, Zilianti C, Pecchiari M, Chase JG. A model-based quantification of nonlinear expiratory resistance in Plethysmographic data of COPD patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108520. [PMID: 39644782 DOI: 10.1016/j.cmpb.2024.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/30/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterised by airway obstruction with an increase in airway resistance (R) to airflow in the lungs. An extreme case of expiratory airway resistance is expiratory flow limitation, a common feature of severe COPD. Current analyses quantify expiratory R with linear model-based methods, which do not capture non-linearity's noted in COPD literature. This analysis utilises a simple nonlinear model to describe patient-specific nonlinear expiratory resistance dynamics typical of COPD and assesses its ability to both fit measured data and also to discriminate between severity levels of COPD. METHODS Plethysmographic data, including alveolar pressure and airway flow, was collected from n=100 subjects (40 healthy, 60 COPD) in a previous study. Healthy cohorts included Young (20-32 years) and Elderly (64-85 years) patients. COPD patients were divided into those with expiratory flow limitation (FL) and those without (NFL). Inspiratory R was treated as linear (R1,insp). Expiratory R was modelled with two separate models for a comparison: linear with constant resistance (R1,exp), and nonlinear time-varying resistance (R2,exp(t)) using b-splines. RESULTS Model fit to PQ loops show inspiration is typically linear. Linear R1,exp captured expiratory dynamics in healthy cohorts (RMSE 0.3 [0.2 - 0.4] cmH2O), but did not capture nonlinearity in COPD patients. COPD cohorts showed PQ-loop ballooning during expiration, which was better captured by non-linear R2,exp(t) (RMSE 1.7[1.3-2.8] vs. 0.3[0.2-0.4] cmH2O in FL patients). Airway resistance is higher in COPD than healthy cohorts (mean R2,exp(t) for Young (1.9 [1.6-2.8]), Elderly (2.4 [1.4-3.5]), NFL (4.9 [3.9-6.6]) and FL (13.5 [10.4-21.9]) cmH2O/L/s, with p ≤ 0.0001 between aggregated measures for Young and Elderly healthy subjects and NFL and FL COPD subjects). FL patients showed non-linear R2,exp(t) dynamics during flow deceleration, differentiating them from NFL COPD patients. CONCLUSIONS Linear model metrics describe expiration dynamics well in healthy subjects, but fail to capture nonlinear dynamics in COPD patients. Overall, the model-based method presented shows promise in detecting expiratory flow limitation, as well as describing different dynamics in healthy, COPD, and FL COPD patients. This method may thus be clinically useful in the diagnosis or monitoring of COPD patients using Plethysmography data, without the need for additional expiratory flow limitation confirmation procedures.
Collapse
Affiliation(s)
- Theodore Lerios
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Jennifer L Knopp
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Camilla Zilianti
- Dipartimento di Scienze Biomediche e Cliniche Luigi Sacco, Universit`a degli Studi di Milano, Milan, Italy
| | - Matteo Pecchiari
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Universit`a degli Studi di Milano, Milan, Italy
| | - J Geoffrey Chase
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
2
|
Badrou A, Mariano CA, Ramirez GO, Shankel M, Rebelo N, Eskandari M. Towards constructing a generalized structural 3D breathing human lung model based on experimental volumes, pressures, and strains. PLoS Comput Biol 2025; 21:e1012680. [PMID: 39804822 PMCID: PMC11729960 DOI: 10.1371/journal.pcbi.1012680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Respiratory diseases represent a significant healthcare burden, as evidenced by the devastating impact of COVID-19. Biophysical models offer the possibility to anticipate system behavior and provide insights into physiological functions, advancements which are comparatively and notably nascent when it comes to pulmonary mechanics research. In this context, an Inverse Finite Element Analysis (IFEA) pipeline is developed to construct the first continuously ventilated three-dimensional structurally representative pulmonary model informed by both organ- and tissue-level breathing experiments from a cadaveric human lung. Here we construct a generalizable computational framework directly validated by pressure, volume, and strain measurements using a novel inflating apparatus interfaced with adapted, lung-specific, digital image correlation techniques. The parenchyma, pleura, and airways are represented with a poroelastic formulation to simulate pressure flows within the lung lobes, calibrating the model's material properties with the global pressure-volume response and local tissue deformations strains. The optimization yielded the following shear moduli: parenchyma (2.8 kPa), airways (0.2 kPa), and pleura (1.7 Pa). The proposed complex multi-material model with multi-experimental inputs was successfully developed using human lung data, and reproduced the shape of the inflating pressure-volume curve and strain distribution values associated with pulmonary deformation. This advancement marks a significant step towards creating a generalizable human lung model for broad applications across animal models, such as porcine, mouse, and rat lungs to reproduce pathological states and improve performance investigations regarding medical therapeutics and intervention.
Collapse
Affiliation(s)
- Arif Badrou
- Department of Mechanical Engineering, University of California Riverside, Riverside, California, United States of America
| | - Crystal A. Mariano
- Department of Mechanical Engineering, University of California Riverside, Riverside, California, United States of America
| | - Gustavo O. Ramirez
- Department of Mechanical Engineering, University of California Riverside, Riverside, California, United States of America
| | - Matthew Shankel
- Department of Mechanical Engineering, University of California Riverside, Riverside, California, United States of America
| | - Nuno Rebelo
- Nuno Rebelo Associates, LLC, Fremont, California, United States of America
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California Riverside, Riverside, California, United States of America
- BREATHE Center, School of Medicine, University of California Riverside, Riverside, California, United States of America
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
3
|
Caljé-van der Klei T, Sun Q, Chase JG, Zhou C, Tawhai MH, Knopp JL, Möller K, Heines SJ, Bergmans DC, Shaw GM. Pulmonary response prediction through personalized basis functions in a virtual patient model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107988. [PMID: 38171168 DOI: 10.1016/j.cmpb.2023.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/16/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Recruitment maneuvers with subsequent positive-end-expiratory-pressure (PEEP) have proven effective in recruiting lung volume and preventing alveoli collapse. However, determining a safe, effective, and patient-specific PEEP is not standardized, and this more optimal PEEP level evolves with patient condition, requiring personalised monitoring and care approaches to maintain optimal ventilation settings. METHODS This research examines 3 physiologically relevant basis function sets (exponential, parabolic, cumulative) to enable better prediction of elastance evolution for a virtual patient or digital twin model of MV lung mechanics, including novel elements to model and predict distension elastance. Prediction accuracy and robustness are validated against recruitment maneuver data from 18 volume-controlled ventilation (VCV) patients at 7 different baseline PEEP levels (0 to 12 cmH2O) and 14 pressure-controlled ventilation (PCV) patients at 4 different baseline PEEP levels (6 to 12 cmH2O), yielding 623 and 294 prediction cases, respectively. Predictions were made up to 12 cmH2O of added PEEP ahead, covering 6 × 2 cmH2O PEEP steps. RESULTS The 3 basis function sets yield median absolute peak inspiratory pressure (PIP) prediction error of 1.63 cmH2O for VCV patients, and median peak inspiratory volume (PIV) prediction error of 0.028 L for PCV patients. The exponential basis function set yields a better trade-off of overall performance across VCV and PCV prediction than parabolic and cumulative basis function sets from other studies. Comparing predicted and clinically measured distension prediction in VCV demonstrated consistent, robust high accuracy with R2 = 0.90-0.95. CONCLUSIONS The results demonstrate recruitment mechanics are best captured by an exponential basis function across different mechanical ventilation modes, matching physiological expectations, and accurately capture, for the first time, distension mechanics to within 5-10 % accuracy. Enabling the risk of lung injury to be predicted before changing ventilator settings. The overall outcomes significantly extend and more fully validate this digital twin or virtual mechanical ventilation patient model.
Collapse
Affiliation(s)
- Trudy Caljé-van der Klei
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Qianhui Sun
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand; University of Liége, Liége, Belgium
| | - J Geoffrey Chase
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Cong Zhou
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jennifer L Knopp
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Knut Möller
- Institute for Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Serge J Heines
- Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, Netherlands
| | - Dennis C Bergmans
- Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, Netherlands
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
4
|
Chen Y, Zhang K, Zhou C, Chase JG, Hu Z. Automated evaluation of typical patient-ventilator asynchronies based on lung hysteretic responses. Biomed Eng Online 2023; 22:102. [PMID: 37875890 PMCID: PMC10598979 DOI: 10.1186/s12938-023-01165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Patient-ventilator asynchrony is common during mechanical ventilation (MV) in intensive care unit (ICU), leading to worse MV care outcome. Identification of asynchrony is critical for optimizing MV settings to reduce or eliminate asynchrony, whilst current clinical visual inspection of all typical types of asynchronous breaths is difficult and inefficient. Patient asynchronies create a unique pattern of distortions in hysteresis respiratory behaviours presented in pressure-volume (PV) loop. METHODS Identification method based on hysteretic lung mechanics and hysteresis loop analysis is proposed to delineate the resulted changes of lung mechanics in PV loop during asynchronous breathing, offering detection of both its incidence and 7 major types. Performance is tested against clinical patient data with comparison to visual inspection conducted by clinical doctors. RESULTS The identification sensitivity and specificity of 11 patients with 500 breaths for each patient are above 89.5% and 96.8% for all 7 types, respectively. The average sensitivity and specificity across all cases are 94.6% and 99.3%, indicating a very good accuracy. The comparison of statistical analysis between identification and human inspection yields the essential same clinical judgement on patient asynchrony status for each patient, potentially leading to the same clinical decision for setting adjustment. CONCLUSIONS The overall results validate the accuracy and robustness of the identification method for a bedside monitoring, as well as its ability to provide a quantified metric for clinical decision of ventilator setting. Hence, the method shows its potential to assist a more consistent and objective assessment of asynchrony without undermining the efficacy of the current clinical practice.
Collapse
Affiliation(s)
- Yuhong Chen
- Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun Zhang
- Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cong Zhou
- Department of Mechanical Engineering & Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand.
- Taicang Yangtze River Delta Research Institute, Suzhou, China.
| | - J Geoffrey Chase
- Department of Mechanical Engineering & Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Zhenjie Hu
- Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Ding B, Xu F, Wang J, Pan C, Pang J, Chen Y, Li K. Design and evaluation of portable emergency ventilator prototype with novel titration methods. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Non-invasive over-distension measurements: data driven vs model-based. J Clin Monit Comput 2022; 37:389-398. [PMID: 35920951 DOI: 10.1007/s10877-022-00900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Clinical measurements offer bedside monitoring aiming to minimise unintended over-distension, but have limitations and cannot be predicted for changes in mechanical ventilation (MV) settings and are only available in certain MV modes. This study introduces a non-invasive, real-time over-distension measurement, which is robust, predictable, and more intuitive than current methods. The proposed over-distension measurement, denoted as OD, is compared with the clinically proven stress index (SI). Correlation is analysed via R2 and Spearman rs. The OD safe range corresponding to the unit-less SI safe range (0.95-1.05) is calibrated by sensitivity and specificity test. Validation is fulfilled with 19 acute respiratory distress syndrome (ARDS) patients data (196 cases), including assessment across ARDS severity. Overall correlation between OD and SI yielded R2 = 0.76 and Spearman rs = 0.89. Correlation is higher considering only moderate and severe ARDS patients. Calibration of OD to SI yields a safe range defined: 0 ≤ OD ≤ 0.8 cmH2O. The proposed OD offers an efficient, general, real-time measurement of patient-specific lung mechanics, which is more intuitive and robust than SI. OD eliminates the limitations of SI in MV mode and its less intuitive lung status value. Finally, OD can be accurately predicted for new ventilator settings via its foundation in a validated predictive personalized lung mechanics model. Therefore, OD offers potential clinical value over current clinical methods.
Collapse
|
7
|
Zainol NM, Damanhuri NS, Othman NA, Chiew YS, Nor MBM, Muhammad Z, Chase JG. Estimating the incidence of spontaneous breathing effort of mechanically ventilated patients using a non-linear auto regressive (NARX) model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106835. [PMID: 35512627 PMCID: PMC9754157 DOI: 10.1016/j.cmpb.2022.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Mechanical ventilation (MV) provides breathing support for acute respiratory distress syndrome (ARDS) patients in the intensive care unit, but is difficult to optimize. Too much, or too little of pressure or volume support can cause further ventilator-induced lung injury, increasing length of MV, cost and mortality. Patient-specific respiratory mechanics can help optimize MV settings. However, model-based estimation of respiratory mechanics is less accurate when patient exhibit un-modeled spontaneous breathing (SB) efforts on top of ventilator support. This study aims to estimate and quantify SB efforts by reconstructing the unaltered passive mechanics airway pressure using NARX model. METHODS Non-linear autoregressive (NARX) model is used to reconstruct missing airway pressure due to the presence of spontaneous breathing effort in mv patients. Then, the incidence of SB patients is estimated. The study uses a total of 10,000 breathing cycles collected from 10 ARDS patients from IIUM Hospital in Kuantan, Malaysia. In this study, there are 2 different ratios of training and validating methods. Firstly, the initial ratio used is 60:40 which indicates 600 breath cycles for training and remaining 400 breath cycles used for testing. Then, the ratio is varied using 70:30 ratio for training and testing data. RESULTS AND DISCUSSION The mean residual error between original airway pressure and reconstructed airway pressure is denoted as the magnitude of effort. The median and interquartile range of mean residual error for both ratio are 0.0557 [0.0230 - 0.0874] and 0.0534 [0.0219 - 0.0870] respectively for all patients. The results also show that Patient 2 has the highest percentage of SB incidence and Patient 10 with the lowest percentage of SB incidence which proved that NARX model is able to perform for both higher incidence of SB effort or when there is a lack of SB effort. CONCLUSION This model is able to produce the SB incidence rate based on 10% threshold. Hence, the proposed NARX model is potentially useful to estimate and identify patient-specific SB effort, which has the potential to further assist clinical decisions and optimize MV settings.
Collapse
Affiliation(s)
- Nurhidayah Mohd Zainol
- Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia
| | - Nor Salwa Damanhuri
- Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia.
| | - Nor Azlan Othman
- Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia
| | - Yeong Shiong Chiew
- School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd Basri Mat Nor
- Department of Anaesthesiology and Intensive Care, Kulliyah of Medicine, International Islamic University of Malaysia, Kuantan 25200, Malaysia
| | - Zuraida Muhammad
- Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
8
|
Hannon DM, Mistry S, Das A, Saffaran S, Laffey JG, Brook BS, Hardman JG, Bates DG. Modeling Mechanical Ventilation In Silico-Potential and Pitfalls. Semin Respir Crit Care Med 2022; 43:335-345. [PMID: 35451046 DOI: 10.1055/s-0042-1744446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Computer simulation offers a fresh approach to traditional medical research that is particularly well suited to investigating issues related to mechanical ventilation. Patients receiving mechanical ventilation are routinely monitored in great detail, providing extensive high-quality data-streams for model design and configuration. Models based on such data can incorporate very complex system dynamics that can be validated against patient responses for use as investigational surrogates. Crucially, simulation offers the potential to "look inside" the patient, allowing unimpeded access to all variables of interest. In contrast to trials on both animal models and human patients, in silico models are completely configurable and reproducible; for example, different ventilator settings can be applied to an identical virtual patient, or the same settings applied to different patients, to understand their mode of action and quantitatively compare their effectiveness. Here, we review progress on the mathematical modeling and computer simulation of human anatomy, physiology, and pathophysiology in the context of mechanical ventilation, with an emphasis on the clinical applications of this approach in various disease states. We present new results highlighting the link between model complexity and predictive capability, using data on the responses of individual patients with acute respiratory distress syndrome to changes in multiple ventilator settings. The current limitations and potential of in silico modeling are discussed from a clinical perspective, and future challenges and research directions highlighted.
Collapse
Affiliation(s)
- David M Hannon
- Anesthesia and Intensive Care Medicine, School of Medicine, NUI Galway, Ireland
| | - Sonal Mistry
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Anup Das
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Sina Saffaran
- Faculty of Engineering Science, University College London, London, United Kingdom
| | - John G Laffey
- Anesthesia and Intensive Care Medicine, School of Medicine, NUI Galway, Ireland
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jonathan G Hardman
- Anesthesia and Critical Care, Injury Inflammation and Recovery Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Declan G Bates
- School of Engineering, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
9
|
Prediction and estimation of pulmonary response and elastance evolution for volume-controlled and pressure-controlled ventilation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Over-distension prediction via hysteresis loop analysis and patient-specific basis functions in a virtual patient model. Comput Biol Med 2021; 141:105022. [PMID: 34801244 DOI: 10.1016/j.compbiomed.2021.105022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Recruitment maneuvers (RMs) with subsequent positive-end-expiratory-pressure (PEEP) have proven effective in recruiting lung volume and preventing alveolar collapse. However, a suboptimal PEEP could induce undesired injury in lungs by insufficient or excessive breath support. Thus, a predictive model for patient response under PEEP changes could improve clinical care and lower risks. METHODS This research adds novel elements to a virtual patient model to identify and predict patient-specific lung distension to optimise and personalise care. Model validity and accuracy are validated using data from 18 volume-controlled ventilation (VCV) patients at 7 different baseline PEEP levels (0-12cmH2O), yielding 623 prediction cases. Predictions were made up to ΔPEEP = 12cmH2O ahead covering 6x2cmH2O PEEP steps. RESULTS Using the proposed lung distension model, 90% of absolute peak inspiratory pressure (PIP) prediction errors compared to clinical measurement are within 3.95cmH2O, compared with 4.76cmH2O without this distension term. Comparing model-predicted and clinically measured distension had high correlation increasing to R2 = 0.93-0.95 if maximum ΔPEEP ≤ 6cmH2O. Predicted dynamic functional residual capacity (Vfrc) changes as PEEP rises yield 0.013L median prediction error for both prediction groups and overall R2 of 0.84. CONCLUSIONS Overall results demonstrate nonlinear distension mechanics are accurately captured in virtual lung mechanics patients for mechanical ventilation, for the first time. This result can minimise the risk of lung injury by predicting its potential occurrence of distension before changing ventilator settings. The overall outcomes significantly extend and more fully validate this virtual mechanical ventilation patient model.
Collapse
|
11
|
Zhou C, Chase JG, Knopp J, Sun Q, Tawhai M, Möller K, Heines SJ, Bergmans DC, Shaw GM, Desaive T. Virtual patients for mechanical ventilation in the intensive care unit. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 199:105912. [PMID: 33360683 DOI: 10.1016/j.cmpb.2020.105912] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Mechanical ventilation (MV) is a core intensive care unit (ICU) therapy. Significant inter- and intra- patient variability in lung mechanics and condition makes managing MV difficult. Accurate prediction of patient-specific response to changes in MV settings would enable optimised, personalised, and more productive care, improving outcomes and reducing cost. This study develops a generalised digital clone model, or in-silico virtual patient, to accurately predict lung mechanics in response to changes in MV. METHODS An identifiable, nonlinear hysteresis loop model (HLM) captures patient-specific lung dynamics identified from measured ventilator data. Identification and creation of the virtual patient model is fully automated using the hysteresis loop analysis (HLA) method to identify lung elastances from clinical data. Performance is evaluated using clinical data from 18 volume-control (VC) and 14 pressure-control (PC) ventilated patients who underwent step-wise recruitment maneuvers. RESULTS Patient-specific virtual patient models accurately predict lung response for changes in PEEP up to 12 cmH2O for both volume and pressure control cohorts. R2 values for predicting peak inspiration pressure (PIP) and additional retained lung volume, Vfrc in VC, are R2=0.86 and R2=0.90 for 106 predictions over 18 patients. For 14 PC patients and 84 predictions, predicting peak inspiratory volume (PIV) and Vfrc yield R2=0.86 and R2=0.83. Absolute PIP, PIV and Vfrc errors are relatively small. CONCLUSIONS Overall results validate the accuracy and versatility of the virtual patient model for capturing and predicting nonlinear changes in patient-specific lung mechanics. Accurate response prediction enables mechanically and physiologically relevant virtual patients to guide personalised and optimised MV therapy.
Collapse
Affiliation(s)
- Cong Zhou
- School of Civil Aviation, Northwestern Polytechnical University, China; Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, New Zealand.
| | - Jennifer Knopp
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - Qianhui Sun
- Department of Mechanical Engineering, University of Canterbury, New Zealand
| | - Merryn Tawhai
- Auckland Bio-Engineering Institute (ABI), University of Auckland, New Zealand
| | - Knut Möller
- Institute for Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Serge J Heines
- Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, the Netherlands
| | - Dennis C Bergmans
- Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, the Netherlands
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| | - Thomas Desaive
- GIGA-In Silico Medicine, Institute of Physics, University of Liege, Liege, Belgium
| |
Collapse
|