1
|
Gama Cavalcante AL, Dari DN, Izaias da Silva Aires F, Carlos de Castro E, Moreira Dos Santos K, Sousa Dos Santos JC. Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications. RSC Adv 2024; 14:17946-17988. [PMID: 38841394 PMCID: PMC11151160 DOI: 10.1039/d4ra02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Enzymes are widely used in biofuels, food, and pharmaceuticals. The immobilization of enzymes on solid supports, particularly magnetic nanomaterials, enhances their stability and catalytic activity. Magnetic nanomaterials are chosen for their versatility, large surface area, and superparamagnetic properties, which allow for easy separation and reuse in industrial processes. Researchers focus on the synthesis of appropriate nanomaterials tailored for specific purposes. Immobilization protocols are predefined and adapted to both enzymes and support requirements for optimal efficiency. This review provides a detailed exploration of the application of magnetic nanomaterials in enzyme immobilization protocols. It covers methods, challenges, advantages, and future perspectives, starting with general aspects of magnetic nanomaterials, their synthesis, and applications as matrices for solid enzyme stabilization. The discussion then delves into existing enzymatic immobilization methods on magnetic nanomaterials, highlighting advantages, challenges, and potential applications. Further sections explore the industrial use of various enzymes immobilized on these materials, the development of enzyme-based bioreactors, and prospects for these biocatalysts. In summary, this review provides a concise comparison of the use of magnetic nanomaterials for enzyme stabilization, highlighting potential industrial applications and contributing to manufacturing optimization.
Collapse
Affiliation(s)
- Antônio Luthierre Gama Cavalcante
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Francisco Izaias da Silva Aires
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Erico Carlos de Castro
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Kaiany Moreira Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará Campus do Pici, Bloco 940 Fortaleza CEP 60455760 CE Brazil
| |
Collapse
|
2
|
Ateş B, Ulu A, Asiltürk M, Noma SAA, Topel SD, Dik G, Özhan O, Bakar B, Yıldız A, Vardı N, Parlakpınar H. Enhancement of enzyme activity by laser-induced energy propulsion of upconverting nanoparticles under near-infrared light: A comprehensive methodology for in vitro and in vivo applications. Int J Biol Macromol 2024; 260:129343. [PMID: 38242401 DOI: 10.1016/j.ijbiomac.2024.129343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
If the appropriate immobilization method and carrier support are not selected, partial decreases in the activity of enzymes may occur after immobilization. Herein, to overcome this challenge, an excitation mechanism that enables energy transfer was proposed. Modified upconverting nanoparticles (UCNPs) were constructed and the important role of near-infrared (NIR) excitation in enhancing the catalytic activity of the enzyme was demonstrated. For this purpose, UCNPs were first synthesized via the hydrothermal method, functionalized with isocyanate groups, and then, PEG-L-ASNase was immobilized via covalent binding. UCNPs with and without PEG-L-ASNase were extensively characterized by different methods. These supports had immobilization yield and activity efficiency of >96 % and 78 %, respectively. Moreover, immobilized enzymes exhibited improved pH, thermal, and storage stability. In addition, they retained >65 % of their initial activity even after 20 catalytic cycles. Biochemical and histological findings did not indicate a trend of toxicity in rats due to UCNPs. Most importantly, PEG-L-ASNase activity was triggered approximately 5- and 2-fold under in vitro and in vivo conditions, respectively. Overall, it is anticipated that this pioneering work will shed new light on the realistic and promising usage of NIR-excited UCNPs for the immobilization of enzymes in expensive and extensive applications.
Collapse
Affiliation(s)
- Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye.
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye.
| | - Meltem Asiltürk
- Department of Material Science and Engineering, Faculty of Engineering, Akdeniz University, 07070 Antalya, Türkiye
| | - Samir Abbas Ali Noma
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye; Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, Bursa, Türkiye
| | - Seda Demirel Topel
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Antalya Bilim University, 07190 Antalya, Türkiye
| | - Gamze Dik
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Onural Özhan
- Department of Medicinal Pharmacology, Medical Faculty, İnönü University, 44210 Malatya, Türkiye
| | - Büşra Bakar
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | - Azibe Yıldız
- Department of Histology and Embryology, Medical Faculty, İnönü University, 44210 Malatya, Türkiye
| | - Nigar Vardı
- Department of Histology and Embryology, Medical Faculty, İnönü University, 44210 Malatya, Türkiye
| | - Hakan Parlakpınar
- Department of Medicinal Pharmacology, Medical Faculty, İnönü University, 44210 Malatya, Türkiye
| |
Collapse
|
3
|
Alici EH, Arabaci G. Strawberry Protease as a Laundry Detergent Additive Candidate: Immobilization, Compatibility Study with Detergent Ingredients, and Washing Performance Test. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300102. [PMID: 38223888 PMCID: PMC10784196 DOI: 10.1002/gch2.202300102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/10/2023] [Indexed: 01/16/2024]
Abstract
The potential of strawberry-derived protease as a component of laundry detergent is investigated. The compatibility of the enzyme with various surfactants, oxidizing agents, and commercial detergents is tested. The immobilized enzyme prepared by immobilizing Co2+ ions together with the enzyme is also tested. Strawberry crude protease shows high stability in the presence of surfactants frequently used in detergents. The enzyme is found to be relatively stable to oxidizing agents. In addition, it is determined that strawberry protease works in excellent compatibility with different commercial solid and liquid detergents in the Turkish market and also maintains its stability very well. Washing tests based on visual examination also reveal that the enzyme improves the washing performance of the tested detergent. All these properties and high activity at alkaline pH make this enzyme a very strong candidate for use in laundry detergent formulations.
Collapse
Affiliation(s)
- Esma Hande Alici
- Department of ChemistryFaculty of ScienceSakarya UniversitySerdivan‐Sakarya54187Turkey
| | - Gulnur Arabaci
- Department of ChemistryFaculty of ScienceSakarya UniversitySerdivan‐Sakarya54187Turkey
| |
Collapse
|
4
|
Hu X, Liu W, Yan Y, Deng H, Cai Y. Development of a novel magnetic metal-organic framework for the immobilization of short-chain dehydrogenase for the asymmetric reduction of pro-chiral ketone. Int J Biol Macromol 2023; 253:127414. [PMID: 37838135 DOI: 10.1016/j.ijbiomac.2023.127414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Short-chain dehydrogenase/reductase (SDR) acts as a biocatalyst in the synthesis of chiral alcohols with high optical purity. Herein, we achieved immobilization via crosslinking on novel magnetic metal-organic framework nanoparticles with a three-layer shell structure (Fe3O4@PDA@Cu (PABA)). The results of scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy confirmed the morphology and cross-linking property of immobilized SDR, which was more durable, stable, and reusable and exhibited better kinetic performance than free enzyme. The SDR and glucose dehydrogenase (GDH) were co-immobilized and then used for the asymmetric reduction of COBE and ethyl 2-oxo-4-phenylbutanoate (OPBE). These finding suggest that enzymes immobilized on novel MOF nanoparticles can serve as promising biocatalysts for asymmetric reduction prochiral ketones into chiral alcohols.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huaxiang Deng
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Institutes of Advanced Technologies, Shenzhen, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Maurya R, Ali U, Kaul S, Bhaiyya R, Singh RP, Mazumder K. Immobilization of α-transglucosidase on silica-coated magnetic nanoparticles and its application for production of isomaltooligosaccharide from the potato peel. Sci Rep 2023; 13:12708. [PMID: 37543692 PMCID: PMC10404235 DOI: 10.1038/s41598-023-38266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 08/07/2023] Open
Abstract
In this study, the production of isomaltooligosaccharide from potato peel starch was carried out in three steps: liquefaction, saccharification, and transglucosylation. Further, cloning α-transglucosidase gene from Aspergillus niger (GH31 family), transforming into E. coli BL21 (DE3), overexpressing and purifying the resulting protein for the production of α-transglucosidase. The generated α-transglucosidase was then bound with magnetic nanoparticles, which improved reusability up to 5 cycles with more than 60% activity. All the modifications were characterized using the following methods: Fourier transform infra-red analysis, Transmission Electron Microscopy, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray spectroscopy, X-Ray Diffraction Spectroscopy, Thermogravimetric Analysis, and Dynamic Light Scattering (DLS) analysis. Further, the optimum conditions for transglucosylation were determined by RSM as follows: enzyme-to-substrate ratio 6.9 U g-1, reaction time 9 h, temperature 45 °C, and pH 5.5 with a yield of 70 g l-1 (± 2.1). MALDI-TOF-MS analysis showed DP of the IMOs in ranges of 2-10. The detailed structural characterization of isomaltooligosaccharide by GC-MS and NMR suggested the α-(1 → 4) and α-(1 → 6)-D-Glcp residues as major constituents along with minor α-(1 → 2) and α-(1 → 3) -D-Glcp residues.
Collapse
Affiliation(s)
- Rohit Maurya
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India
- Regional Centre for Biotechnology, Faridabad-Gurgaon, Haryana, 121001, India
| | - Usman Ali
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Sunaina Kaul
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Raja Bhaiyya
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North Gate Gujarat International Finance Tech-City, Gandhinagar, Gujarat, 382355, India
| | - Ravindra Pal Singh
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North Gate Gujarat International Finance Tech-City, Gandhinagar, Gujarat, 382355, India
| | - Koushik Mazumder
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), S.A.S. Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
6
|
Arya SS, More PR, Ladole MR, Pegu K, Pandit AB. Non-thermal, energy efficient hydrodynamic cavitation for food processing, process intensification and extraction of natural bioactives: A review. ULTRASONICS SONOCHEMISTRY 2023; 98:106504. [PMID: 37406541 PMCID: PMC10339045 DOI: 10.1016/j.ultsonch.2023.106504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
Hydrodynamic cavitation (HC) is the process of bubbles formation, expansion, and violent collapse, which results in the generation of high pressures in the order of 100-5000 bar and temperatures in the range of 727-9727 °C for just a fraction of seconds. Increasing consumer demand for high-quality foods with higher nutritive values and fresh-like sensory attributes, food processors, scientists, and process engineers are pushed to develop innovative and effective non-thermal methods as an alternative to conventional heat treatments. Hydrodynamic cavitation can play a significant role in non-thermal food processing as it has the potential to destroy microbes and reduce enzyme activity while retaining essential nutritional and physicochemical properties. As hydrodynamic cavitation occurs in a flowing liquid, there is a decrease in local pressure followed by its recovery; hence it can be used for liquid foods. It can also be used to create stable emulsions and homogenize food constituents. Moreover, this technology can extract food constituents such as polyphenols, essential oils, pigments, etc., via biomass pretreatment, cell disruption for selective enzyme release, waste valorization, and beer brewing. Other applications related to food production include water treatment, biodiesel, and biogas production. The present review discusses the application of HC in the preservation, processing, and quality improvement of food and other related applications. The reviewed examples in this paper demonstrate the potential of hydrodynamic cavitation with further expansion toward the scaling up, which looks at commercialization as a driving force.
Collapse
Affiliation(s)
- Shalini S Arya
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India.
| | - Pavankumar R More
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| | - Mayur R Ladole
- School of Chemical and Bioprocess Engineering, University College Dublin, Ireland
| | - Kakoli Pegu
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| | - Aniruddha B Pandit
- Chemical Engineering Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| |
Collapse
|
7
|
Bakar B, Birhanlı E, Ulu A, Boran F, Yeşilada Ö, Ateş B. Immobilization of Trametes trogii laccase on polyvinylpyrrolidone-coated magnetic nanoparticles for biocatalytic degradation of textile dyes. BIOCATAL BIOTRANSFOR 2023. [DOI: 10.1080/10242422.2023.2173006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Büşra Bakar
- Department of Chemistry, Faculty of Arts and Science, Biochemistry and Biomaterials Research Laboratory, İnönü University, Malatya, Turkey
| | - Emre Birhanlı
- Department of Biology, Faculty of Arts and Science, Biotechnology Research Laboratory, İnönü University, Malatya, Turkey
| | - Ahmet Ulu
- Department of Chemistry, Faculty of Arts and Science, Biochemistry and Biomaterials Research Laboratory, İnönü University, Malatya, Turkey
| | - Filiz Boran
- Department of Biology, Faculty of Arts and Science, Biotechnology Research Laboratory, İnönü University, Malatya, Turkey
| | - Özfer Yeşilada
- Department of Biology, Faculty of Arts and Science, Biotechnology Research Laboratory, İnönü University, Malatya, Turkey
| | - Burhan Ateş
- Department of Chemistry, Faculty of Arts and Science, Biochemistry and Biomaterials Research Laboratory, İnönü University, Malatya, Turkey
| |
Collapse
|
8
|
Transaminase-mediated chiral selective synthesis of (1R)-(3-methylphenyl)ethan-1-amine from 1-(3-methylphenyl)ethan-1-one: process minutiae, optimization, characterization and 'What If studies'. Bioprocess Biosyst Eng 2023; 46:207-225. [PMID: 36463332 DOI: 10.1007/s00449-022-02824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
Transaminases capable of carrying out chiral selective transamination of 1-(3-methylphenyl)ethan-1-one to (1R)-(3-methylphenyl)ethan-1-amine were screened, and ATA-025 was the best enzyme, while dimethylsulfoxide (10% V/V) was the best co-solvent for said bioconversion. The variables such as enzyme loading, substrate loading, temperature, and pH for development of process displaying maximum conversion with good product formation and higher yield were optimized. The ambient processing conditions were 10% enzyme loading/50 g/L substrate loading/45 °C/pH 8.0, and 5% enzyme loading/36.78 g/L substrate loading/42.66 °C/pH 8.2 displaying maximum conversion 99.01 ± 2.47% and 96.115 ± 1.97%, and 76.93 ± 1.05% and 73.12 ± 1.04% yield with one factor at a time approach and numerical optimization with Box Behnken Design, respectively. In the final optimized reaction, ATA-025 showed the highest 99.22 ± 2.61% conversion, 49.55 g/L product formation, with an actual product recovery of 38.16 g corresponding to a product yield 77.03 ± 1.01% with respect to the product formed after reaction. The purity of recovered product (1R)-(3-methylphenyl)ethan-1-amine formed was ≥ 99% (RP-HPLC), and chiral purity ≥ 98.5% (Chiral-GC), and it was also confirmed and characterized with instrumental methods using boiling point, LC-MS, ATR-FTIR, and 1H NMR. The findings of 'What If' studies performed by investigating timely progress of reaction on gram scale by drastically changing the process parameters revealed a substantial modification in process variables to achieve desired results. (1R)-(3-methylphenyl)ethan-1-amine synthesized by green, facile and novel enzymatic approach with an optimized process could be used for synthesis of different active pharma entities.
Collapse
|
9
|
Yuan H, Bai XL, Hu YK, Fan WQ, Ayeni EA, Liao X. Ligand fishing of monoamine oxidase B inhibitors from Platycodon grandiflorus (Jacq.) A.DC. roots by the enzyme functionalised magnetic nanoparticles. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:67-75. [PMID: 36254558 DOI: 10.1002/pca.3180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION As a famous traditional Chinese medicine, roots of Platycodon grandiflorus (Jacq.) A.DC. have shown multiple effects against neurodegenerative diseases. To investigate the components against Parkinson's disease (PD), the roots of P. grandiflora were selected as the research subject. OBJECTIVE Screening and identifying of monoamine oxidase B (MAO-B) inhibitors from the roots of P. grandiflorum via enzyme functionalised magnetic nanoparticles (MNPs)-based ligand fishing combined with high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. METHOD MAO-B functionalised MNPs have been synthesised for screening MAO-B inhibitors from the roots of P. grandiflorum. The ligands were identified by HPLC-MS and nuclear magnetic resonance (NMR) analysis, and their anti-PD activity was evaluated via MAO-B inhibition assay and cell viability assay in vitro. RESULTS Two MAO-B inhibitors were fished out and identified by HPLC-MS as protocatechuic aldehyde (1) and coumarin (2), with the half maximal inhibitory concentrations of 28.54 ± 0.39 and 25.39 ± 0.29 μM, respectively. Among them, 1 could also significantly increase the viability of 6-hydroxydopamine-damaged PC12 cells. CONCLUSION The results are helpful to elucidate the anti-PD activity of the plant, and the ligand fishing method has shown good potential in discovery of MAO-B inhibitors.
Collapse
Affiliation(s)
- Hao Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yi-Kao Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wen-Qin Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Emmanuel Ayodeji Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| |
Collapse
|
10
|
Wang C, Xia N, Zhu S, Chen L, Chen L, Wang Z. Green synthesis of Hesperitin dihydrochalcone glucoside by immobilized α-l-rhamnosidase biocatalysis based on Fe3O4/MIL-101(Cr) metal-organic framework. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Biofabrication of magnetic nanoparticles and their use as carriers for pectinase and xylanase. OPENNANO 2022. [DOI: 10.1016/j.onano.2021.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Optimization of enzyme aided pigment extraction from pumpkin (Cucurbita maxima Duch) using response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Arya PS, Yagnik SM, Rajput KN, Panchal RR, Raval VH. Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases. Appl Biochem Biotechnol 2021; 193:4113-4150. [PMID: 34648116 DOI: 10.1007/s12010-021-03701-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
The group of hydrolytic enzymes synonymously known as proteases is predominantly most favored for the class of industrial enzymes. The present work focuses on the thermostable nature of these proteolytic enzymes that occur naturally among mesophilic and thermophilic microbes. The broad thermo-active feature (40-80 °C), ease of cultivation, maintenance, and bulk production are the key features associated with these enzymes. Detailing of contemporary production technologies, and controllable operational parameters including the purification strategies, are the key features that justify their industrial dominance as biocatalysts. In addition, the rigorous research inputs by protein engineering and enzyme immobilization studies add up to the thermo-catalytic features and application capabilities of these enzymes. The work summarizes key features of microbial proteases that make them numero-uno for laundry, biomaterials, waste management, food and feed, tannery, and medical as well as pharmaceutical industries. The quest for novel and/or designed and engineered thermostable protease from unexplored sources is highly stimulating and will address the ever-increasing industrial demands.
Collapse
Affiliation(s)
- Prashant S Arya
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Shivani M Yagnik
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Kiransinh N Rajput
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Rakeshkumar R Panchal
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Vikram H Raval
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
14
|
Sahu A, Rane NV, Lodaya BG, Pandit AB. Green synthesis and kinetic study of eco-friendly chelating agent by hydrothermal process for remediation of heavy metals. Chem Ind 2021. [DOI: 10.1080/00194506.2021.1965039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Abha Sahu
- Chemical Engineering Department, Institute of Chemical Technology, Mumbai, India
| | - Nilesh Vijay Rane
- Chemical Engineering Department, Institute of Chemical Technology, Mumbai, India
| | - Badal G. Lodaya
- Chemical Engineering Department, Institute of Chemical Technology, Mumbai, India
| | - Aniruddha B. Pandit
- Chemical Engineering Department, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
15
|
Ladole MR, Pokale PB, Patil SS, Belokar PG, Pandit AB. Laccase immobilized peroxidase mimicking magnetic metal organic frameworks for industrial dye degradation. BIORESOURCE TECHNOLOGY 2020; 317:124035. [PMID: 32871333 DOI: 10.1016/j.biortech.2020.124035] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 05/05/2023]
Abstract
In the present work, laccase was successfully immobilized in peroxidase mimicking magnetic metal organic frameworks (MMOFs) within 30 min using a facile approach. The integration of magnetic nanoparticles during synthesis significantly eases the separation of prepared biocatalyst using an external magnet. The immobilization of laccase was confirmed using different characterization techniques. The laccase@MMOFs found spherical in nature with an average particle size below 100 nm. The synthesized laccase embedded framework exhibits supermagnetic property with the saturation magnetization (Ms) of 34.12 emu/gm. The prepared bio-metallic frameworks maintain high surface area and thermal stability. The laccase@MMOFs was successfully exploited for the degradation of industrial dyes in batch and continuous mode with an average degradation efficiency of 95%. The prepared laccase structure had an excellent recyclability retaining upto 89% residual activity upto 10th cycle and can be stored at room temperature upto 30 days without any significant loss of activity.
Collapse
Affiliation(s)
- Mayur Ramrao Ladole
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Pravin Babanrao Pokale
- Department of E & TC, Priyadarshini J.L. Chaturvedi College of Engineering & Technology, Nagpur, India
| | | | | | | |
Collapse
|
16
|
One pot clarification and debittering of grapefruit juice using co-immobilized enzymes@chitosanMNPs. Int J Biol Macromol 2020; 167:1297-1307. [PMID: 33202276 DOI: 10.1016/j.ijbiomac.2020.11.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 01/22/2023]
Abstract
In the present work, enzymes pectinase and naringinase were simultaneously co-immobilized on an eco-friendly chitosan coated magnetic nanoparticles (chitosanMNPs) by cross-linking using chitosan as a macro-molecular cross-linker. The maximum activity recovery of both enzymes in the co-immobilized form was obtained at chitosanMNPs to enzymes ratio of 1:3, 3% cross-linker concentration and 150 min cross-linking time. The synthesized MNPs before and after co-immobilization were characterized using different techniques. The prepared biocatalyst was found spherical with an average size below 200 nm and showed supermagnetic property with saturation magnetization of 38.28 emu/g. The optimum pH and temperature of both enzymes in co-immobilized form was found at 5.5 and 65 °C. The prepared biocatalyst exhibited an improved thermal stability with 1.8-fold increase in the half-life. The secondary structural analysis revealed that, prepared co-immobilized biocatalyst undergone changes in the conformational and structural rigidity due to macro-molecular cross-linker. The co-immobilized biocatalysts were evaluated for one pot clarification and debittering of grapefruit juice and found ~52% reduction in turbidity and ~85% reduction in the naringin content. The co-immobilized enzymes were recycled up to 7th cycle and can be easily stored at room temperature for 30 days retaining up to 64% and 86% residual activities respectively.
Collapse
|
17
|
Rangel-Muñoz N, Suarez-Arnedo A, Anguita R, Prats-Ejarque G, Osma JF, Muñoz-Camargo C, Boix E, Cruz JC, Salazar VA. Magnetite Nanoparticles Functionalized with RNases against Intracellular Infection of Pseudomonas aeruginosa. Pharmaceutics 2020; 12:E631. [PMID: 32640506 PMCID: PMC7408537 DOI: 10.3390/pharmaceutics12070631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Current treatments against bacterial infections have severe limitations, mainly due to the emergence of resistance to conventional antibiotics. In the specific case of Pseudomonas aeruginosa strains, they have shown a number of resistance mechanisms to counter most antibiotics. Human secretory RNases from the RNase A superfamily are proteins involved in a wide variety of biological functions, including antimicrobial activity. The objective of this work was to explore the intracellular antimicrobial action of an RNase 3/1 hybrid protein that combines RNase 1 high catalytic and RNase 3 bactericidal activities. To achieve this, we immobilized the RNase 3/1 hybrid on Polyetheramine (PEA)-modified magnetite nanoparticles (MNPs). The obtained nanobioconjugates were tested in macrophage-derived THP-1 cells infected with Pseudomonas aeruginosa PAO1. The obtained results show high antimicrobial activity of the functionalized hybrid protein (MNP-RNase 3/1) against the intracellular growth of P. aeruginosa of the functionalized hybrid protein. Moreover, the immobilization of RNase 3/1 enhances its antimicrobial and cell-penetrating activities without generating any significant cell damage. Considering the observed antibacterial activity, the immobilization of the RNase A superfamily and derived proteins represents an innovative approach for the development of new strategies using nanoparticles to deliver antimicrobials that counteract P. aeruginosa intracellular infection.
Collapse
Affiliation(s)
- Nathaly Rangel-Muñoz
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (N.R.-M.); (A.S.-A.); (C.M.-C.)
| | - Alejandra Suarez-Arnedo
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (N.R.-M.); (A.S.-A.); (C.M.-C.)
| | - Raúl Anguita
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (R.A.); (G.P.-E.)
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (R.A.); (G.P.-E.)
| | - Johann F. Osma
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia;
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (N.R.-M.); (A.S.-A.); (C.M.-C.)
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (R.A.); (G.P.-E.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (N.R.-M.); (A.S.-A.); (C.M.-C.)
| | - Vivian A. Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (R.A.); (G.P.-E.)
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia;
| |
Collapse
|
18
|
Onoja E, Wahab RA. Robust Magnetized Oil Palm Leaves Ash Nanosilica Composite as Lipase Support: Immobilization Protocol and Efficacy Study. Appl Biochem Biotechnol 2020; 192:585-599. [PMID: 32495234 DOI: 10.1007/s12010-020-03348-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/22/2020] [Indexed: 12/07/2022]
Abstract
Strategies to immobilize the individual enzymes are crucial for enhancing catalytic applicability and require a controlled immobilization process. Herein, protocol for immobilizing Candida rugosa lipase (CRL) onto modified magnetic silica derived from oil palm leaves ash (OPLA) was optimized for the effects of concentration of CRL, immobilization time, and temperature, monitored by titrimetric and spectrometric methods. XRD and TGA-DTG spectrometric observations indicated that OPLA-silica was well coated over magnetite (SiO2-MNPs) and CRLs were uniformly bound by covalent bonds to SiO2-MNPs (CRL/Gl-A-SiO2-MNPs). The optimized immobilization protocol showed that in the preparation of CRL/Gl-A-SiO2-MNPs, CRL with 68.3 mg/g protein loading and 74.6 U/g specific activity was achieved using 5 mg/mL of CRL, with an immobilization time of 12 h at 25 °C. The present work also demonstrated that acid-pretreated OPLA is a potential source of renewable silica, envisioning its applicability for practical use in enzymatic catalysis on solid support.
Collapse
Affiliation(s)
- Emmanuel Onoja
- Department of Science Laboratory Technology, The Federal Polytechnic, P.M.B. 1012, Kaura Namoda, Zamfara State, Nigeria. .,Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Malaysia.
| | - Roswanira Abdul Wahab
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Malaysia. .,Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Malaysia.
| |
Collapse
|
19
|
Irfan M, Kiran J, Ayubi S, Ullah A, Rana QUA, Khan S, Hasan F, Badshah M, Shah AA. Immobilization of β-1,4-xylanase isolated from Bacillus licheniformis
S3. J Basic Microbiol 2020; 60:600-612. [DOI: 10.1002/jobm.202000077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/20/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology; College of Dentistry, University of Florida; Gainesville Florida
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Jawairia Kiran
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Salahuddin Ayubi
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Ameen Ullah
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Qurrat Ul Ain Rana
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Fariha Hasan
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Aamer A. Shah
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| |
Collapse
|
20
|
Guo H, Chen Y, Song N, Yang X, Yao S, Qian J. Screening of lipase inhibitors from bamboo leaves based on the magnetic ligand fishing combined with HPLC/MS. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Sahu A, Lodaya BG, Handu AV, Pandit AB. Expeditious synthesis and kinetic study of biodegradable amide 2,2-( (3-(2-((carboxymethyl)amino)-2-oxoethyl)-3-hydroxypentanedioyl)bis(azanediyl) diacetic acid (COHBDA) under ultrasound irradiation. Chem Ind 2020. [DOI: 10.1080/00194506.2020.1720530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Abha Sahu
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Badal G. Lodaya
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Abhinav V. Handu
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Aniruddha B. Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
22
|
Co-immobilization of multiple enzymes onto surface-functionalized magnetic nanoparticle for the simultaneous hydrolysis of multiple substrates containing industrial wastes. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01125-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Muley AB, Chaudhari SA, Bankar SB, Singhal RS. Stabilization of cutinase by covalent attachment on magnetic nanoparticles and improvement of its catalytic activity by ultrasonication. ULTRASONICS SONOCHEMISTRY 2019; 55:174-185. [PMID: 30852153 DOI: 10.1016/j.ultsonch.2019.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
This paper reports on stabilization of serine cutinase activity by immobilizing it through cross linking with glutaraldehyde on magnetic nanoparticles (Fe-NPs) and intensification of catalytic activity by ultrasonic treatment. The optimum parameters were cross linking with 10.52 mM glutaraldehyde for 90 min using 1:2 (w/w) ratio of enzyme:Fe-NPs. The characterization of cutinase-Fe-NPs was done by different instrumental analysis. Ultrasonic power showed a beneficial effect on the activity of free and immobilized cutinase at 5.76 and 7.63 W, respectively, after 12 min. Immobilization and ultrasonic treatment led to increments in kinetic parameters (Km and Vmax) along with noticeable changes in the secondary structural fractions of cutinase. Cutinase-Fe-NPs showed augmented pH (4-8) and thermal stability (40-60 °C). Considerably higher thermal inactivation kinetic constants (kd, t1/2 and D-value) and thermodynamic constants (Ed, ΔH°, ΔG° and ΔS°) highlighted superior thermostability of cutinase-Fe-NPs. Cutinase-Fe-NPs and ultrasound treated cutinase-Fe-NPs retained 61.88% and 38.76% activity during 21-day storage, and 82.82 and 80.69% activity after fifth reusability cycle, respectively.
Collapse
Affiliation(s)
- Abhijeet B Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Sandeep A Chaudhari
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India; Department of Bioprocess and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Helsinki, Finland
| | - Sandip B Bankar
- Department of Bioprocess and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Helsinki, Finland
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
24
|
Sahin S. Stability evaluation of 6-phosphogluconate dehydrogenase immobilized on amino-functionalized magnetic nanoparticles. Prep Biochem Biotechnol 2019; 49:590-596. [PMID: 30929562 DOI: 10.1080/10826068.2019.1591990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, 6-phosphogluconate dehydrogenase was covalently immobilized onto the N-2-aminoethyl-3-aminopropyltriethoxysilane (APTES) modified core-shell Fe3O4@SiO2 magnetic nanoparticles (ASMNPs) using glutaraldehyde (GA). Immobilization of 6PGDH on ASMNPs was confirmed using fourier transform-infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The NADP+ conversion ratio, the reusability, thermal, and storage stability of the immobilized 6PGDH were determined and compared with those of the free enzyme. The maximum retention of enzyme activity reached to 96% when the enzyme was immobilized on ASMNPs activated with monomer form of GA. Although the thermal stability of free and immobilized enzymes was similar, at 30 °C, the immobilized 6PGDH showed the improved thermal stability at 40 °C and 50 °C compared with free 6PGDH. While the free 6PGDH only converted 33% of NADP+ in reaction medium upon 480 s, the immobilized 6PGDH performed 56% conversion of NADP+ at same time. The immobilized 6PGDH retained 62% of its initial activity up to the fifth cycle and 35% of its initial activity after 22 days of storage at 4 °C.
Collapse
Affiliation(s)
- Selmihan Sahin
- a Arts and Sciences Faculty, Department of Chemistry , Suleyman Demirel University , Cunur , Turkey
| |
Collapse
|
25
|
Nadar SS, Rathod VK. A co-immobilization of pectinase and cellulase onto magnetic nanoparticles for antioxidant extraction from waste fruit peels. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.12.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Ladole MR, Nair RR, Bhutada YD, Amritkar VD, Pandit AB. Synergistic effect of ultrasonication and co-immobilized enzymes on tomato peels for lycopene extraction. ULTRASONICS SONOCHEMISTRY 2018; 48:453-462. [PMID: 30080572 DOI: 10.1016/j.ultsonch.2018.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
In the present work, tomato peels were pre-treated using combination of ultrasound and enzyme co-immobilized amino-functionalized magnetic nanoparticles (AMNPs) for the efficient release of lycopene. To achieve maximum activity of enzymes in the co-immobilized form, optimization of several parameters were carried out. Moreover, the influence of ultrasound and enzyme co-immobilized magnetic nanoparticles on lycopene release was studied. Maximum lycopene release was obtained at 3% (w/w) enzyme co-immobilized AMNPs, pH 5.0, temperature of 50 °C, at 10 W ultrasound power and 20 min incubation time. After enzymatic pre-treatment, lycopene from the pre-treated mixture was extracted and separated using tri-solvent extraction method. Maximum recovery of lycopene using solvent extraction was obtained at 50 °C, 90 min of incubation time and agitation speed of 150 rpm. The presence of lycopene in the extract was confirmed by FT-IR, UV-vis spectroscopy and HPLC analysis. The co-immobilized bio-catalyst showed excellent reusability giving more than 50% lycopene yield even after 6th cycles of reuse.
Collapse
Affiliation(s)
- Mayur R Ladole
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Rajiv R Nair
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | | | | | - Aniruddha B Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India..
| |
Collapse
|
27
|
Shahram H, Dinani ST, Amouheydari M. Effects of pectinase concentration, ultrasonic time, and pH of an ultrasonic-assisted enzymatic process on extraction of phenolic compounds from orange processing waste. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9962-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
A tri-enzyme co-immobilized magnetic complex: Process details, kinetics, thermodynamics and applications. Int J Biol Macromol 2018; 118:1781-1795. [DOI: 10.1016/j.ijbiomac.2018.07.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/14/2018] [Accepted: 07/07/2018] [Indexed: 01/09/2023]
|
29
|
Saadati-Moshtaghin HR, Zonoz FM, Amini MM. Synthesis and characterization of ZnO incorporated magnetically recoverable KIT-6 as a novel and efficient catalyst in the preparation of symmetrical N, N′-alkylidene bisamides. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Abu-Dief AM, Abdel-Fatah SM. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2017.05.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Ladole MR, Mevada JS, Pandit AB. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. BIORESOURCE TECHNOLOGY 2017; 239:117-126. [PMID: 28501684 DOI: 10.1016/j.biortech.2017.04.096] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
In the present work, effect of low power, low frequency ultrasound on cellulase immobilized magnetic nanoparticles (cellulase@MNPs) was studied. To gain maximum activity recovery in cellulase@MNPs various parameters viz. ratio of MNPs:cellulase, concentration of glutaraldehyde and cross-linking time were optimized. The influence of ultrasonic power on cellulase@MNPs was studied. Under ultrasonic conditions at 24kHz, 6W power, and 6min of incubation time there was almost 3.6 fold increased in the catalytic activity of immobilized cellulase over the control. Results also indicated that there was improvement in pH and temperature stability of cellulase@MNPs. Furthermore, thermal deactivation energy required was more in cellulase@MNPs than that of the free cellulase. Secondary structural analysis revealed that there were conformational changes in free cellulase and cellulase@MNPs before and after sonication which might be responsible for enhanced activity after ultrasonication. Finally, the influence of ultrasound and cellulase@MNPs for biomass hydrolysis was studied.
Collapse
Affiliation(s)
- Mayur Ramrao Ladole
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Jayesh Sevantilal Mevada
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | | |
Collapse
|
32
|
Muley AB, Chaudhari SA, Singhal RS. Non-covalent conjugation of cutinase from Fusarium sp. ICT SAC1 with pectin for enhanced stability: Process minutiae, kinetics, thermodynamics and structural study. Int J Biol Macromol 2017; 102:729-740. [DOI: 10.1016/j.ijbiomac.2017.04.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022]
|
33
|
Optimization of pectinase-assisted and tri-solvent-mediated extraction and recovery of lycopene from waste tomato peels. 3 Biotech 2017; 7:206. [PMID: 28667641 DOI: 10.1007/s13205-017-0825-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
In the present work, optimization of pectinase-assisted and tri-solvent-mediated extraction of lycopene from waste tomato peels was carried out. The optimized parameters for enzymatic pre-treatment were 2% pectinase concentration, pH 5.5, 4-h incubation, 45 °C and 150 rpm. Maximum recovery of lycopene from tomato peels using optimized tri-solvent extraction was achieved at 45 °C, 120-min incubation and 200 rpm. The extracted lycopene was confirmed through functional and characteristic peaks in UV-Vis and FTIR spectra and with retention time in HPLC. The radical scavenging activity was 72.30 ± 2.70 and 43.40 ± 2.01 µg ascorbic acid equivalents (AAE)/ml for 1,1-diphenyl-2-picrylhydrzyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals, respectively. The optimized method resulted in 7.38, 4.65 and 1.59 times enhancement in lycopene extraction and recovery in correlation with single solvent, enzyme-treated and tri-solvent extraction methods, respectively.
Collapse
|
34
|
Kadam AA, Jang J, Lee DS. Supermagnetically Tuned Halloysite Nanotubes Functionalized with Aminosilane for Covalent Laccase Immobilization. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15492-15501. [PMID: 28418639 DOI: 10.1021/acsami.7b02531] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halloysite nanotubes (HNTs) were tuned with supermagnetic Fe3O4 (M-HNTs) and functionalized with γ-aminopropyltriethoxysilane (APTES) (A-M-HNTs). Gluteraldehyde (GTA) was linked to A-M-HNTs (A-M-HNTs-GTA) and explored for covalent laccase immobilization. The structural characterization of M-HNTs, A-M-HNTs, and A-M-HNTs-GTA-immobilized laccase (A-M-HNTs-GTA-Lac) was determined by X-ray photoelectron spectroscopy, field-emission high-resolution transmission electron microscopy, a magnetic property measurement system, and thermogavimetric analyses. A-M-HNTs-GTA-Lac gave 90.20% activity recovery and a loading capability of 84.26 mg/g, with highly improved temperature and storage stabilities. Repeated usage of A-M-HNTs-GTA-Lac revealed a remarkably consistent relative activity of 80.49% until the ninth cycle. The A-M-HNTs-GTA-Lac gave consistent redox-mediated sulfamethoxazole (SMX) degradation up to the eighth cycle. In the presence of guaiacol, A-M-HNTs-GTA-Lac gave elevated SMX degradation compared with 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) and syrinialdehyde. Therefore, the A-M-HNTs can serve as supermagnetic amino-functionalized nanoreactors for biomacromolecule immobilization. The obtained A-M-HNTs-GTA-Lac is an environmentally friendly biocatalyst for effective degradation of micropollutants, such as SMX, and can be easily retrieved from an aqueous solution by a magnet after decontamination of pollutants in water and wastewater.
Collapse
Affiliation(s)
- Avinash A Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University , Biomedi Campus, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jiseon Jang
- Department of Environmental Engineering, Kyungpook National University , 80 Daehak-ro, Buk-Gu, Daegu 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University , 80 Daehak-ro, Buk-Gu, Daegu 41566, Republic of Korea
| |
Collapse
|
35
|
Yazid NA, Barrena R, Sánchez A. The immobilisation of proteases produced by SSF onto functionalized magnetic nanoparticles: Application in the hydrolysis of different protein sources. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|