1
|
Jiang Z, Wang L, Wang Y, Jia G, Zeng G, Wang J, Li Y, Chen D, Qian G, Jin Q. A Self-Supervised Learning Based Framework for Eyelid Malignant Melanoma Diagnosis in Whole Slide Images. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:701-714. [PMID: 36136924 DOI: 10.1109/tcbb.2022.3207352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Eyelid malignant melanoma (MM) is a rare disease with high mortality. Accurate diagnosis of such disease is important but challenging. In clinical practice, the diagnosis of MM is currently performed manually by pathologists, which is subjective and biased. Since the heavy manual annotation workload, most pathological whole slide image (WSI) datasets are only partially labeled (without region annotations), which cannot be directly used in supervised deep learning. For these reasons, it is of great practical significance to design a laborsaving and high data utilization diagnosis method. In this paper, a self-supervised learning (SSL) based framework for automatically detecting eyelid MM is proposed. The framework consists of a self-supervised model for detecting MM areas at the patch-level and a second model for classifying lesion types at the slide level. A squeeze-excitation (SE) attention structure and a feature-projection (FP) structure are integrated to boost learning on details of pathological images and improve model performance. In addition, this framework also provides visual heatmaps with high quality and reliability to highlight the likely areas of the lesion to assist the evaluation and diagnosis of the eyelid MM. Extensive experimental results on different datasets show that our proposed method outperforms other state-of-the-art SSL and fully supervised methods at both patch and slide levels when only a subset of WSIs are annotated. It should be noted that our method is even comparable to supervised methods when all WSIs are fully annotated. To the best of our knowledge, our work is the first SSL method for automatic diagnosis of MM at the eyelid and has a great potential impact on reducing the workload of human annotations in clinical practice.
Collapse
|
2
|
Zhang W, Wang Z. An approach of separating the overlapped cells or nuclei based on the outer Canny edges and morphological erosion. Cytometry A 2024; 105:266-275. [PMID: 38111162 DOI: 10.1002/cyto.a.24819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
In biomedicine, the automatic processing of medical microscope images plays a key role in the subsequent analysis and diagnosis. Cell or nucleus segmentation is one of the most challenging tasks for microscope image processing. Due to the frequently occurred overlapping, few segmentation methods can achieve satisfactory segmentation accuracy yet. In this paper, we propose an approach to separate the overlapped cells or nuclei based on the outer Canny edges and morphological erosion. The threshold selection is first used to segment the foreground and background of cell or nucleus images. For each binary connected domain in the segmentation image, an intersection based edge selection method is proposed to choose the outer Canny edges of the overlapped cells or nuclei. The outer Canny edges are used to generate a binary cell or nucleus image that is then used to compute the cell or nucleus seeds by the proposed morphological erosion method. The nuclei of the Human U2OS cells, the mouse NIH3T3 cells and the synthetic cells are used for evaluating our proposed approach. The quantitative quantification accuracy is computed by the Dice score and 95.53% is achieved by the proposed approach. Both the quantitative and the qualitative comparisons show that the accuracy of the proposed approach is better than those of the area constrained morphological erosion (ACME) method, the iterative erosion (IE) method, the morphology and watershed (MW) method, the Generalized Laplacian of Gaussian filters (GLGF) method and ellipse fitting (EF) method in separating the cells or nuclei in three publicly available datasets.
Collapse
Affiliation(s)
- Wenfei Zhang
- College of Electrical and Electronic Engineering, Shandong University of Technology, Zibo, China
| | - Zhenzhou Wang
- School of Computer Science and Technology, Huaibei Normal University, Huaibei, China
| |
Collapse
|
3
|
Alshahrani M, Al-Jabbar M, Senan EM, Ahmed IA, Mohammed Saif JA. Analysis of dermoscopy images of multi-class for early detection of skin lesions by hybrid systems based on integrating features of CNN models. PLoS One 2024; 19:e0298305. [PMID: 38512890 PMCID: PMC10956807 DOI: 10.1371/journal.pone.0298305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/23/2024] [Indexed: 03/23/2024] Open
Abstract
Skin cancer is one of the most fatal skin lesions, capable of leading to fatality if not detected in its early stages. The characteristics of skin lesions are similar in many of the early stages of skin lesions. The AI in categorizing diverse types of skin lesions significantly contributes to and helps dermatologists to preserve patients' lives. This study introduces a novel approach that capitalizes on the strengths of hybrid systems of Convolutional Neural Network (CNN) models to extract intricate features from dermoscopy images with Random Forest (Rf) and Feed Forward Neural Networks (FFNN) networks, leading to the development of hybrid systems that have superior capabilities early detection of all types of skin lesions. By integrating multiple CNN features, the proposed methods aim to improve the robustness and discriminatory capabilities of the AI system. The dermoscopy images were optimized for the ISIC2019 dataset. Then, the area of the lesions was segmented and isolated from the rest of the image by a Gradient Vector Flow (GVF) algorithm. The first strategy for dermoscopy image analysis for early diagnosis of skin lesions is by the CNN-RF and CNN-FFNN hybrid models. CNN models (DenseNet121, MobileNet, and VGG19) receive a region of interest (skin lesions) and produce highly representative feature maps for each lesion. The second strategy to analyze the area of skin lesions and diagnose their type by means of CNN-RF and CNN-FFNN hybrid models based on the features of the combined CNN models. Hybrid models based on combined CNN features have achieved promising results for diagnosing dermoscopy images of the ISIC 2019 dataset and distinguishing skin cancers from other skin lesions. The Dense-Net121-MobileNet-RF hybrid model achieved an AUC of 95.7%, an accuracy of 97.7%, a precision of 93.65%, a sensitivity of 91.93%, and a specificity of 99.49%.
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Computer Department, Applied College, Najran University, Najran, Saudi Arabia
| | - Mohammed Al-Jabbar
- Computer Department, Applied College, Najran University, Najran, Saudi Arabia
| | - Ebrahim Mohammed Senan
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Alrazi University, Sana’a, Yemen
| | | | | |
Collapse
|
4
|
Fang Y, Zhong B. Cell segmentation in fluorescence microscopy images based on multi-scale histogram thresholding. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:16259-16278. [PMID: 37920012 DOI: 10.3934/mbe.2023726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Cell segmentation from fluorescent microscopy images plays an important role in various applications, such as disease mechanism assessment and drug discovery research. Exiting segmentation methods often adopt image binarization as the first step, through which the foreground cell is separated from the background so that the subsequent processing steps can be greatly facilitated. To pursue this goal, a histogram thresholding can be performed on the input image, which first applies a Gaussian smoothing to suppress the jaggedness of the histogram curve and then exploits Rosin's method to determine a threshold for conducting image binarization. However, an inappropriate amount of smoothing could lead to the inaccurate segmentation of cells. To address this crucial problem, a multi-scale histogram thresholding (MHT) technique is proposed in the present paper, where the scale refers to the standard deviation of the Gaussian that determines the amount of smoothing. To be specific, the image histogram is smoothed at three chosen scales first, and then the smoothed histogram curves are fused to conduct image binarization via thresholding. To further improve the segmentation accuracy and overcome the difficulty of extracting overlapping cells, our proposed MHT technique is incorporated into a multi-scale cell segmentation framework, in which a region-based ellipse fitting technique is adopted to identify overlapping cells. Extensive experimental results obtained on benchmark datasets show that the new method can deliver superior performance compared to the current state-of-the-arts.
Collapse
Affiliation(s)
- Yating Fang
- School of Computer Science and Technology, Soochow University, Suzhou 215021, China
| | - Baojiang Zhong
- School of Computer Science and Technology, Soochow University, Suzhou 215021, China
| |
Collapse
|
5
|
Nasir ES, Parvaiz A, Fraz MM. Nuclei and glands instance segmentation in histology images: a narrative review. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Wang G, Guo S, Han L, Cekderi AB. Two-dimensional reciprocal cross entropy multi-threshold combined with improved firefly algorithm for lung parenchyma segmentation of COVID-19 CT image. Biomed Signal Process Control 2022; 78:103933. [PMID: 35774106 PMCID: PMC9217142 DOI: 10.1016/j.bspc.2022.103933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/28/2022] [Accepted: 06/18/2022] [Indexed: 12/01/2022]
Abstract
The lesions of COVID-19 CT image show various kinds of ground-glass opacity and consolidation, which are distributed in left lung, right lung or both lungs. The lung lobes are uneven and it have similar gray value to the surrounding arteries, veins, and bronchi. The lesions of COVID-19 have different sizes and shapes in different periods. Accurate segmentation of lung parenchyma in CT image is a key step in COVID-19 detection and diagnosis. Aiming at the unideal effect of traditional image segmentation methods on lung parenchyma segmentation in CT images, a lung parenchyma segmentation method based on two-dimensional reciprocal cross entropy multi-threshold combined with improved firefly algorithm is proposed. Firstly, the optimal threshold method is used to realize the initial segmentation of the lung, so that the segmentation threshold can change adaptively according to the detailed information of lung lobes, trachea, bronchi and ground-glass opacity. Then the lung parenchyma is further processed to obtain the lung parenchyma template, and then the defective template is repaired combined with the improved Freeman chain code and Bezier curve. Finally, the lung parenchyma is extracted by multiplying the template with the lung CT image. The accuracy of lung parenchyma segmentation has been improved in the contrast clarity of CT image and the consistency of lung parenchyma regional features, with an average segmentation accuracy rate of 97.4%. The experimental results show that for COVID-19 and suspected cases, the method has an ideal segmentation effect, and it has good accuracy and robustness.
Collapse
Affiliation(s)
- Guowei Wang
- State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Shuli Guo
- State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Lina Han
- Department of Cardiology, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Anil Baris Cekderi
- State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Yu Y, Tao Y, Guan H, Xiao S, Li F, Yu C, Liu Z, Li J. A multi-branch hierarchical attention network for medical target segmentation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Kaseva T, Omidali B, Hippeläinen E, Mäkelä T, Wilppu U, Sofiev A, Merivaara A, Yliperttula M, Savolainen S, Salli E. Marker-controlled watershed with deep edge emphasis and optimized H-minima transform for automatic segmentation of densely cultivated 3D cell nuclei. BMC Bioinformatics 2022; 23:289. [PMID: 35864453 PMCID: PMC9306214 DOI: 10.1186/s12859-022-04827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The segmentation of 3D cell nuclei is essential in many tasks, such as targeted molecular radiotherapies (MRT) for metastatic tumours, toxicity screening, and the observation of proliferating cells. In recent years, one popular method for automatic segmentation of nuclei has been deep learning enhanced marker-controlled watershed transform. In this method, convolutional neural networks (CNNs) have been used to create nuclei masks and markers, and the watershed algorithm for the instance segmentation. We studied whether this method could be improved for the segmentation of densely cultivated 3D nuclei via developing multiple system configurations in which we studied the effect of edge emphasizing CNNs, and optimized H-minima transform for mask and marker generation, respectively. RESULTS The dataset used for training and evaluation consisted of twelve in vitro cultivated densely packed 3D human carcinoma cell spheroids imaged using a confocal microscope. With this dataset, the evaluation was performed using a cross-validation scheme. In addition, four independent datasets were used for evaluation. The datasets were resampled near isotropic for our experiments. The baseline deep learning enhanced marker-controlled watershed obtained an average of 0.69 Panoptic Quality (PQ) and 0.66 Aggregated Jaccard Index (AJI) over the twelve spheroids. Using a system configuration, which was otherwise the same but used 3D-based edge emphasizing CNNs and optimized H-minima transform, the scores increased to 0.76 and 0.77, respectively. When using the independent datasets for evaluation, the best performing system configuration was shown to outperform or equal the baseline and a set of well-known cell segmentation approaches. CONCLUSIONS The use of edge emphasizing U-Nets and optimized H-minima transform can improve the marker-controlled watershed transform for segmentation of densely cultivated 3D cell nuclei. A novel dataset of twelve spheroids was introduced to the public.
Collapse
Affiliation(s)
- Tuomas Kaseva
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital and University of Helsinki, P.O. Box 340, FI-00290, Helsinki, Finland
| | - Bahareh Omidali
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Eero Hippeläinen
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland.,HUS Medical Imaging Centre, Clinical Physiology and Nuclear Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Teemu Mäkelä
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital and University of Helsinki, P.O. Box 340, FI-00290, Helsinki, Finland.,Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Ulla Wilppu
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital and University of Helsinki, P.O. Box 340, FI-00290, Helsinki, Finland
| | - Alexey Sofiev
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital and University of Helsinki, P.O. Box 340, FI-00290, Helsinki, Finland.,Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Arto Merivaara
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Sauli Savolainen
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital and University of Helsinki, P.O. Box 340, FI-00290, Helsinki, Finland.,Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Eero Salli
- HUS Medical Imaging Center, Radiology, Helsinki University Hospital and University of Helsinki, P.O. Box 340, FI-00290, Helsinki, Finland.
| |
Collapse
|
9
|
Kiran I, Raza B, Ijaz A, Khan MA. DenseRes-Unet: Segmentation of overlapped/clustered nuclei from multi organ histopathology images. Comput Biol Med 2022; 143:105267. [PMID: 35114445 DOI: 10.1016/j.compbiomed.2022.105267] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 11/16/2022]
Abstract
Cancer is the second deadliest disease globally that can affect any human body organ. Early detection of cancer can increase the chances of survival in humans. Morphometric appearances of histopathology images make it difficult to segment nuclei effectively. We proposed a model to segment overlapped nuclei from H&E stained images. U-Net model achieved state-of-the-art performance in many medical image segmentation tasks; however, we modified the U-Net to learn a distinct set of consistent features. In this paper, we proposed the DenseRes-Unet model by integrating dense blocks in the last layers of the encoder block of U-Net, focused on relevant features from previous layers of the model. Moreover, we take advantage of residual connections with Atrous blocks instead of conventional skip connections, which helps to reduce the semantic gap between encoder and decoder paths. The distance map and binary threshold techniques intensify the nuclei interior and contour information in the images, respectively. The distance map is used to detect the center point of nuclei; moreover, it differentiates among nuclei interior boundary and core area. The distance map lacks a contour problem, which is resolved by using a binary threshold. Binary threshold helps to enhance the pixels around nuclei. Afterward, we fed images into the proposed DenseRes-Unet model, a deep, fully convolutional network to segment nuclei in the images. We have evaluated our model on four publicly available datasets for Nuclei segmentation to validate the model's performance. Our proposed model achieves 89.77% accuracy 90.36% F1-score, and 78.61% Aggregated Jaccard Index (AJI) on Multi organ Nucleus Segmentation (MoNuSeg).
Collapse
Affiliation(s)
- Iqra Kiran
- Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad, Pakistan.
| | - Basit Raza
- Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad, Pakistan.
| | - Areesha Ijaz
- Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad, Pakistan.
| | - Muazzam A Khan
- Department of Computer Science, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
10
|
Quantitative detection of cervical cancer based on time series information from smear images. Appl Soft Comput 2021. [DOI: 10.1016/j.asoc.2021.107791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Liew XY, Hameed N, Clos J. A Review of Computer-Aided Expert Systems for Breast Cancer Diagnosis. Cancers (Basel) 2021; 13:2764. [PMID: 34199444 PMCID: PMC8199592 DOI: 10.3390/cancers13112764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
A computer-aided diagnosis (CAD) expert system is a powerful tool to efficiently assist a pathologist in achieving an early diagnosis of breast cancer. This process identifies the presence of cancer in breast tissue samples and the distinct type of cancer stages. In a standard CAD system, the main process involves image pre-processing, segmentation, feature extraction, feature selection, classification, and performance evaluation. In this review paper, we reviewed the existing state-of-the-art machine learning approaches applied at each stage involving conventional methods and deep learning methods, the comparisons within methods, and we provide technical details with advantages and disadvantages. The aims are to investigate the impact of CAD systems using histopathology images, investigate deep learning methods that outperform conventional methods, and provide a summary for future researchers to analyse and improve the existing techniques used. Lastly, we will discuss the research gaps of existing machine learning approaches for implementation and propose future direction guidelines for upcoming researchers.
Collapse
Affiliation(s)
- Xin Yu Liew
- Jubilee Campus, University of Nottingham, Wollaton Road, Nottingham NG8 1BB, UK; (N.H.); (J.C.)
| | | | | |
Collapse
|
12
|
AIN ALIAS NUR, AZANI MUSTAFA WAN, AMINUDIN JAMLOS MOHD, ALKHAYYAT AHMED, SHAKIR AB RAHMAN KHAIRUL, Q. MALIK RAMI. Improvement method for cervical cancer detection: A comparative analysis. Oncol Res 2021. [DOI: 10.32604/or.2022.025897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|