1
|
Choudary MRP, Surya M, Saravanan M. Green synthesis of cerium oxide nanoparticles using Tribulus terrestris: characterization and evaluation of antioxidant, anti-inflammatory and antibacterial efficacy against wound isolates. Biomed Phys Eng Express 2024; 10:065033. [PMID: 39321823 DOI: 10.1088/2057-1976/ad7f59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Multi-drug resistance (MDR) infections are a significant global challenge, necessitating innovative and eco-friendly approaches for developing effective antimicrobial agents. This study focuses on the synthesis, characterization, and evaluation of cerium oxide nanoparticles (CeO2NPs) for their antioxidant, anti-inflammatory, and antibacterial properties. The CeO2NPs were synthesized using aTribulus terrestrisaqueous extract through an environmentally friendly process. Characterization techniques included UV-visible spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), x-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive x-ray (EDX) analysis. The UV-vis spectroscopy shows the presence of peak at 320 nm which confirms the formation of CeO2NPs. The FT-IR analysis of the CeO2NPs revealed several distinct functional groups, with peak values at 3287, 2920, 2340, 1640, 1538, 1066, 714, and 574 cm-1. These peaks correspond to specific functional groups, including C-H stretching in alkynes and alkanes, C=C=O, C=C, alkanes, C-O-C, C-Cl, and C-Br, indicating the presence of diverse chemical bonds within the CeO2NPs. XRD revealed that the nanoparticles were highly crystalline with a face-centered cubic structure, and SEM images showed irregularly shaped, agglomerated particles ranging from 100-150 nm. In terms of biological activity, the synthesized CeO2NPs demonstrated significant antioxidant and anti-inflammatory properties. The nanoparticles exhibited 82.54% antioxidant activity at 100 μg ml-1, closely matching the 83.1% activity of ascorbic acid. Additionally, the CeO2NPs showed 65.2% anti-inflammatory activity at the same concentration, compared to 70.1% for a standard drug. Antibacterial testing revealed that the CeO2NPs were particularly effective against multi-drug resistant strains, includingPseudomonas aeruginosa,Enterococcus faecalis, and MRSA, with moderate activity againstKlebsiella pneumoniae. These findings suggest that CeO2NPs synthesized viaT. terrestrishave strong potential as antimicrobial agents in addressing MDR infections.
Collapse
Affiliation(s)
| | - Muthuvel Surya
- AMR & Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Muthupandian Saravanan
- AMR & Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
2
|
Park C, Rhyu HJ, Lee J, Kim J, Lee EJ, Kim SK, Myung S. Influence of Oxygen Vacancies Introduced via Acceptor (Gadolinium) Doping to the Pseudocapacitive Properties of Nano-Sized Cerium Oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401925. [PMID: 39007535 DOI: 10.1002/smll.202401925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/25/2024] [Indexed: 07/16/2024]
Abstract
The voluntary introduction of defects can be considered an effective strategy for enhancing the electrochemical properties of metal oxide electrodes. In this study, the enhanced pseudocapacitive properties of an acceptor (Gd) doped cerium oxide nanoparticle-a sustainable metal oxide with low environmental and human toxicity-are investigated in depth using ex situ X-ray photoemission spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Interestingly, with 15 at% Gd doping (15GDC), the specific capacitance of the nanoparticles measured at 1 A g-1 enhanced to 547.8 F g-1, which is fivefold higher than undoped CeO2 (98.7 F g-1 at 1 A g-1). The rate-dependent capacitance is also improved for 15GDC, which showed a 31.0% decrease in the specific capacitance upon a tenfold increase in the current density, while CeO2 showed a 49.9% decrease. The enhanced electrochemical properties are studied in depth via ex situ XPS and EIS analysis, which revealed that the oxygen vacancies at the surface of the nanoparticles played important roles in enhancing both the specific capacitance and the high-rate performance of 15GDC by acting as the active site for pseudocapacitive redox reaction and allowing fast diffusion of oxygen ions at the surface of 15GDC nanoparticles.
Collapse
Affiliation(s)
- Chanwon Park
- Department of Chemical Engineering, Hannam University, 1646 Yuseongdaero, Yuseong-gu, Daejeon, 34430, Republic of Korea
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Hye Jin Rhyu
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jaekeun Lee
- Department of Chemical Engineering, Hannam University, 1646 Yuseongdaero, Yuseong-gu, Daejeon, 34430, Republic of Korea
| | - Jiyun Kim
- Department of Chemical Engineering, Hannam University, 1646 Yuseongdaero, Yuseong-gu, Daejeon, 34430, Republic of Korea
| | - Eun Ji Lee
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Seong K Kim
- Department of Chemical Engineering, Hannam University, 1646 Yuseongdaero, Yuseong-gu, Daejeon, 34430, Republic of Korea
| | - Sung Myung
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| |
Collapse
|
3
|
Alghofaili F, Tombuloglu H, Almessiere MA, Akhtar S, Tombuloglu G, Turumtay EA, Turumtay H, Baykal A. Fine-tuning the element dose in nanoparticle synthesis is the critical factor determining nanoparticle's impact on plant growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109110. [PMID: 39250843 DOI: 10.1016/j.plaphy.2024.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
This study elucidates the impact of element dose during nanoparticle (NPs) synthesis on plant growth indices. Novel NPs containing two essential micro-nutrients, zinc (Zn) and manganese (Mn), were co-doped on cerium oxide (CeO2) (ZnMnCe) with different ratios (1, 2, and 3%). The synthesized NPs were characterized by advanced analytical techniques (EDX, TEM, SEM, XPS, and XRD) and hydroponically applied to barley (Hordeum vulgare L.). The impact of ZnMnCe NPs on growth indices and plant nutrients was examined. SEM, HRTEM, and confocal microscopy were used to show the morphological and structural influences of ZnMnCe NPs. Results showed that the plant growth indices (root/leaf length, chlorophyll fluorescence, pigmentation, and biomass) were remarkably improved with a 1% Mn/Zn addition. Conversely, growth retardation, cell membrane damage, root morphology deformation, and genotoxicity were apparent by 3% of Mn/Zn addition. Overall, a significant improvement in growth was revealed when Mn and Zn were included at 1%. However, increasing concentrations (2% and 3%) impaired the growth. These results show that the element ratio used in NPs synthesis is essential in the plant's physiological response. Precise adjustment of element dosage during NPs synthesis determines whether the NPs are beneficial or harmful. This must be well-balanced for nanofertilizer production and plant applications.
Collapse
Affiliation(s)
- Fatimah Alghofaili
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia; Department of Physics, College of Science, Qassim University, 52571, Buraydah, Saudi Arabia; Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.
| | - Munirah A Almessiere
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia; Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Guzin Tombuloglu
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Emine Akyuz Turumtay
- Department of Chemistry, Recep Tayyip Erdogan University, 53100, Rize, Turkey; Department of Energy System Engineering, Karadeniz Technical University, 61830, Trabzon, Turkey; Join BioEnergy Institute, Feedstock Division, Emeryville, CA, 94608, USA
| | - Halbay Turumtay
- Department of Energy System Engineering, Karadeniz Technical University, 61830, Trabzon, Turkey; Join BioEnergy Institute, Feedstock Division, Emeryville, CA, 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Abdulhadi Baykal
- Food Engineering Department, Faculty of Engineering, Istanbul Aydin University, 34295, Istanbul, Turkey
| |
Collapse
|
4
|
Numpaque GC, Bethencourt M, Cubillos GI. Thin Layers of Cerium Oxynitride Deposited via RF Sputtering. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3142. [PMID: 38998225 PMCID: PMC11242422 DOI: 10.3390/ma17133142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Thin films of transition metal oxides and oxynitrides have proven highly effective in protecting stainless steels against corrosion in both chemically aggressive environments and biological fluids. In the present work, cerium zirconium oxynitride thin films were deposited to enhance the corrosion resistance of surgical-grade stainless steel to be used in osteosynthesis processes. Two techniques were employed: co-sputtering and radiofrequency (RF) sputtering, and the morphology and corrosion efficiency of the coatings deposited by each technique were evaluated. X-ray diffraction, X-ray photoelectron spectroscopy and field emission transmission electron microscopy were used to characterize the morphological and chemical structure, respectively. Additionally, the corrosion resistance of the oxynitride-coated surgical grade stainless steel system (ZrCeOxNy-AISI 316L) was assessed using Hank's solution as the corrosive electrolyte, to determine its resistance to corrosion in biological media. The results show that ZrCeOxNy coatings increase the corrosion resistance of surgical grade stainless steel by two orders of magnitude and that the Ce(III)/Ce(IV) equilibrium decreases the corrosion rate, thereby increasing the durability of the steel in a biological environment. The results show that Ce coatings increase the corrosion resistance of surgical grade stainless steel by two orders of magnitude and that the Ce(III)/Ce(IV) equilibrium decreases the corrosion rate, thereby increasing the durability of the steel in a biological environment.
Collapse
Affiliation(s)
- Gloria Carolina Numpaque
- Grupo de Materiales y Procesos Químicos, Departamento de Química, Universidad Nacional de Colombia, Av. Cra. 30 No 45-03, Bogotá 16486, Colombia; (G.C.N.); (G.I.C.)
| | - Manuel Bethencourt
- Department of Materials Science, Metallurgical Engineering and Inorganic Chemistry, Institute of Marine Science (INMAR), CASEM, Polígono del Rio San Pedro s/n, Puerto Real, University of Cadiz, 11510 Cadiz, Spain
| | - Gloria Ivonne Cubillos
- Grupo de Materiales y Procesos Químicos, Departamento de Química, Universidad Nacional de Colombia, Av. Cra. 30 No 45-03, Bogotá 16486, Colombia; (G.C.N.); (G.I.C.)
| |
Collapse
|
5
|
Joorabloo A, Liu T. Recent advances in reactive oxygen species scavenging nanomaterials for wound healing. EXPLORATION (BEIJING, CHINA) 2024; 4:20230066. [PMID: 38939866 PMCID: PMC11189585 DOI: 10.1002/exp.20230066] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/27/2023] [Indexed: 06/29/2024]
Abstract
Reactive oxygen species play a crucial role in cell signaling pathways during wound healing phases. Treatment strategies to balance the redox level in the deep wound tissue are emerging for wound management. In recent years, reactive oxygen species scavenging agents including natural antioxidants, reactive oxygen species (ROS) scavenging nanozymes, and antioxidant delivery systems have been widely employed to inhibit oxidative stress and promote skin regeneration. Here, the importance of reactive oxygen species in different wound healing phases is critically analyzed. Various cutting-edge bioactive ROS nanoscavengers and antioxidant delivery platforms are discussed. This review also highlights the future directions for wound therapies via reactive oxygen species scavenging. This comprehensive review offers a map of the research on ROS scavengers with redox balancing mechanisms of action in the wound healing process, which benefits development and clinical applications of next-generation ROS scavenging-based nanomaterials in skin regeneration.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research InstituteWestern Sydney UniversityWestmeadAustralia
| | - Tianqing Liu
- NICM Health Research InstituteWestern Sydney UniversityWestmeadAustralia
| |
Collapse
|
6
|
Özer A, Şengel N, Küçük A, Yığman Z, Özdemir Ç, Kılıç Y, Dursun AD, Bostancı H, Kip G, Arslan M. The Effect of Cerium Oxide (CeO 2) on Ischemia-Reperfusion Injury in Skeletal Muscle in Mice with Streptozocin-Induced Diabetes. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:752. [PMID: 38792935 PMCID: PMC11122892 DOI: 10.3390/medicina60050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
Objective: Lower extremity ischemia-reperfusion injury (IRI) may occur with trauma-related vascular injury and various vascular diseases, during the use of a tourniquet, in temporary clamping of the aorta in aortic surgery, or following acute or bilateral acute femoral artery occlusion. Mitochondrial dysfunction and increased basal oxidative stress in diabetes may cause an increase in the effects of increased reactive oxygen species (ROS) and mitochondrial dysfunction due to IRI. It is of great importance to examine therapeutic approaches that can minimize the effects of IRI, especially for patient groups under chronic oxidative stress such as DM. Cerium oxide (CeO2) nanoparticles mimic antioxidant enzymes and act as a catalyst that scavenges ROS. In this study, it was aimed to investigate whether CeO2 has protective effects on skeletal muscles in lower extremity IRI in mice with streptozocin-induced diabetes. Methods: A total of 38 Swiss albino mice were divided into six groups as follows: control group (group C, n = 6), diabetes group (group D, n = 8), diabetes-CeO2 (group DCO, n = 8), diabetes-ischemia/reperfusion (group DIR, n = 8), and diabetes-ischemia/reperfusion-CeO2 (group DIRCO, n = 8). The DCO and DIRCO groups were given doses of CeO2 of 0.5 mg/kg intraperitoneally 30 min before the IR procedure. A 120 min ischemia-120 min reperfusion period with 100% O2 was performed. At the end of the reperfusion period, muscle tissues were removed for histopathological and biochemical examinations. Results: Total antioxidant status (TAS) levels were found to be significantly lower in group DIR compared with group D (p = 0.047 and p = 0.022, respectively). In group DIRCO, total oxidant status (TOS) levels were found to be significantly higher than in group DIR (p < 0.001). The oxidative stress index (OSI) was found to be significantly lower in group DIR compared with group DCO (p < 0.001). Paraoxanase (PON) enzyme activity was found to be significantly increased in group DIR compared with group DCO (p < 0.001). The disorganization and degeneration score for muscle cells, inflammatory cell infiltration score, and total injury score in group DIRCO were found to be significantly lower than in group DIR (p = 0.002, p = 0.034, and p = 0.001, respectively). Conclusions: Our results confirm that CeO2, with its antioxidative properties, reduces skeletal muscle damage in lower extremity IRI in diabetic mice.
Collapse
Affiliation(s)
- Abdullah Özer
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
| | - Necmiye Şengel
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Gazi University, Ankara 06490, Turkey;
| | - Ayşegül Küçük
- Department of Physiology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya 43020, Turkey;
| | - Zeynep Yığman
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara 06830, Turkey
| | - Çağrı Özdemir
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey; (Ç.Ö.); (G.K.)
| | - Yiğit Kılıç
- Department of Pediatric Cardiovascular Surgery, Gazi Yaşargil Education Research Hospital, Diyarbakır 21010, Turkey;
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey;
| | - Hasan Bostancı
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey;
| | - Gülay Kip
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey; (Ç.Ö.); (G.K.)
| | - Mustafa Arslan
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey
- Laboratory Animal Breeding and Experimental Researches Center (GÜDAM), Gazi University, Ankara 06510, Turkey
| |
Collapse
|
7
|
Pietrzak M, Skiba E, Wolf WM. Root-Applied Cerium Oxide Nanoparticles and Their Specific Effects on Plants: A Review. Int J Mol Sci 2024; 25:4018. [PMID: 38612829 PMCID: PMC11012102 DOI: 10.3390/ijms25074018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
With the pronounced increase in nanotechnology, it is likely that biological systems will be exposed to excess nanoparticles (NPs). Cerium oxide nanoparticles (CeO2 NPs) are among the most abundantly produced nanomaterials in the world. Their widespread use raises fundamental questions related to the accumulation in the environment and further interactions with living organisms, especially plants. NPs present in either soil or soilless environments are absorbed by the plant root systems and further transported to the aboveground parts. After entering the cytoplasm, NPs interact with chloroplast, nucleus, and other structures responsible for metabolic processes at the cellular level. In recent years, several studies have shown the impact of nanoceria on plant growth and metabolic processes. Research performed on different plants has shown a dual role for CeO2 NPs. The observed effects can be positive or negative and strongly depend on the plant species, characterization, and concentrations of NPs. This review describes the impact of root-applied CeO2 NPs on plant growth, photosynthesis, metal homeostasis, and parameters of induced oxidative stress.
Collapse
Affiliation(s)
- Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 114, 90-543 Lodz, Poland;
| | - Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 114, 90-543 Lodz, Poland;
| | | |
Collapse
|
8
|
Gallucci N, Appavou MS, Cowieson N, D'Errico G, Di Girolamo R, Lettieri S, Sica F, Vitiello G, Paduano L. Ordered hierarchical superlattice amplifies coated-CeO 2 nanoparticles luminescence. J Colloid Interface Sci 2024; 659:926-935. [PMID: 38219311 DOI: 10.1016/j.jcis.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Achieving a controlled preparation of nanoparticle superstructures with spatially periodic arrangement, also called superlattices, is one of the most intriguing and open questions in soft matter science. The interest in such regular superlattices originates from the potentialities in tailoring the physicochemical properties of the individual constituent nanoparticles, eventually leading to emerging behaviors and/or functionalities that are not exhibited by the initial building blocks. Despite progress, it is currently difficult to obtain such ordered structures; the influence of parameters, such as size, softness, interaction potentials, and entropy, are neither fully understood yet and not sufficiently studied for 3D systems. In this work, we describe the synthesis and characterization of spatially ordered hierarchical structures of coated cerium oxide nanoparticles in water suspension prepared by a bottom-up approach. Covering the CeO2 surface with amphiphilic molecules having chains of appropriate length makes it possible to form ordered structures in which the particles occupy well-defined positions. In the present case superlattice arrangement is accompanied by an improvement in photoluminescence (PL) efficiency, as an increase in PL intensity of the superlattice structure of up to 400 % compared with that of randomly dispersed nanoparticles was observed. To the best of our knowledge, this is one of the first works in the literature in which the coexistence of 3D structures in solution, such as face-centered cubic (FCC) and Frank-Kasper (FK) phases, of semiconductor nanoparticles have been related to their optical properties.
Collapse
Affiliation(s)
- Noemi Gallucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
| | - Marie-Sousai Appavou
- Jülich Center for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Nathan Cowieson
- Diamond Light Source, Didcot, Oxfordshire, England, United Kingdom
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefano Lettieri
- Department of Physics, University of Naples Federico II, Via Cupa Cintia 21, 80126 Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Giuseppe Vitiello
- CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy,; CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
9
|
Singh AK, Bhardwaj K. Mechanistic understanding of green synthesized cerium nanoparticles for the photocatalytic degradation of dyes and antibiotics from aqueous media and antimicrobial efficacy: A review. ENVIRONMENTAL RESEARCH 2024; 246:118001. [PMID: 38145730 DOI: 10.1016/j.envres.2023.118001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
In recent years, extensive research endeavors are being undertaken for synthesis of an efficient, economic and eco-friendly cerium oxide nanoparticles (CeO2 NPs) using plant extract mediated greener approach. A number of medicinal plants and their specific parts (flowers, bark, seeds, fruits, seeds and leaves) have been found to be capable of synthesizing CeO2 NPs. The specific key phytochemical constituents of plants such as alkaloids, terpenoids, phenolic acids, flavones and tannins can play significant role as a reducing, stabilizing and capping agents in the synthesis of CeO2 NPs from their respective precursor solution of metal ions. The CeO2 NPs are frequently using in diverse fields of science and technology including photocatalytic degradation of dyes, antibiotics as well as antimicrobial applications. In this review, the mechanism behind the green synthesis CeO2 NPs using plant entities are summarized along with discussion of analytical results from characterization techniques. An overview of CeO2 NPs for water remediation application via photocatalytic degradation of dyes and antibiotics are discussed. In addition, the mechanisms of antimicrobial efficacy of CeO2 NPs and current challenges for their sustainable application at large scale in real environmental conditions are discussed.
Collapse
Affiliation(s)
- Arun K Singh
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India.
| | - Kajal Bhardwaj
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| |
Collapse
|
10
|
Siddiqui H, Kumar S, Naidu P, Gupta S, Mishra S, Goswami M, Sairkar PK, Atram L, Sathish N, Kumar S. Solanum tuberosum tuber-driven starch-mediated green-hydrothermal synthesis of cerium oxide nanoparticles for efficient photocatalysis and antimicrobial activities. CHEMOSPHERE 2024; 352:141418. [PMID: 38340994 DOI: 10.1016/j.chemosphere.2024.141418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
In this study, we are reporting for the first time the utilization of Solanum tuberosum tuber-driven, starch-mediated, green-hydrothermally synthesized cerium oxide nanoparticles (G-CeO2 NPs) for the antibacterial activity and photodegradation of cationic (methylene blue, MB) and anionic (methyl orange, MO) dyes separately and in combination, aimed at environmental remediation. The XRD analysis confirms the fluorite structure of G-CeO2 NPs, displaying an average crystallite size of 9.6 nm. Further, XPS confirms the existence of 24% of Ce3+ oxidation states within G-CeO2 NPs. Morphological studies through FE-SEM and TEM reveal that starch-driven OH- ion production leads to a high percentage of active crystal facets, favoring the formation of Ce3+-rich CeO2 NPs. Photocatalytic experiments conducted under UV-A illumination demonstrate the superior degradation performance of G-CeO2 NPs, with MB degradation reaching 93.4% and MO degradation at 77.2% within 90 min. This outstanding catalytic activity is attributed to the mesoporous structure (pore diameter of 5.63 nm) with a narrow band gap, a large surface area (103.38 m2g-1), and reduced charge recombination, as validated by BET, UV-visible, and electrochemical investigations. The identification of photogenerated intermediates is achieved through LCMS, while the mineralization is monitored via total organic carbon analysis. Moreover, the scavenging experiments point towards the involvement of reactive oxygen species in organic oxidation, demonstrating efficiency over five consecutive trials. Additionally, G-CeO2 NPs exhibit potent antibacterial activity against both gram-positive and gram-negative bacteria. This study presents an innovative, and efficient approach to environmental remediation, shedding light on the potential of G-CeO2 NPs in addressing environmental pollution challenges.
Collapse
Affiliation(s)
- Hafsa Siddiqui
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Bhopal, 462026, India
| | - Satendra Kumar
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palash Naidu
- Rani Durgavati Vishwavidyalaya, Jabalpur, 482001, India
| | - Shaily Gupta
- Department of Chemical Engineering, Vellore Institute of Technology, Vellore, 632014, India
| | - Shivi Mishra
- Rani Durgavati Vishwavidyalaya, Jabalpur, 482001, India
| | - Manoj Goswami
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pramod Kumar Sairkar
- Centre of Excellence in Biotechnology, Madhya Pradesh Council of Science & Technology, Bhopal, 462003, India
| | - Lakshmikant Atram
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Bhopal, 462026, India
| | - N Sathish
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Surender Kumar
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Fatemi M, Meshkini A, Matin MM. A dual catalytic functionalized hollow mesoporous silica-based nanocarrier coated with bacteria-derived exopolysaccharides for targeted delivery of irinotecan to colorectal cancer cells. Int J Biol Macromol 2024; 259:129179. [PMID: 38181911 DOI: 10.1016/j.ijbiomac.2023.129179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
In this study, we introduced a multifunctional hollow mesoporous silica-based nanocarrier (HMSN) for the targeted delivery of irinotecan (IRT) to colorectal cancer cells. Due to their large reservoirs, hollow mesoporous silica nanoparticles are suitable platforms for loading significant amounts of drugs for sustained drug release. To respond to pH and redox, HMSNs were functionalized with cerium and iron oxides. Additionally, they were coated with bacterial-derived exopolysaccharide (EPS) as a biocompatible polymer. In vitro analyses revealed that cytotoxicity induced in cancer cells through oxidative stress, mediated by mature nanocarriers (EPS.IRT.Ce/Fe.HMSN), was surprisingly greater than that caused by free drugs. Cerium and iron ions, in synergy with the drug, were found to generate reactive oxygen species when targeting the acidic pH within lysosomes and the tumor microenvironment. This, in turn, triggered cascade reactions, leading to cell death. In vivo experiments revealed that the proposed nanocarriers had no noticeable effect on healthy tissues. These findings indicate the selective delivery of the drug to cancerous tissue and the induction of antioxidant effects due to the dual catalytic properties of cerium in normal cells. Accordingly, this hybrid drug delivery system provides a more effective treatment for colorectal cancer with the potential for cost-effective scaling up.
Collapse
Affiliation(s)
- Mohsen Fatemi
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Azadeh Meshkini
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Maryam M Matin
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
12
|
Zhang Y, Cai X, Hou Y, Chen W, Zhang J. Triphenyltin Influenced Carotenoid-Based Coloration in Coral Reef Fish, Amphiprion ocellaris, by Disrupting Carotenoid Metabolism. TOXICS 2023; 12:13. [PMID: 38250969 PMCID: PMC10820653 DOI: 10.3390/toxics12010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Triphenyltin (TPT), a kind of persistent pollutant, is prevalent in the aquatic environment and could pose a threat to coral reef fish. However, little is known about the toxicity of TPT on coral reef fish, especially regarding the representative characteristics of body coloration. Therefore, this study chose the clownfish (Amphiprion ocellaris) in order to investigate the effects of TPT exposure on its carotenoid-based body coloration under the environmentally relevant concentrations (0, 1, 10 and 100 ng/L). After TPT exposure for 60 d, the carotenoid contents were decreased and histological damage in the liver was found, shown as nuclear pyknosis and shift, lipid deposition and fibrotic tissue hyperplasia. Liver transcriptomic analysis showed that TPT exposure interfered with oxidative phosphorylation and fatty acid metabolism pathways, which related to carotenoids uptake and metabolism. Furthermore, TPT exposure led to oxidative damage in the liver, which is responsible for the changes in the antioxidant capacity of enzymes, including GSH, MDA, POD, CAT and T-SOD. TPT exposure also affected the genes (Scarb1, CD36, Stard3 and Stard5) related to carotenoid absorption and transport, as well as the genes (GstP1 and Bco2) related to carotenoid deposition and decomposition. Taken together, our results demonstrate that TPT influenced carotenoid-based coloration in coral reef fish by disrupting carotenoid metabolism, which complements the ecotoxicological effects and toxic mechanisms of TPT and provides data for the body color biology of coral reef fishes.
Collapse
Affiliation(s)
- Yan Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
| | - Xingwei Cai
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 570206, China;
| | - Yu Hou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
| | - Wenming Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Z.); (Y.H.); (W.C.)
- Hainan Provincial Key Laboratory of Ecological Civilization and Integrated Land-Sea Development, Haikou 571158, China
| |
Collapse
|
13
|
Alhaithloul HAS, Ali B, Alghanem SMS, Zulfiqar F, Al-Robai SA, Ercisli S, Yong JWH, Moosa A, Irfan E, Ali Q, Irshad MA, Abeed AHA. Effect of green-synthesized copper oxide nanoparticles on growth, physiology, nutrient uptake, and cadmium accumulation in Triticum aestivum (L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115701. [PMID: 37979354 DOI: 10.1016/j.ecoenv.2023.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Cadmium (Cd) stress in crops has been serious concern while little is known about the copper oxide nanoparticles (CuO NPs) effects on Cd accumulation by crops. This study investigated the effectiveness of CuO NPs in mitigating Cd contamination in wheat (Triticum aestivum L.) cultivation through a pot experiment, presenting an eco-friendly solution to a critical agricultural concern. The CuO NPs, synthesized using green methods, exhibited a circular shape with a crystalline structure and a particle size ranging from 8 to 12 nm. The foliar spray of CuO NPs was applied in four different concentrations i.e. control, 25, 50, 75, 100 mg/L. The obtained data demonstrated that, in comparison to the control group, CuO NPs had a beneficial influence on various growth metrics and straw and grain yields of T. aestivum. The green CuO NPs improved T. aestivum growth and physiology under Cd stress, enhanced selected enzyme activities, reduced oxidative stress, and decreased malondialdehyde levels in the T. aestivum plants. CuO NPs lowered Cd contents in T. aestivum tissues and boosted the uptake of essential nutrients from the soil. Overall, foliar applied CuO NPs were effective in minimizing Cd contents in grains thereby reducing the health risks associated with Cd excess in humans. However, more in depth studies with several plant species and application methods of CuO NPs are required for better utilization of NPs in agricultural purposes.
Collapse
Affiliation(s)
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Sami Asir Al-Robai
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha 1988, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk Universitesi, Erzurum 25240, Turkiye; HGF Agro, Ata Teknokent, Erzurum 25240, Turkiye
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456 Alnarp, Sweden.
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Effa Irfan
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | - Qasim Ali
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
14
|
Cupini S, Di Marco S, Boselli L, Cavalli A, Tarricone G, Mastronardi V, Castagnola V, Colombo E, Pompa PP, Benfenati F. Platinum Nanozymes Counteract Photoreceptor Degeneration and Retina Inflammation in a Light-Damage Model of Age-Related Macular Degeneration. ACS NANO 2023; 17:22800-22820. [PMID: 37934489 PMCID: PMC10690844 DOI: 10.1021/acsnano.3c07517] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Degeneration of photoreceptors in age-related macular degeneration (AMD) is associated with oxidative stress due to the intense aerobic metabolism of rods and cones that if not properly counterbalanced by endogenous antioxidant mechanisms can precipitate photoreceptor degeneration. In spite of being a priority eye disease for its high incidence in the elderly, no effective treatments for AMD exist. While systemic administration of antioxidants has been unsuccessful in slowing down degeneration, locally administered rare-earth nanoparticles were shown to be effective in preventing retinal photo-oxidative damage. However, because of inherent problems of dispersion in biological media, limited antioxidant power, and short lifetimes, these NPs are still confined to the preclinical stage. Here we propose platinum nanoparticles (PtNPs), potent antioxidant nanozymes, as a therapeutic tool for AMD. PtNPs exhibit high catalytic activity at minimal concentrations and protect primary neurons against oxidative insults and the ensuing apoptosis. We tested the efficacy of intravitreally injected PtNPs in preventing or mitigating light damage produced in dark-reared albino Sprague-Dawley rats by in vivo electroretinography (ERG) and ex vivo retina morphology and electrophysiology. We found that both preventive and postlesional treatments with PtNPs increased the amplitude of ERG responses to light stimuli. Ex vivo recordings demonstrated the selective preservation of ON retinal ganglion cell responses to light stimulation in lesioned retinas treated with PtNPs. PtNPs administered after light damage significantly preserved the number of photoreceptors and inhibited the inflammatory response to degeneration, while the preventive treatment had a milder effect. The data indicate that PtNPs can effectively break the vicious cycle linking oxidative stress, degeneration, and inflammation by exerting antioxidant and anti-inflammatory actions. The increased photoreceptor survival and visual performances in degenerated retinas, together with their high biocompatibility, make PtNPs a potential strategy to cure AMD.
Collapse
Affiliation(s)
- Sara Cupini
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Experimental Medicine, University of
Genova, Viale Benedetto
XV 3, 16132 Genova, Italy
| | - Stefano Di Marco
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rossana Benzi 10, 16132 Genova, Italy
| | - Luca Boselli
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Alessio Cavalli
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Department
of Experimental Medicine, University of
Genova, Viale Benedetto
XV 3, 16132 Genova, Italy
| | - Giulia Tarricone
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Valentina Mastronardi
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Valentina Castagnola
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rossana Benzi 10, 16132 Genova, Italy
| | - Elisabetta Colombo
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rossana Benzi 10, 16132 Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Fabio Benfenati
- Center
for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rossana Benzi 10, 16132 Genova, Italy
| |
Collapse
|
15
|
Hakimi F, Sharifyrad M, Safari H, khanmohammadi A, Gohari S, Ramazani A. Amygdalin/chitosan-polyvinyl alcohol/cerium-tannic acid hydrogel as biodegradable long-time implant for cancer recurrence care applications: An in vitro study. Heliyon 2023; 9:e21835. [PMID: 38027646 PMCID: PMC10658248 DOI: 10.1016/j.heliyon.2023.e21835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer recurrence following surgery is a serious and worrying problem for the patient. Common treatment strategies, such as chemotherapy, radiotherapy, and surgery, are restricted because of low uptake of the drugs, poor pharmacokinetic properties, and toxicity issues for healthy tissues. The development of engineering platforms for improving the postoperative treatment of cancer can help solve this problem. In this study, the ceria-tannic acid nanoparticles (CeTA-NPs) were successfully synthesized and characterized. Chitosan-polyvinyl/alcohol (CS-PVA) hydrogels containing CeTA NPs (CS-PVA/CeTA) and amygdalin as an anticancer substance were fabricated using freeze-thaw and immersion-drying techniques. The swelling and degradation behaviors, antibacterial activity, and biocompatibility of as-prepared hydrogel were done. The apoptotic effects of amygdalin/CS-PVA/CeTA hydrogel were evaluated by flow cytometry technique on a human colorectal cancer (SW-480) cell line. The CeTA-NPs were investigated as antibacterial and cross-linker agents for greater stability of the hydrogel network. The CS-PVA/CeTA hydrogel demonstrated good safety and antibacterial activity. The results of swelling and biodegradation suggest that CS-PVA/CeTA hydrogels can inspire long-time application. The anticancer effects of the amygdalin/CS-PVA/CeTA hydrogel were confirmed by apoptosis results. Hence, amygdalin/CS-PVA/CeTA hydrogel can be a promising candidate for long-time biomedical application.
Collapse
Affiliation(s)
- Fatemeh Hakimi
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Motahare Sharifyrad
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hajar Safari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Akram khanmohammadi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sepehr Gohari
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ramazani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
16
|
Thasu Dinakaran V, Santhaseelan H, Krishnan M, Devendiran V, Dahms HU, Duraikannu SL, Rathinam AJ. Gracilaria salicornia as potential substratum for green synthesis of Cerium Oxide Nanoparticles coupled hydrogel: An effective antimicrobial thin film. Microb Pathog 2023; 184:106360. [PMID: 37722491 DOI: 10.1016/j.micpath.2023.106360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Sodium alginate based (SA) hydrogel supplemented Cerium Oxide nanoparticles (CeO2NPs) was produced to fabricate an antimicrobial thin film using an aqueous extract of G. salicornia (Gs). The Gs-CeO2NPs were characterized via SEM, FT-IR, EDX, XRD and DLS, the particle size was 200 nm, agreed with XRD. Gs-SA powder was extracted and incorporated with CeO2NPs. The Gs-SA and its composite thin film (Gs-CeO2NPs-SATF) were characterized including viscosity, FT-IR, TGA, and SEM. The adhesion of Gs-SA coating around Gs-CeO2NPs confirmed via FTIR. The antimicrobial properties of Gs-CeO2NPs and CeO2NPs-SATF were proved in MICs for E. coli and Candida albicans at 62.5 and 250.0 μg/mL. The biofilm inhibition efficiency of CeO2NPs-SATF was 74.67 ± 0.98% and 65.45 ± 0.40% for E. coli and Candida albicans. The CeO2NPs-SATF was polydisperse in nature and film structure gets fluctuated with NPs concentration. Increased NPs into SATF enhances pore size of gel and corroborated with viscous behaviour. The cytotoxicity of Gs-CeO2NP-SA in Artemia salina at higher concentration 100 μg/mL provides less lethal effect into the adult. The antioxidant activity of Gs-CeO2NP-SA in DPPH assay was noticed at 0.6 mg ml-1 with radical scavenging activity at 65.85 ± 0.81%. Thus the Gs-CeO2NP-SATF would be suitable in antimicrobial applications.
Collapse
Affiliation(s)
| | - Henciya Santhaseelan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Muthukumar Krishnan
- Department of Petrochemical Technology, Bharathidasan Institute of Technology Campus, University College of Engineering, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Velmurugan Devendiran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Hans Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | | | - Arthur James Rathinam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
17
|
Xu H, Li S, Ma X, Xue T, Shen F, Ru Y, Jiang J, Kuai L, Li B, Zhao H, Ma X. Cerium oxide nanoparticles in diabetic foot ulcer management: Advances, limitations, and future directions. Colloids Surf B Biointerfaces 2023; 231:113535. [PMID: 37729799 DOI: 10.1016/j.colsurfb.2023.113535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
Diabetic foot ulcer (DFU) is one of the most serious complications of diabetes, potentially resulting in wound infection and amputation under severe circumstances. Oxidative stress and dysbiosis are the primary factors that delay wound healing, posing challenges to effective treatment. Unfortunately, conventional approaches in these aspects have proven satisfactory in achieving curative outcomes. Recent research has increasingly focused on using nanoparticles, leveraging their potential in wound dressing and medication delivery. Their unique physical properties further enhance their therapeutic effectiveness. Among these nanoparticles, cerium oxide nanoparticles (CONPs) have garnered attention due to their notable beneficial effects on oxidative stress and microbial abundance, thus representing a promising therapeutic avenue for DFU. This review comprehensively assesses recent studies on CONPs in treating DFU. Furthermore, we elaborate on the wound healing process, ceria synthesis, and incorporating CONPs with other materials. Crucially, a thorough evaluation of CONPs' toxicity as a novel metallic nanomaterial for therapeutic use must precede their formal clinical application. Additionally, we identify the current challenges CONPs encounter and propose future directions for their development.
Collapse
Affiliation(s)
- Haotian Xu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Shiqi Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xiaoxuan Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Tingting Xue
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Fang Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hang Zhao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
18
|
Melnikova N, Sheferov I, Panteleev D, Emasheva A, Druzhkova I, Ignatova N, Mishchenko T, Vedunova M. Design and Study of Nanoceria Modified by 5-Fluorouracil for Gel and Polymer Dermal Film Preparation. Pharmaceuticals (Basel) 2023; 16:1082. [PMID: 37630997 PMCID: PMC10458209 DOI: 10.3390/ph16081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
In this work we studied nanoceria (CeO2NPs) and nanoceria modified by 5-fluorouracil (5FU) as potential APIs. Nanoceria were synthesized by precipitation in a matrix of hydroxyethyl cellulose or hydroxypropylmethyl cellulose, using cerium (III) nitrate and meglumine. Nanoceria properties were estimated by UV, FTIR and X-ray photoelectron spectra; scanning electron and atomic force microscopy; powder X-ray diffraction patterns and energy dispersive X-ray microanalysis. The cytotoxicity of nanoceria and polymer-protected nanoparticles was evaluated using the established cell line NCTC clone 929 (C3H/An mouse, subcutaneous connective tissue, clone of L. line). The morphology and metabolic activity of nanoparticles at 10 μg∙mL-1 of cells was not significant. In addition, the cytotoxic effects of nanoceria were assessed on two human colorectal cancer cell lines (HT29 and HCT116), murine melanoma B16 cells and normal human skin fibroblasts. An inhibitory effect was shown for HCT116 human colorectal cancer cells. The IC50 values for pure CeO2NPs and CeO2NPs-5FU were 219.0 ± 45.6 μg∙mL-1 and 89.2 ± 14.0 μg∙mL-1, respectively. On the other hand, the IC50 of 5FU in the combination of CeO2NPs-5FU was 2-fold higher than that of pure 5FU, amounting to 5.0 nmol∙mL-1. New compositions of nanoceria modified by 5-fluorouracil in a polymer matrix were designed as a dermal polymer film and gel. The permeability of the components was studied using a Franz cell.
Collapse
Affiliation(s)
- Nina Melnikova
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Ilya Sheferov
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Dmitry Panteleev
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia;
| | - Anastasia Emasheva
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Tatiana Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
19
|
Melnikova N, Sheferov I, Panteleev D, Emasheva A, Druzhkova I, Ignatova N, Mishchenko T, Vedunova M. Design and Study of Nanoceria Modified by 5-Fluorouracil for Gel and Polymer Dermal Film Preparation. Pharmaceuticals (Basel) 2023; 16:1082. [DOI: https:/doi.org/10.3390/ph16081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023] Open
Abstract
In this work we studied nanoceria (CeO2NPs) and nanoceria modified by 5-fluorouracil (5FU) as potential APIs. Nanoceria were synthesized by precipitation in a matrix of hydroxyethyl cellulose or hydroxypropylmethyl cellulose, using cerium (III) nitrate and meglumine. Nanoceria properties were estimated by UV, FTIR and X-ray photoelectron spectra; scanning electron and atomic force microscopy; powder X-ray diffraction patterns and energy dispersive X-ray microanalysis. The cytotoxicity of nanoceria and polymer-protected nanoparticles was evaluated using the established cell line NCTC clone 929 (C3H/An mouse, subcutaneous connective tissue, clone of L. line). The morphology and metabolic activity of nanoparticles at 10 μg∙mL−1 of cells was not significant. In addition, the cytotoxic effects of nanoceria were assessed on two human colorectal cancer cell lines (HT29 and HCT116), murine melanoma B16 cells and normal human skin fibroblasts. An inhibitory effect was shown for HCT116 human colorectal cancer cells. The IC50 values for pure CeO2NPs and CeO2NPs-5FU were 219.0 ± 45.6 μg∙mL−1 and 89.2 ± 14.0 μg∙mL−1, respectively. On the other hand, the IC50 of 5FU in the combination of CeO2NPs-5FU was 2-fold higher than that of pure 5FU, amounting to 5.0 nmol∙mL−1. New compositions of nanoceria modified by 5-fluorouracil in a polymer matrix were designed as a dermal polymer film and gel. The permeability of the components was studied using a Franz cell.
Collapse
Affiliation(s)
- Nina Melnikova
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Ilya Sheferov
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Dmitry Panteleev
- Department of Pharmaceutical Chemistry, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Anastasia Emasheva
- Faculty of Chemistry, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin Sq., 603950 Nizhny Novgorod, Russia
| | - Tatiana Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Av., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
20
|
Burdusel AC, Neacsu IA, Birca AC, Chircov C, Grumezescu AM, Holban AM, Curutiu C, Ditu LM, Stan M, Andronescu E. Microwave-Assisted Hydrothermal Treatment of Multifunctional Substituted Hydroxyapatite with Prospective Applications in Bone Regeneration. J Funct Biomater 2023; 14:378. [PMID: 37504872 PMCID: PMC10381662 DOI: 10.3390/jfb14070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Orthopedic bone graft infections are major complications in today's medicine, and the demand for antibacterial treatments is expanding because of the spread of antibiotic resistance. Various compositions of hydroxyapatite (HAp) in which Calcium (Ca2+) ions are substituted with Cerium (Ce3+) and Magnesium (Mg2+) are herein proposed as biomaterials for hard tissue implants. This approach gained popularity in recent years and, in the pursuit of mimicking the natural bone mineral's composition, over 70 elements of the Periodic Table were already reported as substituents into HAp structure. The current study aimed to create materials based on HAp, Hap-Ce, and Hap-Mg using hydrothermal maturation in the microwave field. This route has been considered a novel, promising, and effective way to obtain monodisperse, fine nanoparticles while easily controlling the synthesis parameters. The synthesized HAp powders were characterized morphologically and structurally by XRD diffraction, Dynamic light scattering, zeta potential, FTIR spectrometry, and SEM analysis. Proliferation and morphological analysis on osteoblast cell cultures were used to demonstrate the cytocompatibility of the produced biomaterials. The antimicrobial effect was highlighted in the synthesized samples, especially for hydroxyapatite substituted with cerium. Therefore, the samples of HAp substituted with cerium or magnesium are proposed as biomaterials with enhanced osseointegration, also having the capacity to reduce device-associated infections.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdusel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Alexandra Catalina Birca
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Carmen Curutiu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Lia Mara Ditu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania
| | - Miruna Stan
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| |
Collapse
|
21
|
Mahmoodi P, Motavalizadehkakhky A, Darroudi M, Mehrzad J, Zhiani R. Green synthesis of cerium oxide nanoparticles using zucchini peel extract for cytotoxic and photocatalytic properties. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02888-z. [PMID: 37326639 DOI: 10.1007/s00449-023-02888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
The aim of this study is the green synthesis of cerium oxide nanoparticles (CeO2-NPs) using a natural capping agent and its application in water and wastewater treatment. This study presents the biosynthesis of CeO2-NPs by the exertion of a green method using zucchini (Cucurbita pepo) extract as a capping agent. Synthesized CeO2-NPs were distinguished through TGA/DTA, FT-IR, XRD, FESEM/TEM and EDX/PSA, and DRS procedures. According to the XRD pattern of NPs, the crystallinity structure was a face-centered cubic (fcc) with an Fm3m space group and the size was estimated at 30 nm. The spherical morphology of NPs was confirmed through FESEM/TEM images. In the following, the photocatalytic property of NPs was investigated by the decolorization of methylene blue (MB) dye within UV-A light. Also, the cytotoxicity of NPs on the CT26 cell line was evaluated through the MTT test, and no toxicity was observed in the results, which indicates their biocompatibility.
Collapse
Affiliation(s)
- Pegah Mahmoodi
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Alireza Motavalizadehkakhky
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
- Advanced Research Center for Chemistry, Biochemistry & Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
| | - Majid Darroudi
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Advanced Research Center for Chemistry, Biochemistry & Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Raheleh Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
22
|
Kurian AG, Mandakhbayar N, Singh RK, Lee JH, Jin G, Kim HW. Multifunctional dendrimer@nanoceria engineered GelMA hydrogel accelerates bone regeneration through orchestrated cellular responses. Mater Today Bio 2023; 20:100664. [PMID: 37251417 PMCID: PMC10209037 DOI: 10.1016/j.mtbio.2023.100664] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Bone defects in patients entail the microenvironment that needs to boost the functions of stem cells (e.g., proliferation, migration, and differentiation) while alleviating severe inflammation induced by high oxidative stress. Biomaterials can help to shift the microenvironment by regulating these multiple events. Here we report multifunctional composite hydrogels composed of photo-responsive Gelatin Methacryloyl (GelMA) and dendrimer (G3)-functionalized nanoceria (G3@nCe). Incorporation of G3@nCe into GelMA could enhance the mechanical properties of hydrogels and their enzymatic ability to clear reactive oxygen species (ROS). The G3@nCe/GelMA hydrogels supported the focal adhesion of mesenchymal stem cells (MSCs) and further increased their proliferation and migration ability (vs. pristine GelMA and nCe/GelMA). Moreover, the osteogenic differentiation of MSCs was significantly stimulated upon the G3@nCe/GelMA hydrogels. Importantly, the capacity of G3@nCe/GelMA hydrogels to scavenge extracellular ROS enabled MSCs to survive against H2O2-induced high oxidative stress. Transcriptome analysis by RNA sequencing identified the genes upregulated and the signalling pathways activated by G3@nCe/GelMA that are associated with cell growth, migration, osteogenesis, and ROS-metabolic process. When implanted subcutaneously, the hydrogels exhibited excellent tissue integration with a sign of material degradation while the inflammatory response was minimal. Furthermore, G3@nCe/GelMA hydrogels demonstrated effective bone regeneration capacity in a rat critical-sized bone defect model, possibly due to an orchestrated capacity of enhancing cell proliferation, motility and osteogenesis while alleviating oxidative stress.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Gangshi Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
23
|
Dias Samarajeewa A, Velicogna JR, Schwertfeger DM, Meier MJ, Subasinghe RM, Princz JI, Scroggins RP, Beaudette LA. Cerium oxide nanoparticles (nCeO 2) exert minimal adverse effects on microbial communities in soils with and without biosolids amendment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27313-6. [PMID: 37166732 DOI: 10.1007/s11356-023-27313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Increased use of nano-cerium oxide (nCeO2) in an array of industrial applications has raised environmental concerns due to potential increased loadings to the soil environment. This research investigated the potential adverse effects of nCeO2 (10-30 nm) on the soil microbial community in two exposure scenarios: direct application to soil, and indirect application to soil through chemical spiking of biosolids, followed by mixing into soil. Total Ce in test soils without, and with biosolids amendment, ranged from 44 to 770, and 73 to 664 mg Ce kg-1 soil, respectively. In order to help distinguish whether observed effects were elicited by the solid-phase colloids or the activity of dissolved Ce, a soluble Ce salt (Ce (NO3)3) treatment was included in select assays. A suite of tests was used to investigate effects on critical processes: microbial growth (heterotrophic plate count), microbial activity (organic matter (OM) decomposition, enzyme activity and, nitrification) and diversity (structural and functional). Although results showed significant inhibition on microbial growth in soil without biosolids amendment at ≥ 156 mg Ce kg-1 soil by week 5, these results were inconsistent and non-significant thereafter. In general, nCeO2 showed no evidence of consistent adverse effects on OM decomposition, nitrification, soil enzyme activities and functional diversity. Leucine aminopeptidase showed significant (p< 0.05) stimulatory effects over time at ≥ 44 mg Ce kg-1 in soils without biosolids, which was not observed in soils with biosolids amendment. The lack of inhibitory effects of nCeO2 may be attributed to its low solubility; Ce in soil extracts (0.01 M CaCl2) were all below detection (< 0.003 mg kg-1) in the nCeO2-spiked soils, but detectable in the Ce (NO3)3 samples. In contrast, soluble Ce at 359 mg Ce kg-1 showed a significant reduction in OM decomposition and effects on microbial genomic diversity based on the 16S rDNA data in soils with and without biosolids amendment (359 and 690 mg Ce kg-1). The nCeO2 behaviour and effects information described herein are expected to help fulfill data gaps for the characterization of this priority nanomaterial.
Collapse
Affiliation(s)
- Ajith Dias Samarajeewa
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada.
| | - Jessica R Velicogna
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Dina M Schwertfeger
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Matthew J Meier
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Renuka M Subasinghe
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Juliska I Princz
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Rick P Scroggins
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Lee A Beaudette
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| |
Collapse
|
24
|
Rahimi-Kalateh Shah Mohammad G, Motavalizadehkakhky A, Darroudi M, Zhiani R, Mehrzad J, Afshari AR. Urolithin B loaded in cerium oxide nanoparticles enhances the anti-glioblastoma effects of free urolithin B in vitro. J Trace Elem Med Biol 2023; 78:127186. [PMID: 37148696 DOI: 10.1016/j.jtemb.2023.127186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 02/01/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive kind of malignant primary brain tumor in humans. Given the limitation of Conventional therapeutic strategy, the development of nanotechnology and natural product therapy seems to be an effective method enhancing the prognosis of GBM patients. In this research, cell viability, mRNA expressions of various apoptosis-related genes apoptosis, and generation of reactive oxygen species (ROS) in human U-87 malignant GBM cell line (U87) treated with Urolithin B (UB) and CeO2-UB. Unlike CeO2-NPs, both UB and CeO2-UB caused a dose-dependent decrease in the viability of U87 cells. The half-maximal inhibitory concentration values of UB and CeO2-UB were 315 and 250 μM after 24 h, respectively. Moreover, CeO2-UB exerted significantly higher effects on U87 viability, P53 expression, and ROS generation. Furthermore, UB and CeO2-UB increased the accumulation of U87 cells in the SUB-G1 population, decreased the expression of cyclin D1, and increased the Bax/Bcl2 ratio expression. Collectively, these data indicate that CeO2-UB exhibited more substantial anti-GBM effects than UB. Although further in vivo investigations are needed, these results proposed that CeO2-NPs could be utilized as a potential novel anti-GBM agent after further studies.
Collapse
Affiliation(s)
| | - Alireza Motavalizadehkakhky
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran; Advanced Research Center for Chemistry, Biochemistry & Nanomaterial, Islamic Azad University, Neyshabur, Iran.
| | - Majid Darroudi
- Department of Medical Biotechnology & Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahele Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran; New Materials Technology and Processing Research Center, Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran; Advanced Research Center for Chemistry, Biochemistry & Nanomaterial, Islamic Azad University, Neyshabur, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
25
|
Batool R, Fatima B, Jabeen F, Hussain D, Imran M, Najam-ul-Haq M. Profiling of phosphorylated metabolites from lung cancer by zeolite loaded Mg-Al-Ce ternary hydroxide (Zeolite@MAC) composite. Heliyon 2023; 9:e16098. [PMID: 37215921 PMCID: PMC10196856 DOI: 10.1016/j.heliyon.2023.e16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Phosphorylated metabolites are linked to metabolism, and the dysregulation of metabolic reactions brings cancer. Dysregulated levels lead to hyperactivation of glycolytic and mitochondrial oxidative phosphorylation pathways. Abnormal concentrations are the indicators of energy-related disorders. In this work, Zeolite-loaded Mg-Al-Ce hydroxides (Zeolite@MAC) are prepared by co-precipitation and characterized through FTIR, XRD, SEM, BET, AFM, TEM, and DLS. Magnesium-Aluminum-Cerium-Zeolite particles enrich phosphate-containing small molecules. These ternary hydroxides carried out the main adsorption mechanism, which swapped the surface hydroxyl group ligands for phosphate and the inner-sphere complex of CePO4. XH2O. Cerium plays a significant role in the complexation of phosphate, and adding Mg and Al further helps disperse Ce and increase the surface charge on the adsorbent. ΑTP and AMP are the standard molecules for parameter optimization. Zeolite@MAC enriches phosphorylated metabolites followed by their desorption via UV-vis spectrophotometry. MS profiles for healthy and lung cancer serum samples are obtained for phosphorylated metabolites. Characteristic phosphorylated metabolites have been detected in lung cancer samples with high expression. The role of phosphorylated metabolites is explored for abnormal metabolic pathways in lung cancer. The fabricated material is sensitive, selective, and highly enriched for identifying phosphate-specific biomarkers.
Collapse
Affiliation(s)
- Rimsha Batool
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Fahmida Jabeen
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Imran
- Biochemistry Section, Institute of Chemical Sciences, University of Peshawar, 25120, Pakistan
| | - Muhammad Najam-ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
26
|
Vishwakarma V, Ogunkunle CO, Rufai AB, Okunlola GO, Olatunji OA, Jimoh MA. Nanoengineered particles for sustainable crop production: potentials and challenges. 3 Biotech 2023; 13:163. [PMID: 37159590 PMCID: PMC10163185 DOI: 10.1007/s13205-023-03588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/23/2023] [Indexed: 05/11/2023] Open
Abstract
Nanoengineered nanoparticles have a significant impact on the morphological, physiology, biochemical, cytogenetic, and reproductive yields of agricultural crops. Metal and metal oxide nanoparticles like Ag, Au, Cu, Zn, Ti, Mg, Mn, Fe, Mo, etc. and ZnO, TiO2, CuO, SiO2, MgO, MnO, Fe2O3 or Fe3O4, etc. that found entry into agricultural land, alter the morphological, biochemical and physiological system of crop plants. And the impacts on these parameters vary based on the type of crop and nanoparticles, doses of nanoparticles and its exposure situation or duration, etc. These nanoparticles have application in agriculture as nanofertilizers, nanopesticides, nanoremediator, nanobiosensor, nanoformulation, phytostress-mediator, etc. The challenges of engineered metal and metal oxide nanoparticles pertaining to soil pollution, phytotoxicity, and safety issue for food chains (human and animal safety) need to be understood in detail. This review provides a general overview of the applications of nanoparticles, their potentials and challenges in agriculture for sustainable crop production.
Collapse
Affiliation(s)
- Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, 203201 India
| | - Clement Oluseye Ogunkunle
- Environmental Botany Unit, Department of Plant Biology, University of Ilorin, Ilorin, 240003 Nigeria
- Department of Plant Biology, Osun State University, Osogbo, Nigeria
| | | | | | | | | |
Collapse
|
27
|
Ayub MA, Rehman MZU, Ahmad HR, Rico CM, Abbasi GH, Umar W, Wright AL, Nadeem M, Fox JP, Rossi L. Divergent effects of cerium oxide nanoparticles alone and in combination with cadmium on nutrient acquisition and the growth of maize ( Zea mays). FRONTIERS IN PLANT SCIENCE 2023; 14:1151786. [PMID: 37063213 PMCID: PMC10098090 DOI: 10.3389/fpls.2023.1151786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION The increasing use of cerium nanoparticles (CeO2-NPs) has made their influx in agroecosystems imminent through air and soil deposition or untreated wastewater irrigation. Another major pollutant associated with anthropogenic activities is Cd, which has adverse effects on plants, animals, and humans. The major source of the influx of Cd and Ce metals in the human food chain is contaminated food, making it an alarming issue; thus, there is a need to understand the factors that can reduce the potential damage of these heavy metals. METHODS The present investigation was conducted to evaluate the effect of CeO2-10-nm-NPs and Cd (alone and in combination) on Zea mays growth. A pot experiment (in sand) was conducted to check the effect of 0, 200, 400, 600, 1,000, and 2,000 mg of CeO2-10 nm-NPs/kg-1 dry sand alone and in combination with 0 and 0.5 mg Cd/kg-1 dry sand on maize seedlings grown in a partially controlled greenhouse environment, making a total of 12 treatments applied in four replicates under a factorial design. Maize seedling biomass, shoot and root growth, nutrient content, and root anatomy were measured. RESULTS AND DISCUSSION The NPs were toxic to plant biomass (shoot and root dry weight), and growth at 2,000 ppm was the most toxic in Cd-0 sets. For Cd-0.5 sets, NPs applied at 1,000 ppm somewhat reverted Cd toxicity compared with the contaminated control (CC). Additionally, CeO2-NPs affected Cd translocation, and variable Ce uptake was observed in the presence of Cd compared with non-Cd applied sets. Furthermore, CeO2-NPs partially controlled the elemental content of roots and shoots (micronutrients such as B, Mn, Ni, Cu, Zn, Mo, and Fe and the elements Co and Si) and affected root anatomy.
Collapse
Affiliation(s)
- Muhammad Ashar Ayub
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Punjab, Pakistan
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Punjab, Pakistan
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL, United States
| | - Muhammad Zia ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Hamaad Raza Ahmad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Cyren M. Rico
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, MO, United States
| | - Ghulam Hassan Abbasi
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
| | - Alan L. Wright
- Soil, Water and Ecosystem Sciences Department, University of Florida, Institute of Food and Agriculture Sciences, Indian River Research and Education Centre, Fort Pierce, FL, United States
| | - Muhammad Nadeem
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - John-Paul Fox
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL, United States
| | - Lorenzo Rossi
- Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL, United States
| |
Collapse
|
28
|
Spiridonov VV, Sybachin AV, Pigareva VA, Afanasov MI, Musoev SA, Knotko AV, Zezin SB. One-Step Low Temperature Synthesis of CeO2 Nanoparticles Stabilized by Carboxymethylcellulose. Polymers (Basel) 2023; 15:polym15061437. [PMID: 36987217 PMCID: PMC10058267 DOI: 10.3390/polym15061437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
An elegant method of one-pot reaction at room temperature for the synthesis of nanocomposites consisting of cerium containing nanoparticles stabilized by carboxymethyl cellulose (CMC) macromolecules was introduced. The characterization of the nanocomposites was carried out with a combination of microscopy, XRD, and IR spectroscopy analysis. The type of crystal structure of inorganic nanoparticles corresponding to CeO2 was determined and the mechanism of nanoparticle formation was suggested. It was demonstrated that the size and shape of the nanoparticles in the resulting nanocomposites does not depend on the ratio of the initial reagents. Spherical particles with a mean diameter 2–3 nm of were obtained in different reaction mixtures with a mass fraction of cerium from 6.4 to 14.1%. The scheme of the dual stabilization of CeO2 nanoparticles with carboxylate and hydroxyl groups of CMC was proposed. These findings demonstrate that the suggested easily reproducible technique is promising for the large-scale development of nanoceria-containing materials.
Collapse
Affiliation(s)
- Vasily V. Spiridonov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia; (A.V.S.)
- Correspondence:
| | - Andrey V. Sybachin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia; (A.V.S.)
| | - Vladislava A. Pigareva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia; (A.V.S.)
| | - Mikhail I. Afanasov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia; (A.V.S.)
| | - Sharifjon A. Musoev
- Faculty of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1-73, 119991 Moscow, Russia
| | - Alexander V. Knotko
- Faculty of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1-73, 119991 Moscow, Russia
| | - Sergey B. Zezin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia; (A.V.S.)
| |
Collapse
|
29
|
Synthesis of Cerium Oxide Nanoparticles in a Bacterial Nanocellulose Matrix and the Study of Their Oxidizing and Reducing Properties. Molecules 2023; 28:molecules28062604. [PMID: 36985577 PMCID: PMC10051255 DOI: 10.3390/molecules28062604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
A soft synthesis of nanoceria with non-stoichiometric composition (33% Ce3+/67% Ce4+) named CeO2 NPs in bacterial cellulose (BC) matrix in the form of aerogel and hydrogel with controlled CeO2 NPs content was proposed. The advantage of CeO2 NPs synthesis in BC is the use of systemic antacid API–trisamine as a precursor, which did not destruct cellulose at room temperature and enabled a reduction in the duration of synthesis and the number of washes. Moreover, this method resulted in the subsequent uniform distribution of CeO2 NPs in the BC matrix due to cerium (III) nitrate sorption in the BC matrix. CeO2 NPs (0.1–50.0%) in the BC matrix had a fluorite structure with a size of 3–5 nm; the specific surface area of the composites was 233.728 m2/g. CeO2 NPs in the BC-CeO2 NPs composite demonstrated SOD-like activity in the processes of oxidation and reduction of cytochrome c (cyt c3+/cyt c2+), as well as epinephrine to inhibit its auto-oxidation in aqueous solutions by 33–63% relative to the control. In vitro experiments on rat blood showed a decrease in the MDA level and an increase in the activity of antioxidant defense enzymes–SOD by 24% and G6PDH by 2.0–2.5 times. Therefore, BC-CeO2 NPs can be proposed for wound healing as antioxidant material.
Collapse
|
30
|
Ogunkunle CO, Balogun GY, Olatunji OA, Han Z, Adeleye AS, Awe AA, Fatoba PO. Foliar application of nanoceria attenuated cadmium stress in okra (Abelmoschus esculentus L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130567. [PMID: 37055974 DOI: 10.1016/j.jhazmat.2022.130567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Foliar application of nanoparticles (NPs) as a means for ameliorating abiotic stress is increasingly employed in crop production. In this study, the potential of CeO2-NPs as stress suppressants for cadmium (Cd)-stressed okra (Abelmoschus esculentus) plants was investigated, using two cycles of foliar application of CeO2-NPs at 200, 400, and 600 mg/l. Compared to untreated stressed plants, Cd-stressed plants treated with CeO2-NPs presented higher pigments (chlorophyll a and carotenoids). In contrast, foliar applications did not alter Cd root uptake and leaf bioaccumulation. Foliar CeO2-NPs application modulated stress enzymes (APX, SOD, and GPx) in both roots and leaves of Cd-stressed plants, and led to decreases in Cd toxicity in plant's tissues. In addition, foliar application of CeO2-NPs in Cd-stressed okra plants decreased fruit Cd contents, and improved fruit mineral elements and bioactive compounds. The infrared spectroscopic analysis of fruit tissues showed that foliar-applied CeO2-NPs treatments did not induce chemical changes but induced conformational changes in fruit macromolecules. Additionally, CeO2-NPs applications did not alter the eating quality indicator (Mg/K ratio) of okra fruits. Conclusively, the present study demonstrated that foliar application of CeO2-NPs has the potential to ameliorate Cd toxicity in tissues and improve fruits of okra plants.
Collapse
Affiliation(s)
- C O Ogunkunle
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria.
| | - G Y Balogun
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
| | - O A Olatunji
- Department of Plant Biology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Z Han
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697-2175 CA, USA
| | - A S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697-2175 CA, USA
| | - A A Awe
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - P O Fatoba
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
31
|
Atlı Şekeroğlu Z, Şekeroğlu V, Aydın B, Kontaş Yedier S. Cerium oxide nanoparticles exert antitumor effects and enhance paclitaxel toxicity and activity against breast cancer cells. J Biomed Mater Res B Appl Biomater 2023; 111:579-589. [PMID: 36221929 DOI: 10.1002/jbm.b.35175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023]
Abstract
Cerium oxide nanoparticles (CeONPs) displayed cytotoxic properties against some cancer cells. However, there is very limited data about the possible antitumoral potential of them in breast cancer cells when used alone and/or together with a chemotherapeutic drug. We investigated the effects of CeONPs alone or in combination with paclitaxel (PAC) on healthy or carcinoma breast cells. After human breast cancer cells (MCF-7) treated with CeONPs alone or together with PAC for 24, 48, and 72 h, the effects of CeONPs on cell viability, apoptosis, migration, and adhesion were investigated. All cell viability and IC50 values of CeONPs and PAC treatments in healthy breast cells (HTERT-HME1) were higher than MCF-7 cells. They showed higher cytotoxicity against MCF-7 cells. CeONPs (10, 20, and 30 mM) and/or abraxane (AB) (2 μM) significantly decreased cell viability values in MCF-7 cells. All CeONPs concentrations increased the number of apoptotic MCF-7 cells. CeONPs (20 and 30 mM) alone or in combination with AB for 72 h treatment also significantly increased the apoptosis in compared to AB alone. CeONPs and/or AB can significantly inhibit the migratory ability of breast cancer cells. The migration rates in co-treated groups with CeONPs and AB were lower than CeONPs treatments. Higher concentrations of CeONPs alone or together with AB inhibited cell adhesion. Our results showed CeONPs can increase cytotoxicity and apoptosis and decrease cell migration and cell adhesion when used alone or together with AB. Therefore, combination of chemotherapeutics with CeONPs may provide a good strategy against cancer.
Collapse
Affiliation(s)
- Zülal Atlı Şekeroğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, Ordu, Turkey
| | - Vedat Şekeroğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, Ordu, Turkey
| | - Birsen Aydın
- Department of Biology, Faculty of Medicine, Faculty of Science and Letters, Amasya University, Amasya, Turkey
| | - Seval Kontaş Yedier
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, Ordu, Turkey
| |
Collapse
|
32
|
Appu M, Wu H, Chen H, Huang J. Tea polyphenols mediated biogenic synthesis of chitosan-coated cerium oxide (CS/CeO 2) nanocomposites and their potent antimicrobial capabilities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42575-42586. [PMID: 35233667 DOI: 10.1007/s11356-022-19349-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
In the present study, we hypothesized that novel nanocomposites of chitosan-coated cerium oxide (CS/CeO2 NCs) derived from aqueous extracts of tea polyphenols would be stabilized and reduced by using green chemistry. The UV-visible spectrum of the synthesized material revealed an SPR peak at 279 nm, and the morphological characteristics of nanoparticles (NPs) as a uniformly distributed spherical shape with a size range of 20 nm were confirmed by field emission scanning electron microscopy (FESEM). The Fourier transform infrared spectroscopy (FTIR) spectrum illustrated the amino groups of chitosan-coated with CeO2 NPs on the surface. While, the hydrodynamic size (376 nm) and surface charge (+ 25.0 mV) of particles were assessed by dynamic light scattering (DLS), and the existence of oxidation state elements Ce 3d, O 1 s, and C 1 s was identified by employing X-ray photoelectron spectroscopy (XPS). A cubic fluorite polycrystalline structure with a crystallite size of (5.24 nm) NPs was determined using an X-ray Diffractometer (XRD). The developed CS/CeO2 NCs demonstrated excellent antibacterial and antifungal efficacy against foodborne pathogens such as Escherichia coli, Staphylococcus aureus, and Botrytis cinerea with zone of inhibition of 13.5 ± 0.2 and 11.7 ± 0.2 mm, respectively. The results elucidated the potential of biosynthesized CS/CeO2 NCs could be utilized as potent antimicrobial agents in the food and agriculture industries.
Collapse
Affiliation(s)
- Manikandan Appu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China
| | - Huixiang Wu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China
| | - Hao Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, People's Republic of China.
| |
Collapse
|
33
|
Szucs AM, Maddin M, Brien D, Rateau R, Rodriguez-Blanco JD. The role of nanocerianite (CeO 2) in the stability of Ce carbonates at low-hydrothermal conditions. RSC Adv 2023; 13:6919-6935. [PMID: 36865577 PMCID: PMC9972569 DOI: 10.1039/d3ra00519d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
The formation of cerianite (CeO2) was investigated at low hydrothermal conditions (35-205 °C) via two experimental settings: (1) crystallisation from solution experiments, and (2) replacement of Ca-Mg carbonates (calcite, dolomite, aragonite) mediated by Ce-bearing aqueous solutions. The solid samples were studied with a combination of powder X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The results revealed a multi-step crystallisation pathway: amorphous Ce carbonate → Ce-lanthanite [Ce2(CO3)3·8H2O] → Ce-kozoite [orthorhombic CeCO3(OH)] → Ce-hydroxylbastnasite [hexagonal CeCO3(OH)] → cerianite [CeO2]. We found that Ce carbonates can decarbonise in the final stage of the reaction, forming cerianite which significantly increases the porosity of the solids. The redox behaviour of Ce combined with the temperature, and the availability of CO2 3- govern this crystallisation sequence, the sizes, morphologies, and crystallisation mechanisms of the solid phases. Our results explain the occurrence and behaviour of cerianite in natural deposits. These findings also present a simple, environmental-friendly, and cost-efficient method for the synthesis of Ce carbonates and cerianite with tailored structures and chemistries.
Collapse
Affiliation(s)
- Adrienn Maria Szucs
- Department of Geology, School of Natural Sciences, Trinity College Dublin Ireland
| | - Melanie Maddin
- Department of Geology, School of Natural Sciences, Trinity College Dublin Ireland
| | - Daniel Brien
- Department of Geology, School of Natural Sciences, Trinity College Dublin Ireland
| | - Remi Rateau
- Department of Geology, School of Natural Sciences, Trinity College Dublin Ireland
| | | |
Collapse
|
34
|
Khurana A, Saifi MA, Godugu C. Nanoceria Ameliorates Fibrosis, Inflammation, and Cellular Stress in Experimental Chronic Pancreatitis. ACS Biomater Sci Eng 2023; 9:1030-1042. [PMID: 36695711 DOI: 10.1021/acsbiomaterials.2c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chronic pancreatitis (CP) is an inflammatory, irreversible disorder of the pancreas which leads to organ atrophy and poses high risk for the development of pancreatic cancer. Given the lack of clinically approved therapy, we explored the pharmacological potential of the nanoparticles of cerium oxide (nanoceria, NC) against animal models of CP. Nanoceria ameliorated the features of CP as evident from biochemical parameters. It inhibited the inflammatory cytokines and chemokines by abrogation of macrophage signaling. Further, NC attenuated the fibrogenesis by inhibition of TGF-β signaling, endoplasmic reticulum stress, and epithelial-to-mesenchymal transition. Our findings reveal the anti-CP potential of the novel redox regenerative nanoceria against two models of CP.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), NH9, Balanagar Main Road, Balanagar, Hyderabad, Telangana State 500037, India
| | - Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), NH9, Balanagar Main Road, Balanagar, Hyderabad, Telangana State 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), NH9, Balanagar Main Road, Balanagar, Hyderabad, Telangana State 500037, India
| |
Collapse
|
35
|
Balamurugan S, Jainshaa J, Ashika S. Comparison of the synthesis of s, p, d, and f block simple oxides of MgO, SnO2, NiO, and CeO2 nanostructured materials. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
|
36
|
G S, S VP, E P, G A. Comparative synthesis and characterization of nanocomposites using chemical and green approaches including a comparison study on in vivo and in vitro biological properties. NANOSCALE ADVANCES 2023; 5:767-785. [PMID: 36756509 PMCID: PMC9890937 DOI: 10.1039/d2na00677d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
In this study, the anti-diabetic, anti-inflammatory, anti-cytotoxic, and antibacterial effects of various substances were studied in vitro. Malachite green's photocatalytic effects were used to determine the optimised sample while it was exposed to visible light. The intended nanocomposites were created without any contaminants, according to XRD data. The overall characterisation results of the green synthesis of CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)) were superior to those of the chemical synthesis of CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(C)). At the five doses examined, the green synthesis of CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)) and chemical synthesis of CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(C)) resulted in higher α-glucosidase inhibition percentages in the antidiabetic assay. HaCaT cells and MCF-7 cells were less harmful when treated with chemically synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(C)), and green synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)). From the results of the cytotoxicity tests against MCF-7 cells and HaCaT cells using the nanocomposites, the IC50 values of Salacia reticulata, green synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)), and chemically synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(C)) were calculated. This research work shows that the green synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)) have strong anti-inflammatory, antibacterial and anti-diabetic properties, as well as considerable suppression of high activation in in vivo zebrafish embryo toxicity. The novelty of this study focused on the revelation that green synthesized nanocomposites are more affordable, environmentally friendly and biocompatible than chemically synthesized ones.
Collapse
Affiliation(s)
- Sabeena G
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| | - Vainath Praveen S
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| | - Pushpalakshmi E
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| | - Annadurai G
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| |
Collapse
|
37
|
SABIR PAYAMSADQ, ABBAS KAMARANA. Effect of strontium ranelate and cerium oxide addition in the diet on egg production and eggshell quality in laying hen. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2023. [DOI: 10.56093/ijans.v93i1.128219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Minerals are used widely as feed additives in the diets of poultry to enhance bone and egg quality and productivity. Therefore, the current study aimed to evaluate the impact of strontium ranelate and cerium oxide addition in the diet on egg production and eggshell quality in laying hens. In this experiment, a total of 240 laying hens at the age of 44 weeks old, were divided into six treatments, with four replicates per treatment (10 hens per replicate). The hens were fed a standard diet for five weeks as an introductory period of preparation. The design of the dietary treatments was formulated as: control (T1) basal diet, Strontium ranelate (SrR) 400 and 800 mg/kg in basal diet (T2 and T3), Cerium oxide (CeO) 250 and 500 mg/kg in basal diet (T4 and T5) and their combination 400 mg/kg of Strontium ranelate + 250 mg/kg of Cerium oxide (T6) in the basal diet. Laying hen’s performance and, egg quality (eggshell strength, eggshell thickness, eggshell percentage, minerals in eggshell, yolk index and Haugh unit), were analyzed. The results showed that the addition of SrR and CeO did not affect performance, yolk index, Haugh unit, ratio of Ca, P, and Ce in the eggshell. However, supplementing 800 mg/kg SrR significantly increased eggshell strength, thickness, percentage, Sr in the eggshell compared to the control, while supplementing 250 or 500 mg/kg CeO significantly increased eggshell strength and thickness. The combination of SrR and CeO significantly increased eggshell strength compared to the control group. In conclusion, supplementing SrR (800 mg/kg) and CeO significantly improved the quality of the eggshell.
Collapse
|
38
|
Apostolescu N, Tataru Farmus RE, Harja M, Vizitiu MA, Cernatescu C, Cobzaru C, Apostolescu GA. Photocatalytic Removal of Antibiotics from Wastewater Using the CeO 2/ZnO Heterojunction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:850. [PMID: 36676586 PMCID: PMC9866605 DOI: 10.3390/ma16020850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
CeO2/ZnO-based photocatalytic materials were synthesized by the sol-gel method in order to establish heterojunctions that increase the degradation efficiency of some types of antibiotics by preventing the recombination of electron-hole pairs. The synthesized materials were analysed by XRD, SEM, EDAX, FTIR, and UV-Vis. After several tests, the optimal concentration of the catalyst was determined to be 0.05 g‧L-1 and 0.025 g‧L-1 for chlortetracycline and 0.05 g‧L-1 for ceftriaxone. CeO2/ZnO assemblies showed much better degradation efficiency compared to ZnO or CeO2 tested individually. Sample S3 shows good photocatalytic properties for the elimination of ceftriaxone and tetracycline both from single solutions and from the binary solution. This work provides a different perspective to identify other powerful and inexpensive photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
| | | | - Maria Harja
- Correspondence: (M.H.); (G.A.A.); Tel.: +407-4790-9645 (M.H.); +407-542-4231 (G.A.A.)
| | | | | | | | | |
Collapse
|
39
|
Godugu C, Khurana A, Saifi MA. Rare earth cerium oxide nanoparticles attenuated liver fibrosis in bile duct ligation mice model. J Trace Elem Med Biol 2023; 75:127102. [PMID: 36423438 DOI: 10.1016/j.jtemb.2022.127102] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 10/09/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Liver fibrosis is one of the major liver complications which eventually progresses to liver cirrhosis and liver failure. Cerium oxide nanoparticles, also known as nanoceria (NC) are nanoparticles with potential antioxidant and anti-inflammatory activities. Herein, we evaluated the hepatoprotective and anti-fibrotic effects of nanoceria (NC) against bile duct ligation (BDL) induced liver injury. NC were administered i.p. for 12 days (0.5 and 2 mg/kg) to C57BL/6J mice. The biochemical markers of liver injury, oxidative and nitrosative stress markers, inflammatory cytokines were evaluated. Fibrosis assessment and mechanistic studies were conducted to assess the hepatoprotective effects of NC. Administration of NC proved to significantly ameliorate liver injury as evident by reduction in SGOT, SGPT, ALP and bilirubin levels in the treated animals. NC treatment significantly reduced the hydroxyproline levels and expression of fibrotic markers. In summary, our findings establish the hepatoprotective and anti-fibrotic effects of NC against BDL induced liver injury and liver fibrosis. These protective effects were majorly ascribed to their potential ROS inhibition and antioxidant activities through catalase, superoxide dismutase (SOD)-mimetic properties and auto-regenerating capabilities.
Collapse
Affiliation(s)
- Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| |
Collapse
|
40
|
Collin B, Auffan M, Doelsch E, Proux O, Kieffer I, Ortet P, Santaella C. Bacterial Metabolites and Particle Size Determine Cerium Oxide Nanomaterial Biotransformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16838-16847. [PMID: 36350260 DOI: 10.1021/acs.est.2c05280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soil is a major receptor of manufactured nanomaterials (NMs) following unintentional releases or intentional uses. Ceria NMs have been shown to undergo biotransformation in plant and soil organisms with a partial Ce(IV) reduction into Ce(III), but the influence of environmentally widespread soil bacteria is poorly understood. We used high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS) with an unprecedented detection limit to assess Ce speciation in a model soil bacterium (Pseudomonas brassicacearum) exposed to CeO2 NMs of different sizes and shapes. The findings revealed that the CeO2 NM's size drives the biotransformation process. No biotransformation was observed for the 31 nm CeO2 NMs, contrary to 7 and 4 nm CeO2 NMs, with a Ce reduction of 64 ± 14% and 70 ± 15%, respectively. This major reduction appeared quickly, from the early exponential bacterial growth phase. Environmentally relevant organic acid metabolites secreted by Pseudomonas, especially in the rhizosphere, were investigated. The 2-keto-gluconic and citric acid metabolites alone were able to induce a significant reduction in 4 nm CeO2 NMs. The high biotransformation measured for <7 nm NMs would affect the fate of Ce in the soil and biota.
Collapse
Affiliation(s)
- Blanche Collin
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France
| | - Mélanie Auffan
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France
- Recyclage et risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Olivier Proux
- BM30/CRG-FAME, ESRF, Université Grenoble Alpes, CNRS, IRSTEa, Météo France, IRD, OSUG, 38000 Grenoble, France
| | - Isabelle Kieffer
- BM30/CRG-FAME, ESRF, Université Grenoble Alpes, CNRS, IRSTEa, Météo France, IRD, OSUG, 38000 Grenoble, France
| | - Philippe Ortet
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France
| | - Catherine Santaella
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France
| |
Collapse
|
41
|
Negrescu AM, Killian MS, Raghu SNV, Schmuki P, Mazare A, Cimpean A. Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects. J Funct Biomater 2022; 13:jfb13040274. [PMID: 36547533 PMCID: PMC9780975 DOI: 10.3390/jfb13040274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
In the last few years, the progress made in the field of nanotechnology has allowed researchers to develop and synthesize nanosized materials with unique physicochemical characteristics, suitable for various biomedical applications. Amongst these nanomaterials, metal oxide nanoparticles (MONPs) have gained increasing interest due to their excellent properties, which to a great extent differ from their bulk counterpart. However, despite such positive advantages, a substantial body of literature reports on their cytotoxic effects, which are directly correlated to the nanoparticles' physicochemical properties, therefore, better control over the synthetic parameters will not only lead to favorable surface characteristics but may also increase biocompatibility and consequently lower cytotoxicity. Taking into consideration the enormous biomedical potential of MONPs, the present review will discuss the most recent developments in this field referring mainly to synthesis methods, physical and chemical characterization and biological effects, including the pro-regenerative and antitumor potentials as well as antibacterial activity. Moreover, the last section of the review will tackle the pressing issue of the toxic effects of MONPs on various tissues/organs and cell lines.
Collapse
Affiliation(s)
- Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Manuela S. Killian
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Swathi N. V. Raghu
- Department of Chemistry and Biology, Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Palacky University, Listopadu 50A, 772 07 Olomouc, Czech Republic
- Chemistry Department, King Abdulaziz University, Jeddah 80203, Saudi Arabia
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany
- Advanced Institute for Materials Research (AIMR), National University Corporation Tohoku University (TU), Sendai 980-8577, Japan
- Correspondence:
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
42
|
Alam MW, Naeem S, Usman SM, Kanwal Q, BaQais A, Aldughaylibi FS, Nahvi I, Zaidi N. Cerium Oxide Nanorods Synthesized by Dalbergia sissoo Extract for Antioxidant, Cytotoxicity, and Photocatalytic Applications. Molecules 2022; 27:molecules27238188. [PMID: 36500279 PMCID: PMC9735491 DOI: 10.3390/molecules27238188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
In this study, cerium oxide nanorods (CeO2-NRs) were synthesized by using the phytochemicals present in the Dalbergia sissoo extract. The physiochemical characteristics of the as-prepared CeO2-NRs were investigated by using ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction analysis (XRD). The SEM and UV-VIS analyses revealed that the acquired nanomaterials possessed a rod-like morphology while the XRD results further confirmed that the synthesized NRs exhibited a cubic crystal lattice system. The antioxidant capacity of the synthesized CeO2-NRs was investigated by using several in vitro biochemical assays. It was observed that the synthesized NRs exhibited better antioxidant potential in comparison to the industrial antioxidant of the butylated hydroxyanisole (BHA) in 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The biochemical assays, including lipid peroxidation (LPO), total antioxidant capacity (TAC), and catalase activity (CAT), were also performed in the human lymphocytes incubated with the CeO2-NRs to investigate the impact of the NRs on these oxidative biomarkers. Enhanced reductive capabilities were observed in all the assays, revealing that the NRs possess excellent antioxidant properties. Moreover, the cytotoxic potential of the CeO2-NRs was also investigated with the MTT assay. The CeO2-NRs were found to effectively kill off the cancerous cells (MCF-7 human breast cancer cell line), further indicating that the synthesized NRs exhibit anticancer potential as well. One of the major applications studied for the prepared CeO2-NRs was performing the statistical optimization of the photocatalytic degradation reaction of the methyl orange (MO) dye. The reaction was optimized by using the technique of response surface methodology (RSM). This advanced approach facilitates the development of the predictive model on the basis of central composite design (CCD) for this degradation reaction. The maximum degradation of 99.31% was achieved at the experimental optimized conditions, which corresponded rather well with the predicted percentage degradation values of 99.58%. These results indicate that the developed predictive model can effectively explain the performed experimental reaction. To conclude, the CeO2-NRs exhibited excellent results for multiple applications.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (M.W.A.); (S.N.)
| | - Sumaira Naeem
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
- Correspondence: (M.W.A.); (S.N.)
| | | | - Qudsia Kanwal
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fatimah Saeed Aldughaylibi
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Insha Nahvi
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Noushi Zaidi
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
43
|
Virot M, Dumas T, Cot-Auriol M, Moisy P, Nikitenko SI. Synthesis and multi-scale properties of PuO 2 nanoparticles: recent advances and open questions. NANOSCALE ADVANCES 2022; 4:4938-4971. [PMID: 36504736 PMCID: PMC9680947 DOI: 10.1039/d2na00306f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 05/28/2023]
Abstract
Due to the increased attention given to actinide nanomaterials, the question of their structure-property relationship is on the spotlight of recent publications. Plutonium oxide (PuO2) particularly plays a central role in nuclear energetics and a comprehensive knowledge about its properties when nanosizing is of paramount interest to understand its behaviour in environmental migration schemes but also for the development of advanced nuclear energy systems underway. The element plutonium further stimulates the curiosity of scientists due to the unique physical and chemical properties it exhibits around the periodic table. PuO2 crystallizes in the fluorite structure of the face-centered cubic system for which the properties can be significantly affected when shrinking. Identifying the formation mechanism of PuO2 nanoparticles, their related atomic, electronic and crystalline structures, and their reactivity in addition to their nanoscale properties, appears to be a fascinating and challenging ongoing topic, whose recent advances are discussed in this review.
Collapse
Affiliation(s)
- Matthieu Virot
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM Marcoule France
| | - Thomas Dumas
- CEA, DEN, DMRC, Univ Montpellier Marcoule France
| | | | | | | |
Collapse
|
44
|
Bacterial Cellulose Composites with Polysaccharides Filled with Nanosized Cerium Oxide: Characterization and Cytocompatibility Assessment. Polymers (Basel) 2022; 14:polym14225001. [PMID: 36433128 PMCID: PMC9696978 DOI: 10.3390/polym14225001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
A new biocompatible nanocomposite film material for cell engineering and other biomedical applications has been prepared. It is based on the composition of natural polysaccharides filled with cerium oxide nanoparticles (CeONPs). The preparative procedure consists of successive impregnations of pressed bacterial cellulose (BC) with a sodium alginate (ALG) solution containing nanoparticles of citrate-stabilized cerium oxide and a chitosan (CS) solution. The presence of CeONPs in the polysaccharide composite matrix and the interaction of the nanoparticles with the polymer, confirmed by IR spectroscopy, change the network architecture of the composite. This leads to noticeable changes in a number of properties of the material in comparison with those of the matrix's polysaccharide composition, viz., an increase in mechanical stiffness, a decrease in the degree of planar orientation of BC macrochains, an increase in hydrophilicity, and the shift of the processes of thermo-oxidative destruction of the material to a low-temperature region. The latter effect is considered to be caused by the redox activity of cerium oxide (reversible transitions between the states Ce4+ and Ce3+) in thermally stimulated processes in the nanocomposite films. In the equilibrium swollen state, the material retains a mechanical strength at the level of ~2 MPa. The results of in vitro tests (cultivation of multipotent mesenchymal stem cells) have demonstrated the good biocompatibility of the BC-ALG(CeONP)-CS film as cell proliferation scaffolds.
Collapse
|
45
|
Khaligh SF, Asoodeh A. Green synthesis and biological characterization of cerium oxide nanoemulsion against human HT-29 colon cancer cell line. MATERIALS TECHNOLOGY 2022; 37:2318-2338. [DOI: 10.1080/10667857.2022.2031492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/12/2022] [Indexed: 09/22/2023]
Affiliation(s)
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
46
|
Elderdery AY, Alzahrani B, Alabdulsalam AA, Hamza SMA, Elkhalifa AME, Alhamidi AH, Alanazi F, Mohamedain A, Subbiah SK, Ling Mok P. Structural, Optical, Antibacterial, and Anticancer Properties of Cerium Oxide Nanoparticles Prepared by Green Synthesis Using Morinda citrifolia Leaves Extract. Bioinorg Chem Appl 2022; 2022:6835625. [PMID: 36212986 PMCID: PMC9534709 DOI: 10.1155/2022/6835625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Currently, new advancements in the area of nanotechnology opened up new prospects in the field of medicine that could provide us with a solution for numerous medical complications. Although a several varieties of nanoparticles is being explored to be used as nanomedicines, cerium oxide nanoparticles (CeO2 NPs) are the most attractive due to their biocompatibility and their switchable oxidation state (+3 and +4) or in other words the ability to act as prooxidant and antioxidant depending on the pH condition. Green synthesis of nanoparticles is preferred to make it more economical, eco-friendly, and less toxic. The aim of our study here is to formulate the CeO2 NPs (CeO2 NPs) using Morinda citrifolia (Noni) leaf extract and study its optical, structural, antibacterial, and anticancer abilities. Their optical and structural characterization was accomplished by employing X-ray diffractography (XRD), TEM, EDAX, FTIR, UV-vis, and photoluminescence assays. Our CeO2 NPs expressed strong antibacterial effects against Gram-positive S. aureus and S. pneumonia in addition to Gram-negative E. coli and K. pneumonia when compared with amoxicillin. The anticancer properties of the green synthesized CeO2 NPs against human acute lymphoblastic leukemia (ALL) MOLT-4 cells were further explored by the meticulous study of their ability to diminish cancer cell viability (cytotoxicity), accelerate apoptosis, escalate intracellular reactive oxygen species (ROS) accumulation, decline the mitochondria membrane potential (MMP) level, modify the cell adhesion, and shoot up the activation of proapoptotic markers, caspase-3, -8, and -9, in the tumor cells. Altogether, the outcomes demonstrated that our green synthesized CeO2 NPs are an excellent candidate for alternative cancer therapy.
Collapse
Affiliation(s)
- Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | | - Siddiqa M. A. Hamza
- College of Medicine, Department of Pathology, Umm Al-Qura University Algunfuda, Mecca, Saudi Arabia
| | - Ahmed M. E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | - Abdulaziz H. Alhamidi
- Clinical Laboratory Sciences Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Fehaid Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences-Al-qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - A. Mohamedain
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Khartoum University, Khartoum, Sudan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Seri Kembangan, Selangor, Malaysia
| |
Collapse
|
47
|
Mal D, Alveroglu E, Balouch A, Jagirani MS, Kumar S. Highly efficient and selective heterogeneous catalytic reduction of 2-nitroaniline by cerium oxide nanocatalyst under microwave irradiation. ENVIRONMENTAL TECHNOLOGY 2022; 43:3631-3645. [PMID: 33979265 DOI: 10.1080/09593330.2021.1929506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Efficient nanocatalyst with incredible performance is highly demanding in a heterogeneous catalysis system. Herein, we report the facile fabrication of uniform and highly stable Cerium Oxide nanoparticles (CeO2 NPs), through chemical precipitation method using sodium hydroxide as reducing agent. The synthesized material is characterized through highly sophisticated techniques including UV-Visible, FT-IR, SEM, AFM, XRD, and Zeta Sizer- Potential to check the particle formation, surface morphology, topography, crystalline nature, size, and surface potential. The heterogeneous catalytic performance of CeO2 NPs has been accomplished for the reduction of 2-nitroaniline from the aqueous media. The CeO2 nanocatalyst displayed excellent reusability, while the reduction in several repetitive catalytic cycles against 2-nitroaniline under optimized conditions. The CeO2 nanocatalyst shows 99.12% efficiency within 60s reaction time under a greener source of microwave radiation.
Collapse
Affiliation(s)
- Dadu Mal
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Pakistan
| | - Esra Alveroglu
- Istanbul Technical University, Faculty of Science and Letters, Department of Physics Engineering Maslak, Istanbul, Turkey
| | - Aamna Balouch
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Pakistan
- Istanbul Technical University, Faculty of Science and Letters, Department of Physics Engineering Maslak, Istanbul, Turkey
| | - Muhammad Saqaf Jagirani
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Pakistan
| | - Sagar Kumar
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Pakistan
| |
Collapse
|
48
|
Kinetic Characterization of Cerium and Gallium Ions as Inhibitors of Cysteine Cathepsins L, K, and S. Int J Mol Sci 2022; 23:ijms23168993. [PMID: 36012257 PMCID: PMC9409168 DOI: 10.3390/ijms23168993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Heavy metal ions can disrupt biological functions via multiple molecular mechanisms, including inhibition of enzymes. We investigate the interactions of human papain-like cysteine endopeptidases cathepsins L, K, and S with gallium and cerium ions, which are associated with medical applications. We compare these results with zinc and lead, which are known to inhibit thiol enzymes. We show that Ga3+, Ce3+, and Ce4+ ions inhibit all tested peptidases with inhibition constants in the low micromolar range (between 0.5 µM and 10 µM) which is comparable to Zn2+ ions, whereas inhibition constants of Pb2+ ions are one order of magnitude higher (30 µM to 150 µM). All tested ions are linear specific inhibitors of cathepsin L, but cathepsins K and S are inhibited by Ga3+, Ce3+, and Ce4+ ions via hyperbolic inhibition mechanisms. This indicates a mode of interaction different from that of Zn2+ and Pb2+ ions, which act as linear specific inhibitors of all peptidases. All ions also inhibit the degradation of insoluble elastin, which is a common target of these peptidases in various inflammatory diseases. Our results suggest that these ions and their compounds have the potential to be used as cysteine cathepsin inhibitors in vitro and possibly in vivo.
Collapse
|
49
|
Green Combustion Synthesis of CeO2 Nanostructure Using Aloe vera (L.) Burm f. Leaf Gel and Their Structural, Optical and Antimicrobial Applications. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Efficacy of Green Cerium Oxide Nanoparticles for Potential Therapeutic Applications: Circumstantial Insight on Mechanistic Aspects. NANOMATERIALS 2022; 12:nano12122117. [PMID: 35745455 PMCID: PMC9227416 DOI: 10.3390/nano12122117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
Green synthesized cerium oxide nanoparticles (GS-CeO2 NPs) have a unique size, shape, and biofunctional properties and are decorated with potential biocompatible agents to perform various therapeutic actions, such as antimicrobial, anticancer, antidiabetic, and antioxidant effects and drug delivery, by acquiring various mechanistic approaches at the molecular level. In this review article, we provide a detailed overview of some of these critical mechanisms, including DNA fragmentation, disruption of the electron transport chain, degradation of chromosomal assemblage, mitochondrial damage, inhibition of ATP synthase activity, inhibition of enzyme catalytic sites, disorganization, disruption, and lipid peroxidation of the cell membrane, and inhibition of various cellular pathways. This review article also provides up-to-date information about the future applications of GS-CeONPs to make breakthroughs in medical sectors for the advancement and precision of medicine and to effectively inform the disease diagnosis and treatment strategies.
Collapse
|